(整理)06细菌的遗传分析.
细菌的遗传分析
两个位点间的时间约为1分钟,约相当于20%的重组值。
-
已知中断杂交实验该两个基因相距1分钟, 从而得出: 1分钟图距 ≈ 20% 重组值
(中断杂交作图)
(重组作图)
4 Ecoli染色体全长:90分钟;含有:3.6X106bp 20X90 ≈ 1800 cM
课上练习P181第12题
12题解: 据题意 Hfr gal+lac+(A)X F-gal-lac-(B)→F-gal+早,多;lac晚,少. F+ gal+lac+(C)X F-gal-lac-(B)→F+lac+早,多;无gal+ 从AXB中知: gal和lac位于F因子插入位点两侧,gal原点最近。 从CXB中知: C菌株是F因子从细菌染色体上错误切割下来,且 带有细菌lac+的菌株F`lac。 将菌株A与B混合培养一段时间(不到90分钟)后,取混 合液接种在lac-EMB上。紫红色菌落带有分解lac的基因。 将该菌落的细菌又与F-lac-strrB杂交。如该细菌是Flac+ strrB,则无重组子产生。 如该细菌F`lac+ strrB, 则有较多重组子产生。
第六节 细菌的转化与转导作图
一 细菌的转化 受体菌自然或在人工技术作用下直接摄取来 自供体菌的游离DNA片段,并把它整合到自己 的基因组中,而获得部分新的遗传性状的基因转 移过程,称为转化。
通过转化方式而形成的杂种后代,称转化子 (transformant)。
转化过程
⑤非转化子
⑤转化子, 获得供体基因
两个基因进入受体菌的先后;
lac-(乳糖不发酵)ade-(腺嘌呤缺陷型) 完全培养基 (无腺嘌呤、加链霉素)
细菌的遗传分析 ppt课件
第六节 细菌的遗传分析
微生物作为遗传研究材料的优越性
ppt课件
15
按照细菌出现感受态的方式,可把转 化分为三种类型
自然转化(naturally occuring transformation):细 菌自发地出现感受态,如肺炎链球菌,流感嗜血杆菌, 枯草杆菌等。 人 工 诱 导 的 感 受 态 (artificially induced competence) :如 Ca2+ 诱导的大肠杆菌等发生的转 化。 原生质体转化(protoplast transformation):将DNA 分 子 连 同 PEG 一 同 加 入 原 生 质 体 , 造 成 细 胞 摄 取 DNA 。 还 可 以 用 电 穿 孔 法 (electroporation) 代 替 PEG , 用 高 压 脉 冲 电 流 在 细 胞 膜 上 击 成 小 孔 , 使 DNA 分子通过小孔而导入细胞,又称为电转化。可 适用于多种细菌,放线菌和真核细胞的转化。
结果与结论:
仍然出现原养型菌落。 从而表明互养并非原养型菌落出现的原因,而可能发生 了遗传重组。
ppt课件 26
转化作用及其排除
Lederberg 和 Tatum 曾 把 品系 A 的培养液经加热灭 菌,加入到 B 品系的培养 物中,未得到原养型菌落; 表明原养型菌落可能不是 由转化作用产生。 戴维斯(Dawis, 1950) 的 U 型管试验(结果没有得到原 养型细菌); 实验结论:细胞直接接触 是原养型细菌产生的必要 条件。 ppt课件
第二节细菌的遗传分析
2020/4/16
2
二、接合(conjugation)
• 在原核生物中,两个细胞在相互接触过程中, 遗传物质从一个个体转移到另一个个体的现象 称为接合。 输出遗传物质的个体称为供体(donor), 又称为“雄性”。接受外源遗传物质的个体称 为受体(receptor),又称为雌性。 E.coli(大肠杆菌)是遗传学研究中应用最 为广泛的细菌。野生型的E.coli可以在只含有盐 类和葡萄糖的简单培养基上生长。
2020/4/16
4
黎德伯格和塔特姆接合试验
2020/4/16
5
黎德伯格和塔特姆接合试验
• A和B均不能在基本培养基上生长,但若将 A和B在完全液体培养基上培养几个小时以 后再涂布在基本培养基上,就能长出一些 原养型(met+bio+thr+leu+)的菌落。细菌 的野生型又称为原养型。
• 这种原养型菌落的出现是由于营养上的互 补,还是由于两种不同类型细胞直接接触 而交换了遗传物质的结果呢?
第二节 细菌的遗传分析
细菌与细菌之间的遗传物质的交流 (拟有性过程)有四种不同的方式:
一、转化 二、接合(杂交) 三、性导 四、转导
2020/4/16
1
一、转化(Transformation)
• 细菌通过细胞膜摄取周围环境中DNA片 段,并通过重组将其整合到自身染色体 中的过程,称为转化。
当外源DNA进入宿主后,使宿主产 生新的表现型时就能测知转化的发生。
2020/4/16
10
F 因子的存在状态
2020/4/16
11
(二)F因子
• F因子处于自主状态时,可以不依赖宿主细胞 的染色体而独立复制(每个F+细胞只有一个F 因子)。据研究,F因子至少包含有15个基因, 其中有的基因控制F(或性)伞毛(F pillus) 的形成,F伞毛是F+细胞表面伸出的一种长附 属物。F+与F+之间互不理睬,但F+和F-一旦 相互接触,F伞毛就变成了两个细胞之间原生 质的通道,叫做结合管(conjugation tube)。 F+细胞中的F因子由结合管向F-传递,使F-变 成F+。
细菌的遗传分析试题答案
细菌的遗传分析试题答案一、选择题1. 细菌遗传物质的主要类型是什么?A. DNAB. RNAC. 蛋白质D. 糖类答案:A2. 在细菌中,哪种物质负责携带遗传信息?A. 质粒B. 染色体C. 噬菌体D. 细胞壁答案:B3. 细菌的基因重组通常通过哪种方式发生?A. 转化B. 转导C. 接合D. 所有以上答案:D4. 细菌的突变通常会导致什么结果?A. 抗药性增强B. 代谢速率改变C. 形态结构变化D. 所有以上答案:D5. 细菌的遗传分析中,哪种技术可以用来确定DNA序列?A. PCRB. 凝胶电泳C. 南方杂交D. 北方杂交答案:A二、填空题1. 细菌的染色体通常是________,并且可以在细胞分裂时被复制和传递给子代。
答案:环状双链DNA分子2. 在细菌中,________是一种小型的、环状的DNA分子,可以在细菌间进行水平基因转移。
答案:质粒3. 细菌的基因突变可能是由于________、化学物质或________引起的。
答案:紫外线辐射、自发突变4. 通过________技术,可以将细菌的DNA片段插入到载体中,用于基因克隆和表达。
答案:重组DNA技术5. 细菌的遗传分析中,________是一种用于检测特定DNA序列的技术,通过标记的探针与目标DNA的互补配对来实现。
答案:南方杂交三、简答题1. 简述细菌基因突变的类型及其可能的影响。
答案:细菌基因突变的类型包括点突变、插入突变和缺失突变。
点突变是指单个核苷酸的改变,可能导致氨基酸的改变或不影响蛋白质的功能。
插入突变和缺失突变则涉及一个或多个核苷酸的增加或减少,可能导致移码突变,从而影响蛋白质的结构和功能。
突变可能对细菌的生存和适应性产生重要影响,如抗药性的产生或代谢途径的改变。
2. 描述细菌接合的过程及其在遗传学研究中的意义。
答案:细菌接合是指两个细菌通过直接接触进行遗传物质的交换。
在这个过程中,一个细菌的质粒或染色体片段可以转移到另一个细菌中,从而实现基因的水平转移。
6第六章细菌和噬菌体的遗传-PPT课件
(1)F-×F+
杂交时,F+的性纤毛在二者间形成接合管→F+中 的F质粒在O点处切开,以O为先导,F拖后,按 滚环复制的方式拷贝并转移到F-中→产生两个 F+→F+的染色体几乎没有进入F-→两种细菌的染 色体未发生重组。 O F F质粒
染 色 体
F质粒
接合
F+ F-
(2)Hfr× F-
杂交时,Hfr细菌的性纤毛在二者间形成接合 管→结合态的F质粒在O点处切开,形成两端- 一端为O点,一端为基因F→以O为先导,F拖后, 按滚环复制方式向F-转移→进入F-的Hfr菌染 色体上的基因与F-染色体间发生交换重组→重 组频率高于游离态1000倍,因此称高频重组菌 株。
·
这种通过不同时间分别阻断细菌的有性接合, 从而确定细菌染色体上的基因距离的方法,称 细菌阻断交配基因作图法。
3、重组方式
接合时,供体染色体片段(外基因子)进 入受体细胞→同受体染色体的同源区段 (内基因子)进行配对→形成部分二倍体 →发生交换重组: 单交换→产生不平衡的线性染色体 双交换→有活性的重组体和线性片段(在 细胞分裂中丢失。
第六章 细菌和病毒的遗传重组
第一节 第二节 细菌的遗传基础和遗传分析 噬菌体的遗传基础和和遗传分析
第一节 细菌的遗传基础和遗传分析
一、细菌的遗传基础
原核生物 真核生物
裸露的DNA分子 DNA呈环状 单倍体,基因单个存 在
DNA与蛋白质结合成染色体 DNA呈线状 二倍体,常染色体上基因成 对
(一)细菌细胞
整合过程 O F F质粒
主染色体
整合过程 O F F质粒 O F
a bHfr细菌 d
e
根据F因子,细菌分为: 雌性细菌(受体细菌,F-)-不含F因子,表面无性 纤毛。
细菌的遗传分析教案
细菌的遗传分析教案教案标题:细菌的遗传分析教案目标:1. 了解细菌的遗传特征和分析方法。
2. 掌握细菌遗传分析的基本实验步骤和技术。
3. 培养学生的实验设计和数据分析能力。
教案步骤:引入:1. 引发学生对细菌遗传分析的兴趣,例如通过展示细菌对人类健康和环境的重要性。
2. 引导学生思考细菌的遗传特征对其生存和适应环境的影响。
知识讲解:3. 介绍细菌的基本遗传特征,包括DNA结构、基因、突变等概念。
4. 解释细菌遗传分析的重要性和应用领域,如药物抗性研究、疾病传播机制等。
5. 介绍细菌遗传分析的基本实验步骤,包括细菌培养、DNA提取、PCR扩增、凝胶电泳等。
实验设计:6. 分组讨论,学生根据所学知识设计一个细菌遗传分析实验,可以选择具体的细菌种类和研究目标。
7. 学生列出实验所需材料和步骤,并解释实验设计的合理性和预期结果。
实验操作:8. 学生按照实验设计完成实验操作,包括细菌培养、DNA提取、PCR扩增等。
9. 引导学生注意实验操作的细节和注意事项,确保实验结果的准确性和可靠性。
数据分析:10. 学生收集实验数据,并进行数据分析,包括PCR产物的凝胶电泳结果分析。
11. 引导学生根据实验结果进行推理和讨论,解释实验结果的意义和可能的影响。
总结:12. 学生总结实验过程和结果,回顾实验设计的合理性和实验操作的可行性。
13. 引导学生思考细菌遗传分析的局限性和未来发展方向。
作业:14. 布置相关阅读任务,要求学生进一步了解细菌遗传分析的前沿研究和应用。
15. 要求学生撰写实验报告,包括实验设计、结果分析和讨论等内容。
评估:16. 对学生的实验报告进行评估,包括实验设计的合理性、数据分析的准确性和结果讨论的深度。
17. 针对学生的评估结果,提供个别或整体的反馈和指导,帮助学生提升实验设计和数据分析能力。
教学资源:- 细菌培养基和培养器具- DNA提取试剂盒- PCR扩增仪和相关试剂- 凝胶电泳设备和试剂- 相关教材和参考书籍- 计算机和投影仪教学延伸:1. 组织学生参观相关实验室或研究机构,了解实际细菌遗传分析的应用和研究进展。
细菌的遗传分析
Question
• 我们已知在F+×F-杂交中,几乎所有F-细菌变 为F+, F+×F-→F+;
• 而在Hfr ×F-杂交中,尽管出现高频重组,但F- 细菌很少转变为F+细菌。这个问题使遗传学家感 到迷惑不解。?
中断杂交实验 (Interrupted-mating experiment)
Wollman 和 Jacob进行中断杂交实验:
细菌的遗传分析
概述
• 细菌、放线菌和蓝细菌等均属于原核生物(prokaryotes)。 • 主要特征:没有核膜,其核基因组是由一个裸露的环状
DNA分子构成,称为拟核。细胞内没有以膜为基础的 细胞器,也不进行典型的有丝分裂和减数分裂。 • 细菌是单细胞生物,结构简单,繁殖能力强,分布广, 世代周期短,个体数量多,在正常条件下,完成一个世 代仅20 min, 较容易诱变和筛选各类型突变。 • 细菌不仅是许多病毒的宿主细胞,而且有自身的遗传特 性,又易于培养建立纯系,长期保存,成为遗传学研究 的常用实验材料。
Hfr : thr+ Leu+ azir tonr Lac+ gal+ strs ×
F- :thr- Leu- azis tons Lac- gal- strr
azi:叠氮化钠; ton:噬菌体T1; str:链霉素; Lac:乳糖; gal:半乳糖
结果发现Hfr的未选择性标记基
因进入F-所需时间: • 9分钟时:
细菌的细胞结构:简单 (原核生物) • 基本结构: 细胞壁 (cell wall), 细胞膜 (cell membrane); 拟核 ( nucleoid ),核糖体 (ribosome), 细胞质 (cytoplasm),内含物等;
• 特殊结构: 一定条件下具有的结构 e.g. 荚膜 (capsule) 和鞭毛 (flagella)
医学课件第7章细菌的遗传分析
第二节 大肠杆菌的突变型及筛选
一、大肠杆菌的突变类型
1. 合成代谢功能的突变型(anabolic function mutants) •合成代谢功能(anabolic functions):野生型(wild type)在基本培养基上具有合成所有代谢和生长所 必需的有机物的功能。 •营养缺陷型(auxotroph):野生型品系的某个必需 基因发生突变,导致不能完成一个特定的生化反 应,从而阻碍整个合成代谢功能的实现。
In 1953, W. Hayes isolated another strain demonstrating a similar elevated frequency.
Both strains were designated Hfr, or high-frequency recombination. Because Hfr- cells behave as chromosome donors, they are a special class of F+ cells.
20
F+×F-
Hfr×F-
所有 F+
很少 F+
21
•F因子整合到 细菌染色体
•Hfr与受体细 菌染色体的等 位基因间可以 重组(10-2)
22
很少 Hfr×F-
F+ ?
Hfr细胞和F-细胞之间的接合,一般很少有整条Hfr染色 体转入F-细胞(pilus容易断裂),因此:
F-细胞得到的只是部分F因子,其余部分依赖于整条 Hfr染色体的转移。这样在Hfr×F-杂交后代大多数重 组子仍为F-
41
a+b+c+ in cross 1 << a+b+c+ in cross 2
细菌的遗传分析-1
(二)、突变型的筛选 二、
选择培养法: 选择培养法:
是根据菌株在基本培养基和选择培养基上的生长表现确 是根据菌株在基本培养基和选择培养基上的生长表现确 基本培养基 定菌株的突变型, 原养型和营养缺陷型或对某一抗生素的 定菌株的突变型,如原养型和营养缺陷型或对某一抗生素的 敏感型和非敏感型(抗性型 ; 敏感型和非敏感型 抗性型); 抗性型
人工诱变
哈工大哈工大-遗传学
第六章 细菌的遗传分析
营养缺陷突变) 影印法(营养缺陷突变)
人工诱变 完全培养基
印迹
基本培养基 +aaA
基本培养基
哈工大哈工大-遗传学 第六章 细菌的遗传分析
基本培养基 +aaB
原核生物遗传物质转移的方式: 原核生物遗传物质转移的方式: 接合( 接合(conjugation) ) 转化( 转化(transformation) ) 转导(transduction) 转导( )
哈工大哈工大-遗传学 第六章 细菌的遗传分析
因子的三种状态: ⑶. E.coli 与F 因子的三种状态: 因子, ①.没有F因子,即F-; 没有 因子 因子, ②.一个自主状态F因子,即F+; 一个自主状态 因子 因子, ③.一个整合到宿主染色体内的F因子,即Hfr。 一个整合到宿主染色体内的 因子 。
哈工大哈工大-遗传学 第六章 细菌的遗传分析
(三)、F 因子与高频重组品系 1. F 因子
供体和受体的性别差异,是由F因子引起的 供体和受体的性别差异,是由 因子引起的 因子 因子:致育因子(性因子),是一种附加体。 ),是一种附加体 ⑴.F 因子:致育因子(性因子),是一种附加体。 携带F因子的菌株称为供体菌或雄性, 表示。 携带 因子的菌株称为供体菌或雄性,用F+表示。 因子的菌株称为供体菌或雄性 未携带F因子的菌株为受体菌或雌性, 表示。 未携带 因子的菌株为受体菌或雌性,用F-表示。 因子的菌株为受体菌或雌性 ⑵.F 因子的组成: 因子的组成: 染色体外遗传物质,环状 染色体外遗传物质,环状DNA; ; 40~60个蛋白质基因; 个蛋白质基因; 个蛋白质基因 2~4个/细胞 雄性内 。 个 细胞 雄性内)。 细胞(雄性内
第五章 细菌的遗传分析
中断杂交实验与重组作图
致育基因 配对区
原点
致育基因
F因子在细菌染色体上有很多插入位点,并且插入的取向不同 一个F+品系可以产生很多Hfr品系
几个Hfr菌株的线性连锁群的产生
Hfr H菌株的基因转移顺序 thr pro lac pur gal his gly thi Hfr 1菌株的基因转移顺序 thr thi gly his gal pur lac pro
三、重组作图
Hfr lac+ade+ ×F- lac-ade- ;转移顺序: 先 lac, 后ade.
Hfr lac+ ade+ 无交
F- lac- ade-
换
Hfr lac+ ade+
外部
F- lac- ade-
交换
Hfr lac+ ade+ 之间
F- lac- ade-
交换
F- lac- ade-
3、抗性突变型:细菌由于某基因的突变而对某些噬 菌体或抗菌素产生抗性。
如:抗药突变型: 抗链霉素突变型:Strr,(野生型Strs) 抗青霉素突变型:Penr,(野生型Pens )
❖ 抗phage突变型: 抗T1-phage突变型:Tonr,(野生型Tons )
❖ 细菌接合现象的发现 ❖ F因子及其转移 ❖ 细菌重组的特点
❖ 外源DNA的进入,除受体部位外,还必须有 酶或蛋白质分子,以及能量等的协同作用。 外源DNA只有在酶促旺盛的受体部位进入。
转化与转导作图
感受态细胞与感受态因子
❖ 感受态细胞:这种能接受外源DNA分子并被 转化的细菌细胞。
❖ 感受态因子:促进转化作用的酶或蛋白质的 分子。
感受态细胞
遗传学复习要点
遗传学复习要点0.细菌的遗传分析F因子将供体细胞的基因导入受体,形成部分二倍体的过程叫性导或F-导。
F 因子整合进细菌染色体→[Hfr] → F’→与F-接合→ 产生部分二倍体。
F’和λd颗粒不同,它加进了细菌的基因,并不减少本身的基因。
F’因子也没有蛋白质外壳包装的问题,所以长度不为包装所限制。
细菌的转化和转导作图:转化:没有噬菌体作介导,由DNA直接转入受体细胞的过程,称为转化。
细菌的转导与作图转导:以病毒作为载体把遗传信息从一个细菌细胞传到另一个细菌细胞。
转导分为一般性和特殊性转导转导病毒产生的频率非常低。
由于噬菌体外壳蛋白决定噬菌体附着细胞表面的能力,因此,这种噬菌体颗粒仍然具有侵染性。
它感染细菌细胞,并将其内含物-细菌的DNA片断注入其中。
进入的DNA片段可以和寄主细胞DNA发生重组,形成遗传结构发生重组的细菌细胞-转导体。
②共转导频率与图距的关系式1966年,T.T Wu (Harvard University)得到了一个共转导频率与从接合实验中得到的图距相连系的数学表达式:(4)局限性(特异性)转导与作图由温和噬菌体进行的转导叫做局限性转导(specialized transduction)。
该噬菌体DNA整合进细菌染色体中时,都占有一个特定的位置,所以只转移细菌染色体的特定部分。
细菌同源重组的特点细菌的转化、接合和转导重组都是同源重组。
细菌中的重组发生在一个完整的环状双螺旋DNA分子与一个单链或双链DNA分子片段之间,而且没有相对应的(相反的)重组子。
重组发生在单链DNA片段和完整的双链DNA之间,且供体单链与受体DNA之间结合形成一段异源双链区,最后结果取决于错配修复。
无重组发生:校正切除的是异源双链区中的属原供体单链的核苷酸。
若无修复校正作用,则该细菌分裂后产生两个细胞,一个是受体的基因型,另一个是重组体的基因型。
高效率标记:有些遗传标记在转化中很少发生校正作用,或校正切除几乎总是在受体DNA上,因此转化频率较高,这类遗传标记称为~。
医学:细菌的遗传分析和基因定位
质粒和转座子
除了染色体,细菌中还可 能含有质粒和转座子等可 移动遗传元件。
基因密度和结构
细菌基因组中的基因密度 较高,且基因结构相对简 单,通常不含内含子。
基因表达调控
转录调控
细菌通过调节转录起始和转录终止来控制基因表 达。
翻译调控
细菌通过调节翻译起始和翻译终止来控制蛋白质 合成。
适应性调控
细菌在应对环境变化时,会迅速调整基因表达以 适应新环境。
医学细菌的遗传分析和基因定位
contents
目录
• 细菌遗传学基础 • 细菌遗传分析技术 • 基因定位技术 • 医学中细菌遗传和基因定位的应用 • 未来展望与挑战
01 细菌遗传学基础
细菌基因组结构
01
02
03
环状染色体
细菌的基因组通常由一个 环状染色体组成,其大小 通常在数百万至数千万碱 基对之间。
因功能研究和基因克隆等。
04 医学中细菌遗传和基因定 位的应用
病原菌的遗传特征分析
病原菌的遗传特征分析有助于了解病 原菌的传播途径、变异规律和致病机 制,为疾病的预防和治疗提供科学依 据。
通过全基因组测序等技术手段,可以 全面揭示病原菌的基因组结构和变异 情况,为快速诊断和有效控制疾病提 供支持。
抗生素抗性的遗传基础
抗生素抗性的遗传基础研究有助于发 现新的抗生素药物靶点,为开发新型 抗生素提供理论支持。
通过研究病原菌对不同抗生素的抗性 机制,可以了解抗性基因的传播方式 和抗性进化规律,为制定有效的抗感 染治疗方案提供依据。
疾病与基因变异的关系研究
疾病与基因变异的关系研究有助于发现新的疾病易感基因和致病基因,为疾病的 预测、预防和治疗提供新思路。
公平获取资源
第七章 细菌的遗传分析
7细菌的遗传分析 细菌(bacteria)、放线菌(actinomycetes)和蓝细菌(cyanobacteria)等均属于原核生物(prokaryotes)。
这类生物的主要特征是没有核膜,其核基因组是由一个裸露的环状DNA分子构成,因此称为拟核(nucleoid),原核细胞(prokaryocyte)也由此而得名。
该基因组编码功能相关蛋白质的基因或相互协同调节作用的几个基因往往成簇排列成一个操纵子。
细胞内没有以膜为基础的细胞器,也不进行典型的有丝分裂和减数分裂。
因此它们的遗传物质传递规律和重组机制与真核生物不完全相同。
由于细菌是单细胞生物,结构简单,繁殖力强,分布广,世代周期短,个体数量多,在正常条件下,完成一个世代仅20min,较容易诱变和筛选各类突变型。
细菌不仅是许多病毒的宿主细胞,而且有自身的遗传特性,又易于培养建立纯系和长期保存等优点,已成为遗传学研究中常用的实验材料之一。
特别是大肠杆菌的研究与应用最为广泛和深入,遗传背景也较清楚,基因组测序也是最早完成的生物之一,碱基对为4639229bp,预测基因数4377,其中4290编码蛋白,其余编码RNA。
许多基因不仅已定位在染色体上,而且对其功能的研究也较深入。
为此本章主要以大肠杆菌为材料,讨论细菌的遗传物质的传递规律与染色体作图以及细菌同源重组的分子机制。
153 7畅1 细菌的细胞和基因组7畅1畅1 细菌的细胞 细菌包括真细菌(eubac teri a ),如大肠杆菌(Escherchi a co li )和古细菌(archaebacteri a ),如詹氏甲烷球菌(M ethanococcus jannaschii )。
这些细菌以多种形态存在:球菌(cocc i )、杆菌(bacilli )和螺旋菌(sp i 唱rilla )等。
其大小随种类不同而异,杆菌以长和宽表示,一般长为1~5μm ,宽0畅5~1μm ;球菌以直径大小表示,一般为0畅5~1μm ;螺旋菌是测量其弯曲形长度,一般长为1~50μm ,直径为0畅5~1μm 。
细菌的遗传分析
(六)大肠杆菌的染色体呈环状
从上表中可以看出,转移顺序的差异是由于各Hfr之间转移的原点(O)和转移的方向不同所致。
该实验说明F因子和细菌DNA都是环状的,F因子插入环状染色体的不同位置形成不同的转移原点和转移方向。
*
(六)大肠杆菌的染色体呈环状
*
三、性导(sexduction) (一)F’因子 整合到细菌中的F因子也可以重新离开染色体,成为独立的环。这个过程是整合的逆过程,称为环出(looping out)。 F因子在环出过程中并不是完全准确无误的,往往连同部分染色体片段一同离开。 部分染色体DNA与F DNA的杂合环称为F’因子。
*
(四)细菌的交换过程
这样,重组后的F-细菌不再是部分二倍体,而是单倍体,得到的重组体的类型只有一个,而不是两个,相反的重组体是不能存活的(例如有++,没有――)。
*
(五)用中断杂交技术作连锁图
Wollman和Jacob用中断杂交实验了解接合过程中基因转移的顺序和时间,从而绘制出连锁图。
根据供体基因进入受体细胞的顺序和时间绘制连锁图的技术,称为中断杂交技术。
*
(一)杂交实验
1946年,Leaderberg和Tatum发现E.coli可以通过接合交换遗传物质。选用两个不同营养缺陷型的E.coli菌株,A和B。A菌株需要在基本培养基中补充甲硫氨酸(met)和生物素(bio) ,B菌株需要在基本营养培养基上补充苏氨酸(thr)和亮氨酸(leu)才能生长。采用多营养缺陷型是为了防止回复突变干扰试验结果。
*
黎德伯格和塔特姆接合试验
*
黎德伯格和塔特姆接合试验
A和B均不能在基本培养基上生长,但若将A和B在完全液体培养基上培养几个小时以后再涂布在基本培养基上,就能长出一些原养型(met+bio+thr+leu+)的菌落。细菌的野生型又称为原养型。
细菌的遗传分析
大肠杆菌的突变型及筛选
有关的几个概念
基本培养基(minimal medium) : 凡能满足某一菌种野生型菌株营养要求的最低成分的组合 培养基。 完全培养基(complete medium) : 凡可满足一切营养缺陷型菌株营养需要的天然或者半天然 培养基。完全培养基营养丰富,全面,一般可在基本培 养基中加入富含氨基酸,维生素和碱基之类的天然物质 配制而成。
F’因子携带染色体的节段大小
从一个标准基因到半个细菌染色 体。
F’因子使细菌带有某些突出的特点:
F’因子转移基因比率极高,如同F+因子转移 比率; F’因子的自然整合率极高,并且整合在一定 的座位上。因为携带有与细菌染色体一样的同 源区段;而正常F因子可在不同座位整合。
菌细胞与F因子
F´因子– 整合到染色体上的F因子,在切除中带 有部分染色体片段,是带有部分染色体的附件体 F+菌株(Lfr菌株) : 带有F因子的菌株作供体,提 供遗传物质,F因子转移频率很高,染色体不转 移 F-菌株: 不带有F因子的菌株,受体,接受遗传物 质 Hfr菌株:高频重组菌株,F因子通过配对交换,整 合到细菌染色体上,细菌结合时部分或全部染色 体传递给受体
有关的几个概念
一、基因和基因产物的符号 1) 基因型:3个字母,小写,斜体,右上字 母表示野生/突变、抗性/敏感性
gal (基因型 可以利用半乳糖 野生型) gal 、 gal (基因型 半乳糖突变型)
2) 表型:3个字母,正体,第一字母大写, + Gal Gal 、Gal
-
+
有关的几个概念
Amp 表型为氨苄青霉素抗性 AmpS 表型为氨苄青霉素敏感 3) 特定的突变型以它们被分离的前后顺 序编号来表示(编号正写):gal K32 4) 一个操纵子有多个结构基因:在基因座 名称后用正写大写字母表示: Lac Z、Lac Y、 Lac A (结构基因) Lac Z、Lac Y、 Lac A (基因产物)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章细菌的遗传分析教学目的和要求:1.了解原核生物基因组的特点,掌握细菌染色体的遗传作图的方法;2.掌握细菌的遗传方式(转化、接合、性导、转导)与遗传作图。
教学重点和难点:【教学重点】细菌染色体的遗传作图。
【教学难点】细菌的转导和接合过程;细菌染色体的遗传作图。
教学内容第一节细菌的细胞和基因组第二节细菌的结合与染色体作图一.大肠杆菌结合现象的发现二.F因子与高频重组三.细菌重组的特点第三节中断杂交与重组作图一.中断杂交实验原理二.中断杂交作图三.重组作图第四节F’因子与性导一.F’因子二.性导第五节细菌的转化与转导作图一.细菌的转化与遗传作图二.细菌的转导与遗传作图第一节细菌的细胞和基因组根据细菌形态的不同可将细菌分为(螺旋菌)、(杆菌)和(球菌)三类。
细菌一般进行无性繁殖。
它是通过二分裂方式增加细胞的数目。
在一般条件下,由二分裂形成大小相等的子细胞。
其分裂可分4步:第一步是核复制,细胞延长;第二步是形成横隔膜;第三步是形成明显的细胞壁;第四步是细胞分裂,子细胞分离。
球菌可沿一个平面或几个平面分裂,所以可以出现多种排列形态;杆菌一般沿横轴进行分裂。
除无性繁殖外,已证明细菌存在着有性繁殖,不过频率很低。
以大肠杆菌为例,大肠杆菌是一种革兰氏阴性短杆菌,以而分裂的方式繁殖,遗传物质为DNA,复制是半保留复制,遵循碱基互补配对的原则,其具体过程如下:DNA的复制在大肠杆菌已被证明是双向复制,是一个边解旋边复制的过程。
遵循环状DNA分子双向复制的原则,首先在复制点形成一个复制“泡”,随之沿着环的两个方向进行复制,泡逐渐扩大,形成像希腊字母“θ”的形状,故环状DNA的双向复制模式称为θ模型,最后由一个DNA环复制为两个子环。
这样,复制结束后,新复制的DNA分子,通过细胞分裂分配到两个子细胞中去但是值得注意的细菌的所谓的染色体就只是中间的环状DNA,这个环状DNA中不含有组蛋白,不能形成染色体的形态,DNA复制后就直接平均分配到两个子细胞当中。
细菌的核比较原始,无核膜、核仁,故称为核区或细菌染色体。
研究发现核区实际上是一个巨大的环状双链DNA分子,例如E.coli的DNA双链长达1.1~1.4 mm,是菌体长度的1000倍,可以想象这样长的DNA链,在不到1μm3的核区空间内,一定是以十分精巧的空间构建盘绕在细胞内。
一般每个细菌胞内只有一个核区,当细胞快速生长时,由于DNA复制次数与细胞分裂次数不同步,一个胞内可同时出现2个甚至4个核区。
大肠杆菌染色体基因组是研究最清楚的基因组。
估计大肠杆菌基因组含有3500个基因,已被定位的有900个左右。
在这900个基因中,有260个基因已查明具有操纵子结构,定位于75个操纵子中。
在已知的基因中8%的序列具有调控作用。
大肠杆菌染色体基因组中已知的基因多是编码一些酶类的基因,如氨基酸、嘌呤、嘧啶、脂肪酸和维生素合成代谢的一些酶类的基因,以及大多数碳、氮化合物分解代谢的酶类的基因。
另外,核糖体大小亚基中50多种蛋白质的基因也已经鉴定了。
除了有些具有相关功能的基因在一个操纵子内由一个启动子转录外,大多数基因的相对位置可以说是随机分布的。
如控制小分子合成和分解代谢的基因,大分子合成和组装的基因分布在大肠杆菌基因组的许多部位,而不是集中在一起。
再如,有关糖酵解的酶类的基因分布在染色体基因组的各个部位。
进一步发现,大肠杆菌和与其分类关系上相近的其他肠道菌如志贺氏杆菌属(Shigella)、沙门氏菌属(Salmonella)等具有相似的基因组结构。
伤寒沙门氏杆菌(Salmonellatyphimurium)几乎与大肠杆菌的基因组结构相同,虽然有10%的基因组序列和大肠杆菌相比发生颠倒,但是其基因的功能仍正常。
这更进一步说明染色体上的基因似乎没有固定的格局,相对位置的改变不会影响其功能。
在已知转录方向的50个操纵子中,27个操纵子按顺时针方向转录,23个操纵子按反时针方向转录,即DNA两条链作为模板指导mRNA合成的机率差不多相等。
在大肠杆菌染色体基因组中,差不多所有的基因都是单拷贝基因,因为多拷贝基因在同一条染色体上很不稳定,极易通过同源重组的方式丢失重复的基因序列。
另外,由于大肠杆菌细胞分裂极快,可以在20分钟内完成一次分裂,因此,携带多拷贝基因的大肠杆菌并不比单拷贝基因的大肠杆菌更为有利;相反,由于多拷贝基因的存在,使E.coli的整个基因组增大,复制时间延长,因而更为不利,除非在某种环境下,需要有多拷贝基因用来编码大量的基因产物,例如,在有极少量乳糖或乳糖衍生物的培养基上,乳糖操纵子的多拷贝化可以使大肠杆菌充分利用的乳糖分子。
但是,一旦这种选择压力消失,如将大肠杆菌移到有丰富的乳糖培养基上,多拷贝的乳糖操纵子便没有存在的必要,相反,由于需要较长的复制时间,这种重复的多拷贝基因会重新丢失。
大肠杆菌染色体基因组中,大多数rRNA基因集中于基因组的复制起点oriC的位置附近。
这种位置有利于rRNA基因在早期复制后马上作为模板进行rRNA的合成以便进行核糖体组装和蛋白质的合成。
从这一点上看,大肠杆菌基因组上的各个基因的位置与其功能的重要性可能有一定的联系。
许多细菌胞质中还存在着一种小型环状DNA分子——质粒,质粒能携带2~200个基因,可进行自我复制。
研究较多的有F因子(大肠杆菌性质粒)、R因子(抗药性质粒)、Col因子(大肠杆菌素质粒)。
质粒DNA在遗传工程中很重要,它可作为基因的载体,带着某一目的基因,进入受体细胞,使其产生新的遗传特性。
第二节细菌的结合与染色体作图一.大肠杆菌结合现象的发现Lederberg和Tatum(1946)用大肠杆菌K12的两个菌株A和B的杂交试验:品系A基因型:met-bio-thr+leu+thi+品系B基因型:met+bio+thr-leu-thi-A、B混合培养在完全培养基上过夜,然后离心培养物,把沉淀细胞涂布在基本培养基外,发现长出了菌落,频率10-7(在果蝇中是办不到的)出现了基因重组,重组型菌落为met+bio+thr+leu+thi+。
对上述试验结果原养型菌落可能产生于:亲本细菌A或B发生了回复突变?两品系细胞通过培养基交换养料——互养作用?两品系间发生了转化作用?发生细胞融合,形成了异核体或杂合二倍体?为了验证这些原养型菌落产生的可能而进行的研究最终表明:这些解释均不成立。
为了证实该实验:Davis(1950年)设计了一个U形管试验。
他将两个品系细菌分装在U形管两臂,底部中间用一滤片隔开,上面的微孔只允许DNA或其他营养物质通过,细菌本身并不能通过,通气使两边物质充分交流,结果,从两边的培养物中均不能获得重组细菌。
这一试验彻底地排除了转化或营养物质互补的可能,充分证明细菌的直接接触是出现原养型重组子的必要条件。
Lederberg和Tatum等人的实验清楚地表明细菌的接合是造成细菌基因重组的前提。
但由于历史的局限,Lederberg和Tatum当时认为细菌接合是一个对等的、彼此交换遗传物质的过程,即细菌没有性别,是“同宗配合的”,这导致他在1951年绘制大肠杆菌连锁图时陷入困境。
1952年,T. F. Anderson在电镜下获得了大肠杆菌细胞结合的图像,1952-1953年,英国微生物遗传学家W Hayes意外发现细菌杂交的过程是一个单向的转移遗传基因的过程,是“异宗配合”的,即细菌也分性别,雄性细菌是供体,雌性细菌是受体。
二.F因子与高频重组1. 细菌“性别”的发现:W. Hayes 的实验Hayes实验1:菌株A met-thr+leu+thi+菌株B met+thr-leu-thi-str处理A + 未处理B——→存活有重组(与对照频率一样)基本培养基str处理B + 未处理A——→无存活Hayes 解释:(1) str处理后,不能繁殖,只有另一方繁殖。
(2) 如果转移是双向的,两种杂交都全出现重组型,供体经链霉素处理后,不能分裂,但仍能转移基因,而受体未受处理,仍能分裂。
所以接受转移过来的基因后,有可能在基本培养基上形成菌落。
所以,大肠杆菌中遗传物质的交换不是交互的。
事实上,菌株B作为遗传物质的受体,菌株A作为供体。
2. F因子及其转移大肠杆菌的某些品系的雄性或供体是被一个致育因子(fertility factor)或性因子(sex factor)决定的——F因子,具有这种因子的能育品系记为F+,相当于雄性。
不含这种致育因子F的品系记为F-,相当于雌性。
F+细菌的表面有称作性伞毛(sex pili)的细长细毛,由此与F-细菌接合,一旦接触后,伞毛发生改变,成为两细胞间的原生质通道——细胞质桥或称结合管(conjugation tube),F+细胞的F因子通过接合管向F-细胞转递:使F-变成F+,F因子还可改变细胞表面的构造,以防F+细胞间的接合。
F质粒:F因子就是F质粒。
质粒:是指染色体外的遗传物质。
可以自主复制,并在细胞分裂时分配到子细胞中。
特性:(1) 自主复制;(2) 感染感染性质粒。
F质粒是能独立增殖的环状DNA分子。
F质粒的结构:(1) 原点,转移的起点(2) 致育基因:形成性伞毛的基因群(3) DNA复制酶基因(4) 插入序列(配对区域)(insertion sequence,IS)F质粒转移的过程:F+×F-的过程图示:滚环式复制,σ式。
F+×F-的特点:(1) F质粒转移的频率高,1/10,使F-→F+。
(2) 而染色体转移频率低,10-7。
(3) F+×F+不发生接合。
因此,F+品系又称为低频重组品系(low frequency recombination)。
3. 高频重组品系HfrCavalli(1951)和Hayes(1954年)先后从能育的A品系中分离出两个新的品系,它们和B(F-)杂交,出现重组频率很高。
比AF+×BF-高出1000倍。
这种品系称为高频重组品系Hfr(high frequency recombination)。
Hfr 的特点:(1)高频重组,染色体转移频率高,×1000 ;(2) F质粒转移频率低F+→F+很少或没有。
Hfr的形成及转移过程:图示:配对→整合→接合→接合管→σ复制→转移起点。
Hfr和F+的联系和区别联系:(1)都是雄性菌,含有F质粒(2)整合游离区别:(1)前者高频重组,后者低频重组;(2)前者F质粒转移频率低,后者F质粒转移频率高;(3)前者F质粒整合,后者F质粒游离附加体的概念,频率高的原因:可见,不同的基因进入受体细胞时间是不同的。
位于前端的基因,首先进入,可以想象,基因间的距离越长,转移的时间间隔越长,因此,可以用基因转移的时间长短、顺序来表示基因在染色体上的图距—即时间作图法。