离散数学2集合论
离散数学--关系的合成 ppt课件
![离散数学--关系的合成 ppt课件](https://img.taocdn.com/s3/m/936657e8a58da0116c174979.png)
则 RºS= {<1,5>, <3,2>, <2,5>}
SºR= {<4,2>, <3,2>, <1,4>} 合成关系的交换率?
(RºS)ºR= {<3,2>} Rº(SºR)= {<3,2>}
结合率?
RºR={<1,2>,<2,2>}
SºS={<4,5>,<3,3>P,P<T课1件 ,1>}
13
合成关系
于是,可把从 X 到 Z 的关系 RºS 定义成: RºS={<x,z>|(xX)Λ(zZ)Λ(y)((yY)
Λ(<x,y>R)Λ(<y,z>S))} 通常称 RºS 是关系 R 和 S 的合成关系。 从 R 和 S 求得 RºS 的运算,称为关系的合成。
PPT课件
3
合成关系
关系的合成
例1: I是整数集合,R,S是I上的关系 R={<x,3x>|x,yI} S={<x,5x>|x,yI}
(1)RºS= {<x,15x>|xI} (2)SºR= {<x,15x>|xI} (3)RºR= {<x,9x>|xI} (4)SºS= {<x,25x>|xI}
PPT课件
4
合成关系
关系的合成
例2: P是所有人的集合,R和S是P上的关系 R={<x,y>|x,yPx是y的父亲} S={<x,y>|x,yPx是y的母亲}
(1)RºR表示的关系是: xRºRy表示x是y的祖父 (2)RºS表示的关系是: xRºSy表示x是y的外祖父
离散数学形考任务2集合论部分概念及性质
![离散数学形考任务2集合论部分概念及性质](https://img.taocdn.com/s3/m/dc633170777f5acfa1c7aa00b52acfc789eb9fe5.png)
离散数学形考任务2集合论部分概念及性质概念在离散数学中,集合论是一个重要的分支。
集合是由对象(元素)组成的全体,这些对象可以是任何事物。
集合论研究集合的性质、操作和关系。
集合集合是指具有相同特性或共同属性的对象的整体。
集合可以用大写字母表示,例如A、B、C。
元素集合中的对象称为元素。
一个元素可以属于一个或多个集合。
子集如果集合A的所有元素也是集合B的元素,那么集合A是集合B的子集。
用符号A ⊆ B表示。
真子集如果集合A是集合B的子集且集合A不等于集合B,那么集合A是集合B的真子集。
用符号A ⊂ B表示。
并集两个集合A和B的并集,表示为A ∪ B,是包含所有A和B 中元素的集合。
交集两个集合A和B的交集,表示为A ∩ B,是同时属于A和B 的元素构成的集合。
补集给定一个集合U,集合A的补集,表示为A'或A^c,是指属于U但不属于A的元素构成的集合。
性质集合论有一些基本性质和规则,以帮助我们理解和操作集合。
1. 交换律:对于任意两个集合A和B,A ∪ B = B ∪ A,A ∩B = B ∩ A。
交换律:对于任意两个集合A和B,A ∪ B = B ∪ A,A ∩B = B ∩ A。
2. 结合律:对于任意三个集合A、B和C,(A ∪ B) ∪ C = A∪ (B ∪ C),(A ∩ B) ∩ C = A ∩ (B ∩ C)。
结合律:对于任意三个集合A、B和C,(A ∪ B) ∪ C = A ∪ (B ∪ C),(A ∩ B) ∩ C = A ∩(B ∩ C)。
3. 分配律:对于任意三个集合A、B和C,A ∪ (B ∩ C) = (A∪ B) ∩ (A ∪ C),A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)。
分配律:对于任意三个集合A、B和C,A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)。
4. 幂集性质:对于任意集合A,A的幂集是指包含A的所有子集的集合。
离散数学II
![离散数学II](https://img.taocdn.com/s3/m/99828093caaedd3383c4d3f0.png)
c):最外层括号可省。 如,(¬((P ∧ ¬Q) ∨R) →((R ∨P)∨Q))
¬(P ∧ ¬Q∨R) →R ∨P∨Q
21/73
1.1 命题与命题联结词
• 例1.3:符号化下列命题。
a):他既有理论知识又有实践经验 b):i. 如果明天不是雨夹雪则我去学校
26/73
1.2 公式的解释与真值表
• 原子命题在不指派真值时称为命题变元,而
复合命题由原子命题和联结词构成,可以看 作是命题变元的函数,且该函数的值仍为 “真”或“假”,可以称为真值函数(True Value Function)或命题公式。但不是说原 子命题和联结词的一个随便的组合都可以为 命题公式,我们用递归的方法来定义命题公 式。
• 例,(¬ P∧Q),(P→(¬P ∧Q)) ,(((P∧Q) ∧(R
∨Q)) ↔(P →R))是命题公式 (P →Q )∧¬ Q), (P →Q, (¬ P∨Q ∨(R, P∨Q ∨不是命题公式
28/73
1.2 公式的解释与真值表
• 注意:
– 如果G是含有n个命题变元 P1, P2, …,Pn的公式, 通常记为G(P1, …,Pn)或简记为G。
汇集起来的一门综合学科。离散数学的应用遍
及现代科学技术的诸多领域。
–离散数学是随着计算机科学的发展而逐步建立
起来的一门新兴的工具性学科,形成于上上个
世纪七十年代。
2/73
引言
• 课程意义
–离散数学是计算机科学的数学基础,其基本概念、 理论、方法大量地应用在数字电路、编译原理、数 据结构、操作系统、数据库系统、算法设计、人工 智能、计算机网络等专业课程中,是这些课程的基 础课程。
离散数学中的集合论问题
![离散数学中的集合论问题](https://img.taocdn.com/s3/m/a945d93d1611cc7931b765ce05087632311274c6.png)
离散数学中的集合论问题离散数学是一个重要的数学分支,其中集合论问题是离散数学的核心内容之一。
集合论研究的是集合的性质、操作和关系,并提供了一种描述和推理离散对象之间关系的框架。
本文将介绍离散数学中的集合论问题,包括集合的定义、运算、性质以及一些常见的集合论问题。
一、集合的定义和表示方法在离散数学中,集合可以通过定义和表示方法来描述。
集合的定义是指明集合中的元素和满足的条件,通常用大写字母表示。
例如,集合A表示为:A = {1, 2, 3, 4, 5},表示集合A包含了元素1、2、3、4和5。
除了列举元素的方法表示集合外,还可以通过描述或表示集合中元素的性质来定义集合。
例如,集合B = {x | x 是偶数}表示B是所有偶数的集合。
集合可以用不同的表示方法来表达。
常见的表示方法包括:1. 列举法:将集合中的元素一一列举出来,写在花括号{}中;2. 描述法:通过描述集合中元素的性质来定义集合,使用竖线或冒号表示;3. Venn图:用图形方式表示集合之间的关系,通常用圆圈或矩形表示集合。
二、集合的运算在集合论中,集合之间可以进行不同的运算,包括并集、交集、差集和补集。
1. 并集:两个集合A和B的并集(A∪B)是包含A和B中所有元素的集合。
符号∪表示并集。
例如,A = {1, 2, 3},B = {3, 4, 5},则A∪B = {1, 2, 3, 4, 5}。
2. 交集:两个集合A和B的交集(A∩B)是包含A和B中公共元素的集合。
符号∩表示交集。
例如,A = {1, 2, 3},B = {3, 4, 5},则A∩B = {3}。
3. 差集:集合A减去集合B中的元素形成的集合称为差集(A-B)。
符号-表示差集。
例如,A = {1, 2, 3},B = {3, 4, 5},则A-B = {1, 2}。
4. 补集:在给定的全集中,集合A的补集(A')是包含全集中不属于A的元素的集合。
符号'表示补集。
离散数学的基础知识点总结
![离散数学的基础知识点总结](https://img.taocdn.com/s3/m/3e6f7c6db5daa58da0116c175f0e7cd1842518df.png)
离散数学的基础知识点总结离散数学是研究离散结构和离散对象的数学分支。
它以集合论、图论和逻辑等为基础,涉及了许多重要的基础知识点。
下面是对离散数学的基础知识点进行的总结。
1. 集合论(Set theory):集合论是离散数学的基础,涉及了集合的概念、运算和恒等关系,以及集合的分类、子集、幂集和笛卡尔积等基本概念和性质。
2. 逻辑(Logic):逻辑是离散数学的重要组成部分,涉及了命题逻辑和谓词逻辑的基本概念和推理规则,包括命题的真值表、谓词的量化、逻辑等价和逻辑蕴含等概念。
3. 函数(Functions):函数是离散数学中的核心概念之一,涉及了函数的定义、域和值域、函数的性质、特殊的函数(如恒等函数、常值函数、单射函数和满射函数等)以及函数的复合和逆函数等。
4. 关系(Relations):关系是离散数学中的另一个核心概念,涉及了关系的定义、关系的特性(如自反性、对称性、传递性和等价关系等)、关系的闭包和自反闭包、关系的图示表示和矩阵表示、等价关系和偏序关系等。
5. 图论(Graph theory):图论是离散数学的重要分支,涉及了图的基本概念(如顶点、边、路径和圈等)、图的表示方法(如邻接矩阵和邻接表等)、图的遍历算法(如深度优先和广度优先等)、图的连通性和可达性、最小生成树和最短路径等基础知识。
7. 代数结构(Algebraic structures):代数结构是离散数学的一个重要方向,涉及了群、环、域和格等基本代数结构的定义、性质和分类,以及同态映射和同构等概念。
8. 数论(Number theory):数论是离散数学的一个重要分支,涉及了自然数的性质和结构,包括质数和素数、最大公因数和最小公倍数、同余和模运算、欧几里得算法和扩展欧几里得算法、费马小定理和欧拉函数等。
9. 排序和选择(Sorting and selection):排序和选择是离散数学中的一类重要问题,涉及了各种排序算法(如冒泡排序、插入排序、快速排序和归并排序等)和选择算法(如选择排序和堆排序等),以及它们的复杂度分析和应用。
离散数学第二版最全课后习题答案详解
![离散数学第二版最全课后习题答案详解](https://img.taocdn.com/s3/m/53561b635627a5e9856a561252d380eb62942327.png)
离散数学第二版最全课后习题答案详解离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、电气工程等领域都有着广泛的应用。
对于学习离散数学的同学们来说,课后习题的解答是巩固知识、加深理解的重要环节。
本文将为您提供离散数学第二版的最全课后习题答案详解,希望能对您的学习有所帮助。
在开始讲解具体的习题答案之前,让我们先简要回顾一下离散数学的主要内容。
离散数学包括集合论、数理逻辑、图论、代数结构等几个部分。
集合论是离散数学的基础,它研究集合的性质、运算和关系。
在集合论的习题中,常见的问题包括集合的表示、集合的运算(并集、交集、补集等)、集合的包含关系以及集合的基数等。
例如,有这样一道习题:设集合 A ={1, 2, 3},B ={2, 3, 4},求 A ∪ B 和A ∩ B。
答案是:A ∪ B ={1, 2, 3, 4},A ∩ B ={2, 3}。
这是因为并集是包含两个集合中所有元素的集合,而交集是同时属于两个集合的元素组成的集合。
数理逻辑是研究推理和证明的工具,它包括命题逻辑和谓词逻辑。
在数理逻辑的习题中,需要掌握命题的符号化、逻辑公式的等价变换、推理规则的应用等。
比如,给出这样一个命题:“如果今天下雨,那么我就不去公园”,将其符号化。
我们可以设“今天下雨”为 P,“我去公园”为 Q,那么这个命题可以符号化为P → ¬Q。
图论是研究图的性质和应用的分支。
图的概念在计算机网络、交通运输等领域有着重要的应用。
图论的习题常常涉及图的表示、顶点的度、路径、连通性、图的着色等问题。
假设有这样一道题:一个无向图有 10 个顶点,每个顶点的度都为 6,求这个图的边数。
根据顶点度数之和等于边数的两倍这个定理,我们可以计算出边数为 30。
代数结构则包括群、环、域等概念,在这部分的习题中,需要理解和运用代数结构的定义和性质来解决问题。
接下来,我们具体来看一些习题的详细解答。
例 1:设集合 A ={x | x 是小于 10 的正奇数},B ={x | x 是小于 10 的正偶数},求 A B。
离散数学基础
![离散数学基础](https://img.taocdn.com/s3/m/5b244a6a7275a417866fb84ae45c3b3567ecdd0b.png)
离散数学基础离散数学是数学的一个分支,主要研究非连续、离散的概念和结构。
它在计算机科学、信息科学以及其他相关领域中具有重要的应用。
本文将介绍离散数学的基础概念和常见的应用。
一、集合论集合论是离散数学的基础,它研究的是元素的集合。
在集合论中,我们常用符号来表示集合和集合之间的关系。
例如,如果A是一个集合,我们可以使用A∈B表示元素A属于集合B。
集合论还引入了交集、并集、差集等运算,用于描述集合之间的关系和操作。
二、逻辑和命题逻辑是离散数学的另一个重要组成部分。
它研究的是推理和推断的规则。
逻辑中最基本的概念是命题,它可以是真或假的陈述。
逻辑运算符包括非(¬)、与(∧)、或(∨)和蕴含(→)。
利用这些运算符,我们可以构建复合命题,并进行逻辑推理。
三、图论图论是离散数学中的一个重要分支,研究的是图的性质和图的应用。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
图可以用来描述网络、社交关系、路线规划等问题。
图论中的常见概念包括图的连通性、最短路径、最小生成树等。
四、代数系统离散数学还研究各种代数系统,如群、环、域等。
代数系统是一种结构,它由一组元素和定义在这些元素上的运算构成。
代数系统在密码学、编码理论等领域中有广泛的应用。
例如,RSA加密算法就是基于模运算的群的性质。
五、概率论概率论是离散数学中的一个重要分支,研究的是随机事件的发生概率和随机现象的规律。
概率论可以用来描述随机算法的性能、信息的压缩率等。
在计算机科学中,概率论在机器学习、数据挖掘等领域中有着广泛的应用。
六、离散数学的应用离散数学在计算机科学和信息科学中有着广泛的应用。
例如,离散数学的概念和方法在编程语言设计、数据结构与算法、数据库系统等方面都扮演着重要的角色。
离散数学还在密码学、图像处理、计算机网络等领域中有着重要的应用。
结论离散数学作为数学的一个分支,研究的是非连续、离散的概念和结构。
它的基础概念包括集合论、逻辑和命题、图论、代数系统以及概率论。
离散数学导论(第5版)-第二篇 集合论
![离散数学导论(第5版)-第二篇 集合论](https://img.taocdn.com/s3/m/111a64a66c85ec3a87c2c5d2.png)
18
• • 四个次序关系间的关系: • • • R是拟序则r (R) = R • • • R是偏序则R-Q是拟序 • • • 字典次序关系必为线性次序关系 • • • R是拟序则必反对称 • 八个概念: • • 最大元素(最小元素) • • 极大元素(极小元素) • • 上界(下界) • • 上确界(下确界)
• • |A∪B|=|A|+|B|-|A∩B|
• •|A∪B∪C| = |A|+|B|+|C| - |A∩B| - |A∩C| -|B∩C|+|A∩B∩C| n
i=1 1≤i<j≤n
1≤i<j<k≤n
• •|S1∪S2∪…∪Sn|n-=1∑|Si|-∑ |Si∩Sj|+ ∑
• |Si∩Sj∩Sk|(-1)∑ |S1∩S2∩…∩S n|
§3.1 函数的基本概念
• (1)一个基本概念——函数的基本概念。
•
函数建立了从一个集合到另一个集合的特殊对应关系。
设有集合X与Y,如果我们有一种对应关系f,使X的任一元素x能
与y中的一个唯一的元素y相对应,则这个对应关系f叫从X到Y的
函数或叫从X到Y的映射。x所对应的y内的元素y叫x的像,而x则
叫y的像源。上述函数我们可以表示成f:XY;或写成XY;
以及y=f(x)。
•
(2)三种不同性质函数:
•
• 满射与内射
离散数学必备知识点总结汇总
![离散数学必备知识点总结汇总](https://img.taocdn.com/s3/m/0666203b1611cc7931b765ce05087632311274e3.png)
离散数学必备知识点总结汇总
1.集合论:集合的概念、元素、子集、交集、并集、差集、补集、空集、集合的运算、集合的等价关系、集合的序关系等。
2.命题逻辑:命题的概念、命题的联接词(与、或、非)、命题的否
定形式、命题的蕴涵、等价命题、命题的充分条件和必要条件、命题的合
取范式和析取范式、蕴涵式、逻辑等价式、命题的否定形式的推理。
3.谓词逻辑:谓词的概念、谓词的量化、全称量化和存在量化、谓词
逻辑的等价式和推理规则、归纳定理和应用。
4.关系:关系的概念、关系的性质、关系的运算、关系的性质和关系
的代数结构。
5.图论:图的概念、图的表示、连通图、树、度数和定理、欧拉图、
哈密顿图、图的平面性质等。
6.混合图:有向图、无向图、有向图和无向图的表示、混合图的回路、可达矩阵、连通度、强连通图等。
7.布尔代数:布尔运算、布尔函数、布尔代数的运算规则、完备性和
最小化。
8.代数结构:半群、群、环、域的定义和性质、同态和同构。
9.组合数学:排列组合、二项式系数、排列、组合、分配原理、鸽巢
原理、生成函数、容斥原理等。
10.图的着色:图的着色问题、邻接矩阵、边界点、图的着色问题的
算法、四色定理等。
11.概率论:基本概念、概率的性质、条件概率、独立事件、贝叶斯定理、随机变量、概率分布函数、期望、方差、协方差、相关系数、大数定理和中心极限定理等。
12.递归:递归关系、递归函数、递归算法、递归树、递归求解等。
离散数学集合论基础知识
![离散数学集合论基础知识](https://img.taocdn.com/s3/m/7c1be49177eeaeaad1f34693daef5ef7bb0d1279.png)
离散数学集合论基础知识离散数学是计算机科学中一门重要的基础学科,集合论是离散数学的基础之一。
在这篇文章中,我们将介绍离散数学集合论的基础知识,包括集合的定义、运算、关系等内容。
一、集合的定义与表示集合是具有确定性的事物或对象的总体,它是数学中的一个基本概念。
我们可以用不同的方式表示一个集合,包括列举法、描述法和图形法。
(一)列举法列举法是通过列举集合中的元素来表示一个集合。
例如,可以用列举法表示自然数集合N={1, 2, 3, 4, …},表示所有正整数的集合。
(二)描述法描述法是通过描述集合中元素的性质来表示一个集合。
例如,可以用描述法表示偶数集合E={x | x是整数,且x能被2整除},表示所有能被2整除的整数的集合。
(三)图形法图形法是用图形的方式表示一个集合。
例如,可以用图形法表示平面上所有整数坐标点构成的集合。
二、集合的运算集合的运算包括并集、交集、差集和补集等。
(一)并集集合A与集合B的并集,记作A∪B,表示由所有属于集合A或集合B的元素组成的集合。
例如,设A={1, 2, 3},B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。
(二)交集集合A与集合B的交集,记作A∩B,表示由既属于集合A又属于集合B的元素组成的集合。
例如,设A={1, 2, 3},B={3, 4, 5},则A∩B={3}。
(三)差集集合A与集合B的差集,记作A-B,表示由属于集合A但不属于集合B的元素组成的集合。
例如,设A={1, 2, 3},B={3, 4, 5},则A-B={1, 2}。
(四)补集对于给定的全集U,集合A相对于全集U的补集,记作A'或者A^c,表示由全集U中不属于集合A的元素组成的集合。
例如,设全集U为自然数集合N,A={2, 4, 6},则A'={1, 3, 5, 7, ...}(即不是偶数的自然数)。
三、集合的关系集合的关系包括包含关系、相等关系和互斥关系等。
第二部分集合论答案
![第二部分集合论答案](https://img.taocdn.com/s3/m/111b30be3b3567ec112d8a31.png)
(集合论部分)一、选择或填空1、设A={a,{a}},下列命题错误的是()。
(1) {a}∈P(A)(2) {a}⊆P(A)(3) {{a}}∈P(A)(4) {{a}}⊆P(A)答:(2)2、在0()Φ之间写上正确的符号。
(1) =(2) ⊆(3) ∈(4) ∉答:(4)3、若集合S的基数|S|=5,则S的幂集的基数|P(S)|=()。
答:324、设P={x|(x+1)2≤4且x∈R},Q={x|5≤x2+16且x∈R},则下列命题哪个正确()(1) Q⊂P(2) Q⊆P(3) P⊂Q(4) P=Q答:(3)5、下列各集合中,哪几个分别相等( )。
(1) A1={a,b} (2) A2={b,a} (3) A3={a,b,a} (4) A4={a,b,c}(5) A5={x|(x-a)(x-b)(x-c)=0} (6) A6={x|x2-(a+b)x+ab=0}答:A1=A2=A3=A6,A4=A56、若A-B=Ф,则下列哪个结论不可能正确?( )(1) A=Ф(2) B=Ф(3) A⊂B(4) B⊂A7、判断下列命题哪个为真?( )(1) A-B=B-A => A=B(2) 空集是任何集合的真子集(3) 空集只是非空集合的子集(4) 若A的一个元素属于B,则A=B答:(1)8、判断下列命题哪几个为正确?()(1) {Ф}∈{Ф,{{Ф}}} (2) {Ф}⊆{Ф,{{Ф}}} (3) Ф∈{{Ф}}(4) Ф⊆{Ф} (5) {a,b}∈{a,b,{a},{b}}答:(2),(4)9、判断下列命题哪几个正确?()(1) 所有空集都不相等(2) {Ф}≠Ф(4) 若A为非空集,则A⊂A成立。
答:(2)10、设A∩B=A∩C,A∩B=A∩C,则B()C。
答:=(等于)11、判断下列命题哪几个正确?()(1) 若A∪B=A∪C,则B=C (2) {a,b}={b,a}(3) P(A∩B)≠P(A)∩P(B) (P(S)表示S的幂集)(4) 若A为非空集,则A≠A∪A成立。
离散数学知识点及其应用
![离散数学知识点及其应用](https://img.taocdn.com/s3/m/918e444c77c66137ee06eff9aef8941ea76e4b91.png)
离散数学知识点及其应用1. 集合论- 集合的定义和运算:集合是由一些确定的不同对象组成的整体,集合之间可以进行交、并、差等运算。
集合的定义和运算:集合是由一些确定的不同对象组成的整体,集合之间可以进行交、并、差等运算。
- 集合关系:包括包含关系(子集)、相等关系和互斥关系。
集合关系:包括包含关系(子集)、相等关系和互斥关系。
- 数学归纳法:是一种用于证明关于自然数的性质的重要方法,包括强归纳法和弱归纳法。
数学归纳法:是一种用于证明关于自然数的性质的重要方法,包括强归纳法和弱归纳法。
- 二元关系:描述两个对象之间的关联关系,包括等价关系、偏序关系和关系的复合与逆。
二元关系:描述两个对象之间的关联关系,包括等价关系、偏序关系和关系的复合与逆。
2. 图论- 图的基本概念:包括图的定义、顶点、边、路径、回路等概念。
图的基本概念:包括图的定义、顶点、边、路径、回路等概念。
- 图的表示方法:邻接矩阵和邻接表。
图的表示方法:邻接矩阵和邻接表。
- 图的遍历算法:深度优先搜索和广度优先搜索。
图的遍历算法:深度优先搜索和广度优先搜索。
- 最短路径算法:迪杰斯特拉算法和弗洛伊德算法。
最短路径算法:迪杰斯特拉算法和弗洛伊德算法。
- 最小生成树算法:普里姆算法和克鲁斯卡尔算法。
最小生成树算法:普里姆算法和克鲁斯卡尔算法。
3. 布尔代数- 基本运算:包括与、或、非等基本逻辑运算。
基本运算:包括与、或、非等基本逻辑运算。
- 逻辑表达式:利用逻辑运算符表达逻辑关系。
逻辑表达式:利用逻辑运算符表达逻辑关系。
- 逻辑电路:基于布尔代数原理设计的逻辑电路,如与门、或门、非门等。
逻辑电路:基于布尔代数原理设计的逻辑电路,如与门、或门、非门等。
- Karnaugh图:用于简化逻辑表达式的图形方法。
Karnaugh 图:用于简化逻辑表达式的图形方法。
4. 组合数学- 排列和组合:用于计数给定集合的排列和组合的方法。
排列和组合:用于计数给定集合的排列和组合的方法。
离散数学知识点整理
![离散数学知识点整理](https://img.taocdn.com/s3/m/2b20dc3a49d7c1c708a1284ac850ad02de8007f1.png)
离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、数理逻辑等领域都有着广泛的应用。
下面就来对离散数学的一些重要知识点进行整理。
一、集合论集合是离散数学中最基本的概念之一。
集合是由一些确定的、彼此不同的对象所组成的整体。
集合的表示方法有列举法和描述法。
列举法就是将集合中的元素一一列举出来,用花括号括起来。
描述法是通过描述元素所具有的性质来确定集合。
集合之间的关系包括子集、真子集、相等。
如果集合 A 的所有元素都属于集合 B,那么 A 是 B 的子集;如果 A 是 B 的子集且 A 不等于 B,那么 A 是 B 的真子集;如果集合 A 和集合 B 的元素完全相同,那么 A 和 B 相等。
集合的运算有并集、交集、差集和补集。
并集是将两个集合中的所有元素合并在一起组成的新集合;交集是两个集合中共同的元素组成的新集合;差集是从一个集合中去掉另一个集合中的元素所得到的新集合;补集是在给定的全集 U 中,去掉集合 A 中的元素所得到的新集合。
二、关系关系是集合论中的一个重要概念,它描述了两个集合元素之间的某种联系。
关系可以用关系矩阵和关系图来表示。
关系矩阵是一个二维矩阵,用于表示两个有限集合之间的关系;关系图则是用顶点和边来表示关系。
关系的性质包括自反性、反自反性、对称性、反对称性和传递性。
自反性是指集合中的每个元素都与自身有关系;反自反性则是集合中的每个元素都与自身没有关系;对称性是如果 a 与 b 有关系,那么 b 与 a 也有关系;反对称性是如果 a 与 b 有关系且 b 与 a 有关系,那么 a 等于 b;传递性是如果 a 与 b 有关系,b 与 c 有关系,那么 a 与 c 有关系。
等价关系是一种具有自反性、对称性和传递性的关系,它可以将集合划分为等价类。
偏序关系是一种具有自反性、反对称性和传递性的关系,它可以引出偏序集的概念。
三、函数函数是一种特殊的关系,它对于定义域中的每个元素,在值域中都有唯一的元素与之对应。
离散数学课后习题答案
![离散数学课后习题答案](https://img.taocdn.com/s3/m/866d197411661ed9ad51f01dc281e53a580251d4.png)
离散数学课后习题答案离散数学课后习题答案离散数学是计算机科学中的一门重要课程,它涵盖了诸多数学概念与技巧,为计算机科学的理论基础打下了坚实的基础。
在学习离散数学的过程中,课后习题是巩固知识、提高能力的重要途径。
然而,有时候我们会遇到一些难以解答的问题,需要参考一些答案来进行思考与学习。
本文将为大家提供一些离散数学课后习题的答案,希望能对大家的学习有所帮助。
一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。
答案:A∪B={1,2,3,4},A∩B={2,3}。
2. 证明:任意集合A和B,有(A-B)∪(B-A)=(A∪B)-(A∩B)。
答案:首先,对于任意元素x,如果x属于(A-B)∪(B-A),那么x属于A-B或者x属于B-A。
如果x属于A-B,那么x属于A∪B,但x不属于A∩B;如果x属于B-A,同样有x属于A∪B,但x不属于A∩B。
所以(A-B)∪(B-A)属于(A∪B)-(A∩B)。
另一方面,对于任意元素x,如果x属于(A∪B)-(A∩B),那么x属于A∪B,但x不属于A∩B。
所以x属于A或者x属于B。
如果x属于A,但x不属于B,那么x属于A-B;如果x属于B,但x不属于A,那么x属于B-A。
所以x属于(A-B)∪(B-A)。
所以(A∪B)-(A∩B)属于(A-B)∪(B-A)。
综上所述,(A-B)∪(B-A)=(A∪B)-(A∩B)。
证毕。
二、逻辑与证明1. 证明:如果p为真命题,那么¬p为假命题。
答案:根据命题的定义,命题要么为真,要么为假,不存在其他情况。
所以如果p为真命题,那么¬p为假命题。
2. 证明:对于任意整数n,如果n^2为偶数,则n为偶数。
答案:假设n为奇数,即n=2k+1(k为整数)。
那么n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1。
根据偶数的定义,2(2k^2+2k)为偶数,所以n^2为奇数。
离散数学考试试题及答案
![离散数学考试试题及答案](https://img.taocdn.com/s3/m/47a076fef021dd36a32d7375a417866fb84ac097.png)
离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。
离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。
下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。
1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。
答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。
答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。
答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。
答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。
答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。
答案:是永真式。
(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。
请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。
答案:是真命题。
4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。
离散数学知识点
![离散数学知识点](https://img.taocdn.com/s3/m/302644f09fc3d5bbfd0a79563c1ec5da50e2d60b.png)
离散数学知识点
离散数学是数学中的一个分支,它主要涉及离散对象和离散结构的研究。
下面将介绍离散数学的一些主要知识点。
1. 集合论:集合是离散数学中的基础概念,集合论研究集合的性质与运算。
它包括集合的定义、运算、关系、等价关系、函数和逆映射等概念。
2. 图论:图论是研究图及其性质的数学分支。
图是由节点(或称为顶点)和边组成的数学模型。
它的重点包括图的分类、图的遍历、最短路径、生成树、染色问题等。
3. 逻辑学:逻辑学是研究推理和论证的学科,在离散数学中应用广泛。
逻辑学包括命题逻辑、谓词逻辑、组合逻辑、模态逻辑等多个分支。
4. 组合数学:组合数学是研究离散结构中离散对象的组合方式的数学分支。
它包括组合计数、排列组合、生成函数、递归等概念。
5. 离散数学在计算机科学中的应用:离散数学在计算机科学中应用广泛,例如计算机算法、图像处理、密码学、编译器等领域都有着重要的应用。
以上是离散数学的主要知识点,它们都有着广泛的应用和研究领域,对于理解和
应用离散数学具有重要作用。
离散数学的基本概念和运算
![离散数学的基本概念和运算](https://img.taocdn.com/s3/m/2b50115ac4da50e2524de518964bcf84b9d52d1b.png)
离散数学的基本概念和运算离散数学是数学的一个重要分支,它研究离散结构和离散对象之间的关系。
与连续数学不同,离散数学关注的是离散的、离散的事物,如整数、图形、逻辑、集合等。
在计算机科学、信息技术以及其他许多领域中,离散数学都担当着重要的角色。
本文将介绍离散数学的一些基本概念和运算,以帮助读者更好地理解和应用离散数学。
一、集合论集合论是离散数学的基石之一,它研究集合以及集合之间的关系和运算。
集合是指一组元素的事物的整体,元素可以是任何事物,比如数字、字母、人或其他对象。
常见的集合运算有并集、交集、差集和补集等。
并集表示两个或多个集合中的所有元素的集合,交集表示同时属于两个或多个集合的元素的集合,差集表示从一个集合中减去另一个集合的元素的集合,补集表示在给定参考集合中不属于某个特定集合的元素的集合。
二、逻辑逻辑是离散数学的另一个重要内容,它研究命题、逻辑运算和推理。
在离散数学中,命题是指能够判断真假的陈述句。
逻辑运算包括与、或、非、异或等。
与运算表示两个命题同时为真时结果为真,或运算表示两个命题中至少有一个为真时结果为真,非运算表示对命题的否定,异或运算表示两个命题中仅有一个为真时结果为真。
推理是利用逻辑规则从已知命题中得出新的结论的过程,常见的推理方法有直接证明、反证法和归纳法。
三、图论图论是离散数学中的一个重要分支,它研究由节点和边组成的图形结构。
图形是由节点(或顶点)和边组成的抽象化模型,节点表示某个对象,边表示节点之间的关系。
图论研究图形的性质、特征和算法。
常见的图形类型有无向图和有向图,无向图的边没有方向,有向图的边有方向。
图形的表示方法有邻接矩阵和邻接表等。
在计算机科学中,图论广泛应用于网络、路径规划、数据结构等领域。
四、代数系统代数系统是离散数学中的另一个重要概念,它研究运算规则和运算对象之间的关系。
代数系统包括集合、运算和运算规则。
常见的代数系统有代数结构、半群、群、环、域等。
代数结构是指由一组元素和一组运算构成的系统,运算可以是加法、乘法或其他操作。
离散数学中的集合论与函数关系
![离散数学中的集合论与函数关系](https://img.taocdn.com/s3/m/0a69e69ab1717fd5360cba1aa8114431b90d8e82.png)
离散数学中的集合论与函数关系离散数学是数学中的一个重要分支,它研究的是离散的、不连续的数学结构。
集合论与函数关系是离散数学中的两个基本概念和重要内容。
本文将着重介绍离散数学中的集合论和函数关系,并探讨它们之间的联系和应用。
一、集合论集合是离散数学中的基本概念之一,它指的是一个由确定元素组成的整体。
集合的元素可以是任何事物,可以是数字、字母、词语等等。
在集合论中,常用大写字母表示集合,例如A、B、C等。
一个集合可以通过列举其元素的方式来描述,也可以通过描述它们的性质来定义。
集合之间的关系有包含关系、相等关系、互斥关系等等。
通过这些关系,可以进行集合的运算,如并集、交集、补集等。
集合论在数学和计算机科学中都有广泛的应用。
二、函数关系函数关系是离散数学中的另一个重要概念,它描述了两个集合之间的对应关系。
一个函数关系可以将一个集合中的元素映射到另一个集合中的元素。
具体来说,如果集合A中的每个元素都与集合B中的唯一元素对应,那么我们称这个对应关系为函数。
函数关系可以用不同的表示方法来描述,最常见的是函数表达式、函数图像和函数关系图。
在离散数学中,函数关系有不同的分类,如单射函数、满射函数、双射函数等。
函数关系的性质和运算也是离散数学中的重要内容。
三、集合论与函数关系的联系和应用集合论和函数关系密切相关,它们之间存在着紧密的联系和应用。
首先,一个函数可以看作是两个集合之间的关系,其中定义域是函数关系的输入集合,值域是函数关系的输出集合。
函数的定义域和值域可以看作是集合论中的集合。
其次,集合论中的运算对函数关系也有应用。
例如,两个函数的复合可以看作是两个集合的运算。
另外,函数的像和原像可以看作是集合论中的集合运算,它们描述了函数关系中元素的映射关系。
最后,集合论和函数关系在计算机科学中有广泛的应用。
在数据库、编程语言、算法设计等领域,集合论和函数关系是不可或缺的工具。
它们用于描述数据结构、算法复杂度、程序设计等,对于计算机科学的发展起到了重要的推动作用。
离散数学知识点归纳
![离散数学知识点归纳](https://img.taocdn.com/s3/m/16903128f6ec4afe04a1b0717fd5360cba1a8de8.png)
离散数学知识点归纳一、集合论。
1. 集合的基本概念。
- 集合是由一些确定的、彼此不同的对象组成的整体。
这些对象称为集合的元素。
例如,A = {1,2,3},其中1、2、3是集合A的元素。
- 集合的表示方法有列举法(如上述A的表示)和描述法(如B={xx是偶数且x < 10})。
2. 集合间的关系。
- 子集:如果集合A的所有元素都是集合B的元素,则称A是B的子集,记作A⊆ B。
例如,{1,2}⊆{1,2,3}。
- 相等:如果A⊆ B且B⊆ A,则A = B。
- 真子集:如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂ B。
3. 集合的运算。
- 并集:A∪ B={xx∈ A或x∈ B}。
例如,A = {1,2},B={2,3},则A∪B={1,2,3}。
- 交集:A∩ B = {xx∈ A且x∈ B}。
对于上述A和B,A∩ B={2}。
- 补集:设全集为U,集合A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
二、关系。
1. 关系的定义。
- 设A、B是两个集合,A× B的子集R称为从A到B的关系。
当A = B时,R称为A上的关系。
例如,A={1,2},B = {3,4},R={(1,3),(2,4)}是从A到B的关系。
2. 关系的表示。
- 关系矩阵:设A={a_1,a_2,·s,a_m},B={b_1,b_2,·s,b_n},R是从A到B的关系,则R的关系矩阵M_R=(r_ij),其中r_ij=<=ft{begin{matrix}1,(a_i,b_j)∈ R0,(a_i,b_j)∉ Rend{matrix}right.。
- 关系图:对于集合A上的关系R,用节点表示A中的元素,若(a,b)∈ R,则用有向边从a指向b。
3. 关系的性质。
- 自反性:对于集合A上的关系R,如果对任意a∈ A,都有(a,a)∈ R,则R 是自反的。
例如,A={1,2,3},R = {(1,1),(2,2),(3,3)}是自反关系。
离散数学中的集合论知识点解析
![离散数学中的集合论知识点解析](https://img.taocdn.com/s3/m/03dcc0e46e1aff00bed5b9f3f90f76c660374c5c.png)
离散数学中的集合论知识点解析集合论是数学中的一个重要分支,研究的是集合的性质、操作和关系。
在离散数学中,集合论占据着重要的地位,我们将在本文中对离散数学中的集合论知识点进行解析。
1. 集合的概念集合是指具有某种特定性质的对象的总体,这些对象称为集合的元素。
用大写字母表示集合,元素用小写字母表示。
例如,集合A={1,2,3,4,5}表示A是由1,2,3,4,5这些元素组成的集合。
集合中的元素不重复,具有唯一性。
2. 基本运算在集合论中,常用的基本运算包括并、交、差和补。
并集:表示两个或多个集合中的所有元素的总和,用符号"∪"表示。
例如,集合A={1,2,3},集合B={3,4,5},则A∪B={1,2,3,4,5}。
交集:表示两个或多个集合中共有的元素,用符号"∩"表示。
例如,集合A={1,2,3},集合B={3,4,5},则A∩B={3}。
差集:表示一个集合减去另一个集合中共有的元素,用符号"-"表示。
例如,集合A={1,2,3},集合B={3,4,5},则A-B={1,2}。
补集:表示全集中不属于某个集合的元素构成的集合,用符号"'"表示。
例如,集合A={1,2,3},全集U={1,2,3,4,5},则A'={4,5}。
3. 子集和集合相等子集是指一个集合的所有元素也同时属于另一个集合,用符号"⊆"表示。
例如,集合A={1,2,3},集合B={1,2,3,4,5},则A⊆B。
集合相等是指两个集合的元素完全相同,用符号"="表示。
例如,集合A={1,2,3},集合B={3,2,1},则A=B。
4. 集合的基数集合的基数是指集合中元素的个数,用符号"|"表示。
例如,集合A={1,2,3},则|A|=3。
5. 幂集幂集是指一个集合的所有子集所构成的集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
flag=1;
for(j=0;A[j]!='\0';j++)
if(A[j]==B[i]){flag=0;break;}
if(flag)S[k++]=B[i];
}
S[k]='\0';
Array_To_Set(S,C);
printf("A∪B=%s\n",C);
for(m=1;m<p;m++)
{
for(j=2;j<=n;j++)if(C[j-1]<=C[j])i=j;
for(k=i;k<=n;k++)if(C[i-1]<C[k])j=k;
swap(C[i-1],C[j]);
swapc(A,i-2,j-1);
for(k=0;k<=n;k++)
if(i+k<n-k)
南京工程学院
实验报告
课程名称离散数学
实验项目名称集合论
实验学生班级K网络工程121
实验学生姓名王云峰
学 号*********
实验时间11月8日
实验地点信息楼
实验成绩评定
指导教师签字年月日
一、实验目的和要求
集合论是一切数学的基础,也是计算机科学不可或缺的,在数据结构、数据库理论、开关理论、自动机理论和可计算理论等领域都有广泛的应用。集合的运算规则是集合论中的重要内容。通过该组实验,目的是让学生更加深刻地理解集合的概念和性质,并掌握集合的运算规则等。
}
}
}
五、实验结果及分析(计算过程与结果、数据曲线、图表等)
求任意两个集合的交集、并集、差集。
求任意一个集合的幂集。
求任意一个集合的所有m元子集。
求任意个元素的全排列。集合的表示采用列举法,如A={a,b,c,d}
六、实验总结与思考
集合的表示采用列举法,如A={a,b,c,d}。
(1)求任意两个集合的交集、并集、差集。
S1=new char;S2=new char;S=new char;
printf("请输入集合A=");
scanf("%s",S1);
Set_To_Array(S1,A);
printf("请输入集合B=");
scanf("%s",S2);
Set_To_Array(S2,B);
S=A;
k=strlen(S);
}
void Get_DSet()//集合的差运算
{
int i,j,k,flag;
char *A,*B,*C,*S1,*S2,*S;
A=new char;B=new char;C=new char;
S1=new char;S2=new char;S=new char;
printf("请输入集合A=");
for(i=0;Array[i]!='\0';i++){Set[j++]=Array[i];Set[j++]=',';}
if(j>1){Set[j-1]='}';Set[j]='\0';}
else {Set[j++]='}';Set[j]='\0';}
}
void Get_ISet()//集合的交运算
S[k]='\0';
Array_To_Set(S,P);
if(strlen(S)==strlen(A))printf("%s",P);
else printf("%s,",P);
}
printf("}\n");
}
int f(int n,int m)
{
int s=1,i;
for(i=n-m+1;i<=n;i++)s=s*i;
j=0;
for(i=1;i<(int)strlen(Set)-1;i=i+2)Array[j++]=Set[i];
Array[j]='\0';
}
void Array_To_Set(char *Array,char *Set)//一维字符数组转化为集合
{
int i,j;
j=0;
Set[j++]='{';
return s;
}
void Get_SubSet()//求集合指定元素个数的子集
{
int i,j,m,k,ip,g;
char *A,*S1,*S,*B;
A=new char;
S1=new char;
S=new char;
B=new char;
printf("A=");scanf("%s",S1);
if(flag)S[k++]=A[i];
}
S[k]='\0';
Array_To_Set(S,C);
printf("A-B=%s\n",C);
}
void Get_PSet()//求集合的幂集
{
int i,j,k,n;
char *A,*P,*S1,*S;
A=new char;P=new char;
S1=new char;S=new char;
if(A[i]==B[j]){S[k++]=A[i];break;}
S[k]='\0';
Array_To_Set(S,C);
printf("A∩B=%s\n",C);
}
}
void Get_USet()//集合的并运算
{
int i,j,k,flag;
char *A,*B,*C,*S1,*S2,*S;
A=new char;B=new char;C=new char;
printf("3、求两个集合的差集4、求一个集合的幂集\n");
printf("5、求一个集合的m元子集6、求任意集合元素的全排列\n");
printf("0、退出\n");
printf("请选择要进行的操作:");
scanf("%d",&i);
switch(i){
case 1:Get_ISet();break;
(4)求任意个元素的全排列。
设S={1,2,3,…,n},(a1,a2,…,an)和(b1,b2,…,bn)是S的两个全排列,若存在i∈{1,2,…,n},使得对一切j=1,2,…,i有aj=bj且ai+1<bi+1,则称排列(a1,a2,…,an)字典序的小于(b1,b2,…,bn)。记为(a1,a2,…,an)<(b1,b2,…,bn)。若(a1,a2,…,an)<(b1,b2,…,bn),且不存在(c1,c2,…,cn)使得(a1,a2,…,an)< (c1,c2,…,cn)<(b1,b2,…,bn),则称(b1,b2,…,bn)为(a1,a2,…,an)的下一个排列。
四、实验原始纪录(源程序、数据结构等)
#include<stdio.h>
#include<>
#include<string.h>
#include<math.h>
void Set_To_Array(char *Set,char *Array)//集合转化为一维字符数组
{
int i,j;
b=a-b;
a=a-b;
}
void swapc(char *A,int i,int j)
{
char temp;
temp=A[i];
A[i]=A[j];
A[j]=temp;
}
void Get_SArrange()
{
int i,j,k,m,n,p,*C;
char *A,*S;
A=new char;
S=new char;
{
swap(C[i+k],C[n-k]);
swapc(A,i+k-1,n-k-1);
}
printf("-->%s",A);
}
printf("\n");
}
void main()
{
int i=1;
while(i>0)
{
System(“cls”);
printf("1、求两个集合的交集2、求两个集合的并集\n");
C=new int;
printf("请输入集合A=");
scanf("%s",S);
Set_To_Array(S,A);
n=strlen(A);
for(k=1;k<=n;k++)C[k]=k;
printf("全排列如下:\n");
printf("%s",A);
p=1;
for(k=1;k<=n;k++)p=p*C[k];
A∩B={x|x∈A∧x∈B}
A∪B={x|x∈A∨x∈B}
A-B={x|x∈A∧xB}
(2)求任意一个集合的幂集。
P(A)={Ai|i∈J},其中J={i|i是二进制数且 ≤i≤ }。