物理速度选择器和回旋加速器专项及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理速度选择器和回旋加速器专项及解析

一、速度选择器和回旋加速器

1.如图所示,有一对平行金属板,两板相距为0.05m 。电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =

3

T ,方向垂直于纸面向里。一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。已知速度的偏转角60°,不计微粒重力。求:

(1)微粒速度v 的大小; (2)微粒的电量q ;

(3)微粒在圆形磁场区域中运动时间t 。

【答案】(1)2000m/s (2)2×10-22C (3423

-

【解析】 【详解】

(1)在正交场中运动时:

0U B qv q

d

= 可解得:

v =2000m/s

(2)偏转角60°则轨迹对应的圆心角60°,轨迹半径3r R =

2

v Bqv m r

=

mv q rB

=

解得:

q =2×10-22C

(3)根据2m

T Bq

π=

则 46036023

t T -==o o

2.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速度方向与x 轴成45°角.求:

(1)金属板M 、N 间的电压U ;

(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;

(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .

【答案】(1)00B v d ;(2) t =0mv qE

;(3) 2

00

2mv mv qE qB + 【解析】 【分析】 【详解】

离子的运动轨迹如下图所示

(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =

因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =

(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0

cos 45v v

=o

故离子运动到A 点时的速度:02v v =

根据牛顿第二定律:qE ma =

设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公

式得y v at =且0

tan 45y v v =

o

联立以上各式解得,离子在电场E 中运动到A 点所需时间:0

mv t qE

=

(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:

2

v qvB m R

=

解得:02mv mv R qB qB

=

= 由几何知识可得0

22cos 452mv AC R R qB

===

o

在电场中,x 方向上离子做匀速直线运动,则20

0mv OA v t qE

==

因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:

200

2mv mv OC OA AC qE qB

=+=+

【点睛】

本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.

3.如图,平行金属板的两极板之间的距离为d ,电压为U 。两极板之间有一匀强磁场,磁感应强度大小为B 0,方向与金属板面平行且垂直于纸面向里。两极板上方一半径为R 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向里。一带正电的粒子从A 点以某一初速度沿平行于金属板面且垂直于磁场的方向射入两极板间,而后沿直径CD 方向射入圆形磁场区域,并从边界上的F 点射出。已知粒子在圆形磁场区域运动过程中的速度偏转角23

π

θ=

,不计粒子重力。求:

(1)粒子初速度v 的大小;

(2)粒子的比荷。 【答案】(1)v = o U B d (2

)3o q U m BB Rd

= 【解析】 【详解】

(1)粒子在平行金属板之间做匀速直线运动 qvB 0 = qE ① U = Ed ② 由①②式得v =

o U

B d

③ (2)在圆形磁场区域,粒子做匀速圆周运动,由牛顿第二定律有

2

v qvB m r

= ④

由几何关系有:tan

2

R

r

θ

=

⑤ 由③④⑤式得:

3o q U

m BB Rd

=

4.如图所示,两平行金属板水平放置,板间存在垂直纸面的匀强磁场和电场强度为E 的匀强电场。金属板右下方以MN 为上边界,PQ 为下边界,MP 为左边界的区域内,存在垂直纸面向外的匀强磁场,磁场宽度为d ,MN 与下极板等高,MP 与金属板右端在同一竖直线。一个电荷量为q 、质量为m 的正离子以初速度在两板间沿平行于金属板的虚线射入金属板间。不计粒子重力。

(1)已知离子恰好做匀速直线运动,求金属板间的磁感应强度B 0;

(2)若撤去板间磁场B 0,离子恰好从下极板的右侧边缘射出电场,方向与水平方向成30°角,离子进入磁场运动后从磁场边界点射出,求该磁场的磁感应强度B 的大小。

【答案】(1)0E v (2)0

2mv qd

相关文档
最新文档