(整理)06细菌的遗传分析.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章细菌的遗传分析
教学目的和要求:
1.了解原核生物基因组的特点,掌握细菌染色体的遗传作图的方法;2.掌握细菌的遗传方式(转化、接合、性导、转导)与遗传作图。教学重点和难点:
【教学重点】细菌染色体的遗传作图。
【教学难点】细菌的转导和接合过程;细菌染色体的遗传作图。
教学内容
第一节细菌的细胞和基因组
第二节细菌的结合与染色体作图
一.大肠杆菌结合现象的发现
二.F因子与高频重组
三.细菌重组的特点
第三节中断杂交与重组作图
一.中断杂交实验原理
二.中断杂交作图
三.重组作图
第四节F’因子与性导一.F’因子
二.性导
第五节细菌的转化与转导作图一.细菌的转化与遗传作图
二.细菌的转导与遗传作图
第一节细菌的细胞和基因组
根据细菌形态的不同可将细菌分为(螺旋菌)、(杆菌)和(球菌)三类。
细菌一般进行无性繁殖。它是通过二分裂方式增加细胞的数目。在一般条件下,由二分裂形成大小相等的子细胞。其分裂可分4步:第一步是核复制,细胞延长;第二步是形成横隔膜;第三步是形成明显的细胞壁;第四步是细胞分裂,子细胞分离。球菌可沿一个平面或几个平面分裂,所以可以出现多种排列形态;杆菌一般沿横轴进行分裂。除无性繁殖外,已证明细菌存在着有性繁殖,不过频率很低。
以大肠杆菌为例,大肠杆菌是一种革兰氏阴性短杆菌,以而分裂的方式繁殖,遗传物质为DNA,复制是半保留复制,遵循碱基互补配对的原则,其具体过程如下:DNA的复制在大肠杆菌已被证明是双向复制,是一个边解旋边复制的过程。遵循环状DNA分子双向复制的原则,首先在复制点形成一个复制“泡”,随之沿着环的两个方向进行复制,泡逐渐扩大,形成像希腊字母“θ”的形状,故环状DNA的双向复制模式称为θ模型,最后由一个DNA环复制为两个子环。这样,复制结束后,新复制的DNA分子,通过细胞分裂分配到两个子细胞中去
但是值得注意的细菌的所谓的染色体就只是中间的环状DNA,这个环状DNA中不含有组蛋白,不能形成染色体的形态,DNA复制后就直接平均分配到两个子细胞当中。
细菌的核比较原始,无核膜、核仁,故称为核区或细菌染色体。研究发现核区实际上是一个巨大的环状双链DNA分子,例如E.coli的DNA双链长达1.1~1.4 mm,是菌体长度的1000倍,可以想象这样长的DNA链,在不到1μm3的核区空间内,一定是以十分精巧的空间构建盘绕在细胞内。一般每个细菌胞内只有一个核区,当细胞快速生长时,由于DNA复制次数与细胞分裂次数不同步,一个胞内可同时出现2个甚至4个核区。
大肠杆菌染色体基因组是研究最清楚的基因组。估计大肠杆菌基因组含有3500个基因,已被定位的有900个左右。在这900个基因中,有260个基因已查明具有操纵子结构,定位于75个操纵子中。在已知的基因中8%的序列具有调控作用。大肠杆菌染色体基因组中已知的基因多是编码一些酶类的基因,如氨基酸、嘌呤、嘧啶、脂肪酸和维生素合成代谢的一些酶类的基因,以及大多数碳、氮化合物分解代谢的酶类的基因。另外,核糖体大小亚基中50多种蛋白质的基因也已经鉴定了。
除了有些具有相关功能的基因在一个操纵子内由一个启动子转录外,大多数基因的相对位置可以说是随机分布的。如控制小分子合成和分解代谢的基因,大分子合成和组装的基因分布在大肠杆菌基因组的许多部位,而不是集中在一起。再如,有关糖酵解的酶类的基因分布在染色体基因组的各个部位。进一步发现,大肠杆菌和与其分类关系上相近的其他肠道菌如志贺氏杆菌属(Shigella)、沙门氏菌属(Salmonella)等具有相似的基因组结构。伤寒沙门氏杆菌(Salmonellatyphimurium)几乎与大肠杆菌的基因组结构相同,虽然有10%的基因
组序列和大肠杆菌相比发生颠倒,但是其基因的功能仍正常。这更进一步说明染色体上的基因似乎没有固定的格局,相对位置的改变不会影响其功能。
在已知转录方向的50个操纵子中,27个操纵子按顺时针方向转录,23个操纵子按反时针方向转录,即DNA两条链作为模板指导mRNA合成的机率差不多相等。在大肠杆菌染色体基因组中,差不多所有的基因都是单拷贝基因,因为多拷贝基因在同一条染色体上很不稳定,极易通过同源重组的方式丢失重复的基因序列。另外,由于大肠杆菌细胞分裂极快,可以在20分钟内完成一次分裂,因此,携带多拷贝基因的大肠杆菌并不比单拷贝基因的大肠杆菌更为有利;相反,由于多拷贝基因的存在,使E.coli的整个基因组增大,复制时间延长,因而更为不利,除非在某种环境下,需要有多拷贝基因用来编码大量的基因产物,例如,在有极少量乳糖或乳糖衍生物的培养基上,乳糖操纵子的多拷贝化可以使大肠杆菌充分利用的乳糖分子。但是,一旦这种选择压力消失,如将大肠杆菌移到有丰富的乳糖培养基上,多拷贝的乳糖操纵子便没有存在的必要,相反,由于需要较长的复制时间,这种重复的多拷贝基因会重新丢失。
大肠杆菌染色体基因组中,大多数rRNA基因集中于基因组的复制起点oriC的位置附近。这种位置有利于rRNA基因在早期复制后马上作为模板进行rRNA的合成以便进行核糖体组装和蛋白质的合成。从这一点上看,大肠杆菌基因组上的各个基因的位置与其功能的重要性可能有一定的联系。
许多细菌胞质中还存在着一种小型环状DNA分子——质粒,质粒能携带2~200个基因,可进行自我复制。研究较多的有F因子(大肠杆菌性质粒)、R因子(抗药性质粒)、Col因子(大肠杆菌素质粒)。质粒DNA在遗传工程中很重要,它可作为基因的载体,带着某一目的基因,进入受体细胞,使其产生新的遗传特性。
第二节细菌的结合与染色体作图
一.大肠杆菌结合现象的发现
Lederberg和Tatum(1946)用大肠杆菌K12的两个菌株A和B的杂交试验:
品系A基因型:met-bio-thr+leu+thi+
品系B基因型:met+bio+thr-leu-thi-
A、B混合培养在完全培养基上过夜,然后离心培养物,把沉淀细胞涂布在基本培养基外,发现长出了菌落,频率10-7(在果蝇中是办不到的)出现了基因重组,重组型菌落为met+bio+thr+leu+thi+。
对上述试验结果原养型菌落可能产生于:
亲本细菌A或B发生了回复突变?
两品系细胞通过培养基交换养料——互养作用?
两品系间发生了转化作用?
发生细胞融合,形成了异核体或杂合二倍体?
为了验证这些原养型菌落产生的可能而进行的研究最终表明:这些解释均不成立。
为了证实该实验:Davis(1950年)设计了一个U形管试验。他将两个品系细菌分装在U形管两臂,底部中间用一滤片隔开,上面的微孔只允许DNA或其他营养物质通过,细菌本身并不能通过,通气使两边物质充分交流,结果,从两边的培养物中均不能获得重组细菌。这一试验彻底地排除了转化或营养物质互补的可能,充分证明细菌的直接接触是出现原养型重组子的必要条件。
Lederberg和Tatum等人的实验清楚地表明细菌的接合是造成细菌基因重组的前提。但由于历史的局限,Lederberg和Tatum当时认为细菌接合是一个对等的、彼此交换遗传物质的过程,即细菌没有性别,是“同宗配合的”,这导致他在1951年绘制大肠杆菌连锁图时陷入困境。1952年,T. F. Anderson在电镜下获得了大肠杆菌细胞结合的图像,1952-1953年,英国微生物遗传学家W Hayes意外发现细菌杂交的过程是一个单向的转移遗传基因的过程,是“异宗配合”的,即细菌也分性别,雄性细菌是供体,雌性细菌是受体。
二.F因子与高频重组
1. 细菌“性别”的发现:W. Hayes 的实验
Hayes实验1:菌株A met-thr+leu+thi+
菌株B met+thr-leu-thi-
str处理A + 未处理B——→存活有重组(与对照频率一样)
基本培养基
str处理B + 未处理A——→无存活