(完整版)常微分方程基本概念习题及解答
常微分方程习题与答案
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
()2 •微分方程的通解中包含了它所有的解。
()3. 函数y =3si nx-4cosx是微分方程y,y=0的解。
()4. 函数y = x2・e x是微分方程y';"-2y ' y = 0的解。
()5. 微分方程xy"T nx=0的通解是y =丄(1 nx)2+C (C为任意常数)。
()26. y"=siny是一阶线性微分方程。
()7. / = x3y3 xy不是一阶线性微分方程。
()8 . /-2/ 5^0的特征方程为『-2—5=0。
()9. dy = 1 x y2 xy2是可分离变量的微分方程。
()dx、填空题1 .在横线上填上方程的名称①y _ 3 ln xdx _ xdy 二0 是__________________________ 。
②xy2 x dx y _ x2 y dy = 0 是__________________________ 。
③x-d^ = y l n 丫是。
dx x④xy := y x2 sin x 是__________________ 。
⑤y y -2y =0是________________________ 。
2 . y si nxy"-x=cosx的通解中应含____________ 个独立常数。
3. _____________________________________ y “ = e Qx的通解是。
4. ______________________________________ y = sin 2x - cos x 的通解是。
5. _______________________________ x^ 2x2y 2,x3y=x4,1是阶微分方程。
6•微分方程y y - y Q =0是________________ 阶微分方程。
i7. y-丄所满足的微分方程是。
常微分方程 习题答案
常微分方程习题答案常微分方程(ODEs)是数学中的一个重要分支,研究方程中的未知函数的导数与自变量之间的关系。
在实际应用中,ODEs广泛用于描述各种自然现象和工程问题,如物理学中的运动学、天体力学、电路理论等。
本文将通过一些常见的ODEs习题,探讨其解答方法和相关概念。
1. 一阶线性常微分方程考虑形如$y'+p(x)y=q(x)$的一阶线性常微分方程,其中$p(x)$和$q(x)$是已知函数。
我们可以使用常数变易法来求解该方程。
首先求出齐次方程$y'+p(x)y=0$的通解$y_h(x)$,然后寻找特解$y_p(x)$,使得$y_p(x)$满足原方程。
最后,将通解$y_h(x)$和特解$y_p(x)$相加,即可得到原方程的通解。
2. 高阶常微分方程高阶常微分方程是指包含未知函数的高阶导数的方程。
考虑形如$y^{(n)}+a_1y^{(n-1)}+\ldots+a_ny=f(x)$的齐次线性常微分方程,其中$a_1,\ldots,a_n$是已知常数,$f(x)$是已知函数。
我们可以使用特征方程的方法来求解该方程。
首先求出齐次方程的特征方程$r^n+a_1r^{n-1}+\ldots+a_n=0$的根$r_1,\ldots,r_n$,然后根据根的性质得到齐次方程的通解$y_h(x)$。
接下来,我们需要找到一个特解$y_p(x)$,使得$y_p(x)$满足原方程。
最后,将通解$y_h(x)$和特解$y_p(x)$相加,即可得到原方程的通解。
3. 常见的ODEs应用常微分方程在各个领域都有广泛的应用。
例如,在物理学中,牛顿第二定律$F=ma$可以转化为二阶常微分方程$m\frac{{d^2x}}{{dt^2}}=F(x,t)$,其中$x(t)$表示物体的位置。
在天体力学中,开普勒定律可以通过常微分方程来描述行星的运动。
在电路理论中,基尔霍夫电流定律和电压定律可以转化为常微分方程,用于分析电路中的电流和电压。
(完整版)常微分方程基本概念习题及解答
(完整版)常微分方程基本概念习题及解答§1.2 常微分方程基本概念习题及解答1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =y e y 2e x 32 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx du u+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1)y(1+x 2y 2)dx=xdy2)y x dx dy =2222x -2 y x 2y+ 证明:令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1)1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。
(整理)常微分方程(含解答)
第八章 常微分方程【教学要求】一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。
二、熟练掌握一阶可分离变量微分方程的解法。
三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+'的解法——常数变易法和公式法。
四、理解线性微分方程解的性质和解的结构。
五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。
会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。
六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'')(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。
所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。
关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。
【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。
【典型例题】。
的阶数是微分方程例)(e )(12x y y y =-'+''2.1.B A 4.3.D C 解:B。
的特解形式是微分方程例)(e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++x x c b ax D cx b ax C e ).(e ).(++++解:C是一阶线性微分方程。
下列方程中例)(,3 x x y y x B y A yx cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0.解:B ⎩⎨⎧=='++1)1(0)1(4y y x y y 求解初值问题例 ⎰⎰-=+x x y y y d )1(d 解:由变量可分离法得c x y y ln ln 1ln+-=+∴ 代入上式得通解为由21ln ln 1)1(=⇒=c yx y y 211=+ 的特解。
常微分方程习题及评分标准答案
常微分⽅程习题及评分标准答案常微分⽅程分项习题⼀、选择题(每题3分)第⼀章:1.微分⽅程''20y xy y +-=的直线积分曲线为()(A )1y =和1y x =- (B )0y =和1y x =- (C )0y =和1y x =+ (D )1y =和1y x =+ 第⼆章:2.下列是⼀阶线性⽅程的是()(A )2dy x y dx =- (B )232()0d y dy xy dx dx-+= (C )22()0dy dy x xy dx dx +-= (D )cos dy y dx= 3.下列是⼆阶线性⽅程的是()(A )222d y dyxx y dx dx +=- (B )32()()0dy dy xy dx dx -+= (C )2(1)0dy x xy dx +-= (D )22cos cos d y y x dx=4.下列⽅程是3阶⽅程的为()(A )'23y x y =+ (B )3()0dy xy dx+= (C )3223()0dy d yx y dx dx+-= (D )3cos dy y dx = 5.微分⽅程43()()0dy dy dyx dx dx dx+-=的阶数为()(A )1 (B )2 (C )3 (D )46.⽅程2342()20dy d yx y dx dx+-=的阶数为()(A )1 (B )2 (C )3 (D )4 7.针对⽅程dy x ydx x y-=+,下列说法错误的是().(A )⽅程为齐次⽅程(B )通过变量变换yu x=可化为变量分离⽅程(C )⽅程有特解0y =(D )可以找到⽅程形如y kx =的特解(1y x =- 8.针对⽅程2sin (1)y x y '=-+,下列说法错误的是().(A )为⼀阶线性⽅程(B )通过变量变换1u x y =-+化为变量分离⽅程(C )⽅程有特解12y x π=++(D )⽅程的通解为tan(1)x y x C -+=+ 9.伯努利⽅程n y x Q y x P dxdy)()(+=,它有积分因⼦为()(A )(1)()n P x dx e -? (B )()nP x dx e ?(C )(1)()n P x dx xe -? (D )()nP x dx xe ?10.针对⽅程2(cos sin )dyy y x x dx+=-,下列说法错误的是().(A )⽅程为伯努利⽅程(B )通过变量变换2z y =可化为线性⽅程(C )⽅程有特解0y =(D )⽅程的通解为1sin x y Ce x=-11.⽅程2()dy yxf dx x=经过变量变换()可化为变量分离⽅程。
常微分方程习题与答案
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
()2 •微分方程的通解中包含了它所有的解。
()3. 函数y =3si nx-4cosx是微分方程y,y=0的解。
()4. 函数y = x2・e x是微分方程y';"-2y ' y = 0的解。
()5. 微分方程xy"T nx=0的通解是y =丄(1 nx)2+C (C为任意常数)。
()26. y"=siny是一阶线性微分方程。
()7. / = x3y3 xy不是一阶线性微分方程。
()8 . /-2/ 5^0的特征方程为『-2—5=0。
()9. dy = 1 x y2 xy2是可分离变量的微分方程。
()dx、填空题1 .在横线上填上方程的名称①y _ 3 ln xdx _ xdy 二0 是__________________________ 。
②xy2 x dx y _ x2 y dy = 0 是__________________________ 。
③x-d^ = y l n 丫是。
dx x④xy := y x2 sin x 是__________________ 。
⑤y y -2y =0是________________________ 。
2 . y si nxy"-x=cosx的通解中应含____________ 个独立常数。
3. _____________________________________ y “ = e Qx的通解是。
4. ______________________________________ y = sin 2x - cos x 的通解是。
5. _______________________________ x^ 2x2y 2,x3y=x4,1是阶微分方程。
6•微分方程y y - y Q =0是________________ 阶微分方程。
i7. y-丄所满足的微分方程是。
常微分方程第四版课后练习题含答案
常微分方程第四版课后练习题含答案第一章:常微分方程基本概念和初值问题1.2 课后练习题1.2.1(1)y′=2y+3,y(0)=1,求解y(t);(2)y′+ty=1,y(0)=0,求解y(t)。
解答:(1)该微分方程为一阶线性常微分方程,其通解为$$y(t)=Ce^{2t}-\\frac{3}{2}$$代入初始条件y(0)=1,可得$$C=\\frac{5}{2}$$所以$$y(t)=\\frac{5}{2}e^{2t}-\\frac{3}{2}$$(2)首先设$u(t)=e^{\\frac{t^2}{2}}y(t)$,则$u'(t)=e^{\\frac{t^2}{2}}(y'+ty)$。
代入原方程可得$$u'(t)=e^{\\frac{t^2}{2}}$$对其积分得$$u(t)=\\int e^{\\frac{t^2}{2}} dt +C=\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}+C$$其中$erf(x)=\\frac{2}{\\sqrt{\\pi}}\\int_0^x e^{-t^2} dt$称为误差函数。
进一步解得$$y(t)=e^{-\\frac{t^2}{2}}u(t)-ue^{-\\frac{t^2}{2}}=-\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}e^{-\\frac{t^2}{2}}$$ 代入初始条件y(0)=0即可得到最终解答。
第二章:一阶线性微分方程2.2 课后练习题2.2.1求下列方程的通解:(1)(2x+1)y′+y=1;(2)(x−1)y′−y=2x;(3)$(2+\\cos x)y'-y=2-x\\cos x$。
解答:(1)该微分方程为一阶线性常微分方程,设方程的通解为$y=Ce^{-\\int \\frac{1}{2x+1} dx}+\\frac{1}{2x+1}$。
常微分方程课后习题答案
常微分方程课后习题答案常微分方程课后习题答案在学习常微分方程的过程中,课后习题是巩固知识和提高能力的重要环节。
通过解答习题,我们可以更好地理解和应用所学的概念和方法。
下面是一些常见的常微分方程习题及其答案,供大家参考。
一、一阶常微分方程1. 求解方程:dy/dx = 2x。
解:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解方程:dy/dx = x^2 - 1。
解:对方程两边同时积分,得到y = (1/3)x^3 - x + C,其中C为常数。
3. 求解方程:dy/dx = 3x^2 + 2。
解:对方程两边同时积分,得到y = x^3 + 2x + C,其中C为常数。
二、二阶常微分方程1. 求解方程:d^2y/dx^2 + 4dy/dx + 4y = 0。
解:首先求解特征方程:r^2 + 4r + 4 = 0,解得r = -2。
因此,方程的通解为y = (C1 + C2x)e^(-2x),其中C1和C2为常数。
2. 求解方程:d^2y/dx^2 + 2dy/dx + y = x^2。
解:首先求解特征方程:r^2 + 2r + 1 = 0,解得r = -1。
因此,方程的通解为y = (C1 + C2x)e^(-x) + (1/6)x^2 - (1/2)x + (1/2),其中C1和C2为常数。
3. 求解方程:d^2y/dx^2 + 3dy/dx + 2y = e^(-x)。
解:首先求解特征方程:r^2 + 3r + 2 = 0,解得r = -1和r = -2。
因此,方程的通解为y = (C1e^(-x) + C2e^(-2x)) + (1/3)e^(-x),其中C1和C2为常数。
三、应用题1. 一个物体在空气中的速度满足以下方程:dv/dt = -9.8 - 0.1v,其中v为速度,t为时间。
求物体的速度随时间的变化情况。
解:这是一个一阶线性常微分方程。
将方程改写为dv/(9.8 + 0.1v) = -dt,再两边同时积分,得到ln|9.8 + 0.1v| = -t + C,其中C为常数。
(完整版)常微分方程习题及解答
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
微分方程习题和答案
微分方程习题和答案(总42页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。
(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。
(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。
(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。
§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-; (4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y y x xy dx dy ;(2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a .7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了染色,30分钟后剩下,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解 (1)0 ,sec tan 0==-'=x yx x y y ; (2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y (4)2121xy x xy y +-='§4 可降阶的高阶方程1.求下列方程通解。
高等数学常微分方程讲义,试题,答案
第四章 常微分方程§4.1 基本概念和一阶微分方程(甲) 内容要点 一、基本概念1、 常微分方程和阶2、解、通解和特解3、初始条件4、齐次线性方程和非齐次线性方程 二、变量可分离方程及其推广1、0)(()()(≠=y Q y Q x p dxdy) 2、齐次方程:⎪⎭⎫ ⎝⎛=x y f dxdy 三、一阶线性方程及其推广1、)()(x Q y x P dx dy=+ 2、)1,0()()(≠=+ααy x Q y x P dxdy四、全微分方程及其推广(数学一)1、 yPx Q dy y x Q dx y x P ∂∂=∂∂=+满足,0),(),( 2、 yRP x RQ y x R y p x Q dy y x Q dx y x P ∂∂=∂∂∂∂≠∂∂=+)()(),(,0),(),(,使但存在 五、差分方程(数学三) (乙)典型例题 例1、求dxdyxy dx dy xy =+22的通解。
解:10)(22222-⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=-==-+x y x y x xy y dx dy dxdyxy x y 令1,2-=+=u u dx du x u u x y 则 0)1(=-+du u x udx⎰⎰=+-11C x dxdu u u 1||ln C u xu =-xy uuC ce y ce exu =∴==+,1例2求微分方程4y x ydx dy +=的通解 解:此题不是一阶线性方程,但把x 看作未知函数,y 看作自变量,所得微分方程341y x ydy dx y y x dy dx =-+=即是一阶线性方程3)(,1)(y y Q y y P =-= Cy y C dy ey e x dy ydy y +=⎥⎥⎦⎤⎢⎢⎣⎡+=⎰-⎰⎰413131 例3设x y x p y x e y x=+'=)(是的一个解,求此微分方程满足02ln ==x y 的特解解:将xe y =代入微分方程求出,)(x xe x P x-=-方程化为1)1(=-+-y e dxdyx 先求出对应齐次方程x e x x ce y y e dxdy-+-==-+的通解0)1(根据解的结构立刻可得非齐次方程通解x e x x ce e y -++=再由21212ln ,0220-=-==+=e c c e y x 得 故所求解21-+--=x e x xee y 例4设在,其中)()(),()()(x g x f x g x f x F =),(+∞-∞内满足以下条件x e x g x f f x f x g x g x f 2)()(,0)0(),()(),()(=+=='='且(1)求)(x F 所满足的一阶微分方程 (2)求出)(x F 的表达式解:(1)由)(2)2()()(2)]()([)()()()()()()(2222x F e x g x f x g x f x f x g x g x f x g x f x F x -=-+=+='+'=' 可知)(x F 所满足的一阶微分方程为x e x F x F 24)(2)(=+' (2)[][]x x x x xdxce e c dx e e c dx e eex F 22422dx 2244)(--⎰⎰-+=+=+⋅=⎰⎰将10)0()0()0(-===c g f F 代入,可知 于是 x x e e x F 22)(--=例5求微分方程2322)1(1)(y dxdy x x y +=+-的通解 解:令,tan ,tan v x u y == 原方程化为u vdvuduv v u 322sec sec sec sec )tan (tan =- 化简为1)sin(=-dv du v u 再令方程化为则,1,-=-=dv du dv dz v u z z dvdz z sin 1sin -= ⎰⎰⎰+=-+-+=-,sin 11)1(sin ,sin 1sin c v dz z z c dv dz z zc v z z z c v dz zz z c v dz z zz +=++-+=++-+=-++-⎰⎰sec tan cos sin 1sin 1sin 122最后Z 再返回x,y,v 也返回x ,即可。
(完整版)常微分方程第三版课后习题答案
习题 1.21. dy=2xy, 并满足初始条件: x=0,y=1 的特解。
dx2特解为 y= e x.22. y 2dx+(x+1)dy=0 并求满足初始条件: x=0,y=1 的特解。
2dy 1 解: y dx=-(x+1)dy 2 dy=- dx y x 11两边积分 : -=-ln|x+1|+ln|c|y特解: y=ln |c(x 1)|2 3.dy 1 y 2 3dx1 y 2dy=dy=4. (1+x)ydx+(1-y)xdy=01 y x 1 解:原方程为: dy=- dxyx两边积分: ln|xy|+x-y=c 另外 x=0,y=0 也是原方程的解。
5.( y+x ) dy+(x-y)dx=0y x解: 原方程为:dy =1 y2 dxy两边积分: x(1+x 2)(1+y 2)= 2cx解: dy =2xdxy2 两边积分有: ln|y|=x 2+cx 2cy=e +e =cex另外 y=0 也是原方程的解, c=0 时, y=0原方程的通解为 y= cex 2 ,x=0 y=1 时 c=1y=ln |c(x 1)|另外 y=0,x=-1 也是原方程的解 x=0,y=1 时 c=e3xy x y 13 dxx解:原方程为:dx x yu 1 1- 2du= dxu2 1 x22ln(u +1)x =c-2arctgu即ln(y 2+x 2)=c-2arctg y2.x2dy du=u+ xdx dx1du=sgnx dxxyarcsin =sgnx ln|x|+cx7. tgydx-ctgxdy=0两边积分:1siny=ccosx cosx所以原方程的通解为sinycosx=c.y2 3xdy e8 + =0dx y解:原方程为:dy=dx e y y3x e3x y22 e -3e=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dy=y ln y令y =u 则dy=u+x dudx dx 代入有:6. x dydx-y+ x2y2=0解:原方程为:dy=y+|x|dx x x 1 ( y)x则令y=u x11 u2解: 原方程为:dy dxtgy ctgxln|siny|=-ln|cosx|-ln|c|c另外y=0 也是原方程的解,而c=0 时,y=0.dx x xduu+ x =ulnudxln(lnu-1)=-ln|cx|y1+ln =cy.x10. dy=e x y dx解:原方程为:e y=cexdu 2-1=udx12du=dx1 u2arctgu=x+c arctg(x+y)=x+c解:令x+y=u, 则dy=du-1 dx dx du 1-1=dx -1=u2u-arctgu=x+c y-arctg(x+y)=c.13.dy=2x y 1 dx x 2y 1解: 原方程为: ( x-2y+1 ) dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 22 dxy-d(y -y)-dx +x=c22xy-y +y-x -x=cdy x y 5dx x y 2解:原方程为: (x-y-2 ) dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0令y=u ,则dyx dxdu=u+ xdx12.dy=1dx =(x y) 2dy x y=e edx11 dy 2ddyx=(x+y)解:令x+y=u, 则dy du= -1dx dx14:1 2 1 2 dxy-d( y +2y)-d( x +5x)=02222y +4y+x +10x-2xy=c.15: dy=(x+1) 2+(4y+1) 2+8xy 1 dx解:dy 2原方程为:=( x+4y ) +3dx令x+4y=u 则dy= 1 du- 1dx 4 dx 4 1 du 1 2- =u +34 dx 4du 2=4 u 2+133u= 2tg(6x+c)-12tg(6x+c)= (x+4y+1).316: 证明方程x dy=f(xy), 经变换xy=u 可化为变量分离方程,并由此求下列方程:y dx221) y(1+x y )dx=xdyx dy 2 x 2y2 y dx 2-x 2 y2证明:令 xy=u, 则 x dy+y=du dx dx 则dy=1 du- u2,有:dx x dx x2 x du =f(u)+1 u dx11 du= dx u( f(u) 1) x所以原方程可化为变量分离方程。
(完整word)高等数学:常微分方程的基础知识和典型例题
常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。
常微分方程课后练习题含答案
常微分方程课后练习题含答案练习1:考虑动力学方程组:$$ \\begin{align} \\frac{dx}{dt}&=x(1-y)\\\\ \\frac{dy}{dt}&=y(1-x)\\end{align} $$a)画出相图b)确定方程组的固定点及其稳定性c)求出轨道在极限$\\lim\\limits_{t\\to\\infty}$时的行为答案1:a)相图如下所示:image-1b)如果(x,y)是方程组的一个固定点,则:$$ \\begin{aligned} \\frac{dx}{dt}&=0 \\\\ \\frac{dy}{dt}&=0\\end{aligned} $$由$\\frac{dx}{dt}=x(1-y)$得,固定点必须是x=0或y=1•当x=0时,$\\frac{dy}{dt}=y$,因此固定点为(0,0),是不稳定的。
•当y=1时,$\\frac{dx}{dt}=0$,因此固定点为(1,1),是稳定的。
综上,方程组的固定点为(0,0)和(1,1),其中(1,1)是稳定的。
c)当$t\\to\\infty$时,我们需要检查轨道的极限行为。
假设(x(t),y(t))是由方程组确定的轨迹,x0=x(0)和y0=y(0)是轨迹的起点。
轨迹的限制曲线由y(1−x)=x(1−y)确定,展开可得y=x或xy=0.5。
将方程组改写为$$ \\frac{dy}{dx}=\\frac{y(1-x)}{x(1-y)} $$则在y=x处,$$ \\frac{dy}{dx}=1 $$这意味着沿着这个轨道移动的速度是恒定的,因此轨迹沿着一条直线移动。
由$\\frac{dy}{dx}=\\frac{y(1-x)}{x(1-y)}$可知,在非负轴上,当y>1−x时$\\frac{dy}{dx}>0$,当y<1−x时$\\frac{dy}{dx}<0$。
《常微分方程》 习题解答
习题4.21. 解下列方程 (1)045)4(=+''-x x x解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=t t t t e c e c e c e c --+++432221 (2)03332=-'+''-'''x a x a x a x解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(='''-x x 解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2 故通解为54232221c t c t c e c e c x t t ++++=- (4)0102=+'+''x x x解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i故通解为t e c t e c x t t 3sin 3cos 21--+= (5)0=+'+''x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t e c t e c x t t 23sin 23cos 212211--+= (6)12+=-''t s a s解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=at at e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=at at e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ 故通解为s=t c c 21+-)3(612+t t(7) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1 故通解为x=t t t te c e c e c 3221++-4-t (8)322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321取特解行如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (9)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- 取特解行如t B t A x sin cos ~+=代入原方程解得A=21,21-=B故通解为t t t e c t e c t e c x 321221123sin 23cos ++=--)sin (cos 21t t +- (10)t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=t t e c e c 221-+ 因为+-2i 不是特征根取特解行如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B故通解为x=t t e c e c 221-+t t 2sin 562cos 52--(11)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--=λ1是特征方程的根,故t Ate x =~代入原方程解得A=31故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(12)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t tte c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t++, 当a ≠-1时,齐线性方程的通解为s=at atte c e c --+21, =λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (13)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c e c 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211 故通解为x=t te c e c 521--++te 2211 (14)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i故齐线性方程的通解为t e c t e c x t t 2sin 2cos21+=i ±-1 不是特征方程的根,取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos 21+=+t e t t --)sin 414cos 415((15)t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+=t x x sin =+'',=1λi,是方程的解 )sin cos (~t B t A t x +=代入原方程解得 A=21- B=0 故t t x cos 21~-=t x x 2cos -=+''t B t A x 2sin 2cos ~+=代入原方程解得 A=31 B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=tt cos 21-t 2cos 31+。
常微分方程课后习题答案.doc
习题 3.4(一)、解下列方程,并求奇解(如果存在的话):1、422⎪⎭⎫ ⎝⎛+=dx dy x dx dyx y解:令p dxdy =,则422p x xp y +=,两边对x 求导,得dxdp px xpdxdp xp p 3244222+++=()02213=⎪⎭⎫⎝⎛++p dx dpxxp 从0213=+xp 得 0≠p 时,2343,21py px -=-=;从02=+p dxdp x得 222,c pc y pc x +==,0≠p 为参数,0≠c 为任意常数.经检验得⎪⎪⎩⎪⎪⎨⎧+==222c p c y p c x ,(0≠p )是方程奇解.2、2⎪⎭⎫⎝⎛-=dx dy y x解:令p dxdy =,则2p x y +=,两边对x 求导,得dxdp p p 21+=pp dxdp 21-=,解之得 ()c p p x +-+=21ln 2,所以()c p p p y +-++=221ln 2,且y=x+1也是方程的解,但不是奇解. 3、21⎪⎭⎫ ⎝⎛++=dx dy dxdy xy解:这是克莱洛方程,因此它的通解为21c cx y ++=,从⎪⎩⎪⎨⎧=+-++=01122c cx c cx y 中消去c, 得到奇解21x y -=.4、02=-+⎪⎭⎫⎝⎛y dx dy x dx dy 解:这是克莱洛方程,因此它的通解为 2c cx y +=,从⎩⎨⎧=++=022c x c cx y 中消去c, 得到奇解 042=+y y . 5、022=-+⎪⎭⎫⎝⎛y dx dy xdx dy 解:令p dxdy =,则22p xp y +=,两边对x 求导,得 dxdp pdxdp xp p 222++=22--=x pdpdx ,解之得 232-+-=cpp x ,所以 1231-+-=cpp y ,可知此方程没有奇解. 6、0123=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛dx dy y dx dy x解:原方21⎪⎭⎫⎝⎛-=dx dy dxdy xy ,这是克莱罗方程,因此其通解为21ccx y -=,从⎪⎩⎪⎨⎧=+-=-02132c x c cx y 中消去c ,得奇解042732=+y x .7、21⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=dx dy dx dy x y解:令p dxdy =,则()21p p x y =+=,两边对x 求导,得 22+-=-p ce x p , 所以 ()212+-+=-p e p c y p , 可知此方程没有奇解. 8、()022=--⎪⎭⎫ ⎝⎛a x dx dy x解:()xa x dx dy 22-=⎪⎭⎫ ⎝⎛xa x dxdy -±=dx x a x dy ⎪⎪⎭⎫⎝⎛-±= ⎪⎪⎭⎫ ⎝⎛-±=2123232axx y ()()22349a x x c y -=+可知此方程没有奇解. 9、3312⎪⎭⎫⎝⎛-+=dx dy dx dyx y解:令p dxdy =,则3312p p x y -+=, 两边对x 求导,得 dxdp pdxdp p 22-+=212pp dxdp --=解之得 ()c p p x +--+-=2ln 3222,所以 c p p p p y +------=2ln 6433123, 且 322-=x y 也是方程的解,但不是方程的奇解.10、()012=-++⎪⎭⎫⎝⎛y dx dy x dx dy 解:2⎪⎭⎫⎝⎛++=dx dy dx dydx dyx y这是克莱罗方程,因此方程的通解为2c c cx y ++=, 从⎩⎨⎧++++=cx c c cx y 212中消去c, 得方程的奇解()0412=++y x .(二)求下列曲线族的包络. 1、2c cx y +=解:对c 求导,得 x+2c=0, 2x c -=, 代入原方程得,442222xxxy -=+-=,经检验得,42xy -=是原方程的包络.2、0122=-+cx y c解:对c 求导,得 yxc x yc 2,0222-==+,代入原方程得0124424=--yxy yx,即044=+y x ,经检验得044=+y x 是原方程的包络. 3、()()422=-+-c y c x解:对c 求导,得 –2(x-c)-2(y-c)=0, 2y x c +=,代入原方程得()82=-y x .经检验,得 ()82=-y x 是原方程的包络.4、()c y c x 422=+-解:对c 求导,得 -2(x-c)=4, c=x+2,代入原方程得()2442+=+x y ,()142+=x y , 经检验,得()142+=x y 是原方程的包络.(三) 求一曲线,使它上面的每一点的切线截割坐标轴使两截距之和等于常数c.解:设所求曲线方程为y=y(x),以X 、Y 表坐标系,则曲线上任一点(x,y(x))的切线方程为()()()()x X x y x y Y -'=-,它与X 轴、Y 轴的截距分别为y y x X '-=,y x y Y '-=,按条件有 a y x y y y x ='-+'-,化简得y y a y x y '-'-'=1,这是克莱洛方程,它的通解为一族直线cac cx y --=1,它的包络是()⎪⎪⎩⎪⎪⎨⎧----=--=21101c acc a x c ac cx y ,消去c 后得我们所求的曲线()24a y x ax +-=.(四) 试证:就克莱洛方程来说,p-判别曲线和方程通解的c-判别曲线同样是方程通解的包络,从而为方程的奇解.证:克莱洛方程 y=xp+f(p)的p-判别曲线就是用p-消去法,从()()⎩⎨⎧'+=+=c f x c f cx y 0 中消去p 后而得的曲线;c-判别曲线就是用c-消去法,从通解及它对求导的所得的方程()()⎩⎨⎧'+=+=c f x c f cx y 0中消去c 而得的曲线, 显然它们的结果是一致的,是一单因式,因此p-判别曲线是通解的包络,也是方程的通解. 习题4.11. 设()t x 和()t y 是区间b t a ≤≤上的连续函数,证明:如果在区间b t a ≤≤上有()()≠t y t x 常数或()()t x t y 常数,则()t x 和()t y 在区间b t a ≤≤上线形无关。
(完整版)常微分方程试题及答案2023年修改整理
第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。
( X )2.微分方程的通解中包含了它所有的解。
( X )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。
( O ) 4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。
( X )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21 (C 为任意常数)。
( O )6.y y sin ='是一阶线性微分方程。
( X ) 7.xy y x y +='33不是一阶线性微分方程。
( O ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。
( O )9.221xy y x dxdy +++=是可分离变量的微分方程。
( O )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是可分离变量微分方程。
②()()022=-++dy y x y dx x xy 是可分离变量微分方程。
③xy y dx dy x ln ⋅=是齐次方程。
④x x y y x sin 2+='是一阶线性微分方程。
⑤02=-'+''y y y 是二阶常系数齐次线性微分方程。
2.x x y x y cos sin =-'+'''的通解中应含 3 个独立常数。
3.x e y 2-=''的通解是21241C x C e x ++-。
4.x x y cos 2sin -=''的通解是21cos 2sin 41C x C x x +++-。
5.124322+=+'+'''x y x y x y x 是 3 阶微分方程。
6.微分方程()06='-''⋅y y y 是 2 阶微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2 常微分方程基本概念习题及解答
1.dx
dy =2xy,并满足初始条件:x=0,y=1的特解。
解:y
dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0
原方程的通解为y= cex 2,x=0 y=1时 c=1
特解为y= e 2
x .
2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y
1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e
特解:y=|
)1(|ln 1+x c 3.dx dy =y
x xy y 32
1++ 解:原方程为:dx
dy =y y 21+31x x + y y 21+dy=3
1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2
4. (1+x)ydx+(1-y)xdy=0
解:原方程为: y y -1dy=-x
x 1+dx 两边积分:ln|xy|+x-y=c
另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0
解:原方程为:
dx dy =-y
x y x +- 令
x
y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu
即 ln(y 2+x 2)=c-2arctg
2x y . 6. x dx
dy -y+22y x -=0 解:原方程为:
dx dy =x y +x x ||-2)(1x y - 则令
x y =u dx dy =u+ x dx du 211
u - du=sgnx x
1dx arcsin x
y =sgnx ln|x|+c 7. tgydx-ctgxdy=0
解:原方程为:tgy dy =ctgx
dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x
c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y
e x
y 32
+=0 解:原方程为:dx dy =y e y 2e x 3
2 e x 3-3e 2y -=c.
9.x(lnx-lny)dy-ydx=0
解:原方程为:dx dy =x y ln x
y 令x
y =u ,则dx dy =u+ x dx du u+ x dx
du =ulnu ln(lnu-1)=-ln|cx| 1+ln
x y =cy. 10. dx
dy =e y x - 解:原方程为:
dx dy =e x e y - e y =ce x 11 dx
dy =(x+y)2 解:令x+y=u,则
dx dy =dx du -1 dx
du -1=u 2 2
11u +du=dx arctgu=x+c
arctg(x+y)=x+c 12. dx dy =2)
(1y x + 解:令x+y=u,则
dx dy =dx du -1 dx du -1=21u
u-arctgu=x+c
y-arctg(x+y)=c. 13. dx dy =1
212+-+-y x y x
解: 原方程为:(x-2y+1)dy=(2x-y+1)dx
xdy+ydx-(2y-1)dy-(2x+1)dx=0
dxy-d(y 2-y)-dx 2+x=c
xy-y 2+y-x 2-x=c 14: dx dy =2
5--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx
xdy+ydx-(y+2)dy-(x+5)dx=0
dxy-d(21y 2+2y)-d(2
1x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:
dx
dy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dx
dy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -4
1 41dx du -4
1=u 2+3 dx
du =4 u 2+13 u=2
3tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dx
dy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1)y(1+x 2y 2)dx=xdy
2)y x dx dy =2222x -2 y x 2y
+ 证明: 令xy=u,则x
dx dy +y=dx
du 则dx dy =x 1dx du -2
x u ,有: u x dx du =f(u)+1
)1)((1+u f u du=x
1dx 所以原方程可化为变量分离方程。
1)令xy=u 则dx dy =x 1dx du -2x
u (1) 原方程可化为:dx dy =x
y [1+(xy )2] (2) 将1代入2式有:x 1dx du -2x u =x
u (1+u 2) u=22+u +cx
17.求一曲线,使它的切线坐标轴间的部分初切点分成相等的部分。
解:设(x +y )为所求曲线上任意一点,则切线方程为:y=y ’(x- x )+ y 则与x 轴,y 轴交点分别为:
x= x 0 - '
0y y y= y 0 - x 0 y’ 则 x=2 x 0 = x 0 -
'0y y 所以 xy=c 18.求曲线上任意一点切线与该点的向径夹角为0的曲线方程,其中α =4
π 。
解:由题意得:y ’=
x y y 1dy=x 1 dx ln|y|=ln|xc| y=cx. α =4
π 则y=tg αx 所以 c=1 y=x. 19.证明曲线上的切线的斜率与切点的横坐标成正比的曲线是抛物线。
证明:设(x,y)为所求曲线上的任意一点,则y ’=kx
则:y=kx 2 +c 即为所求。