《分数的基本性质》练习课 课件
合集下载
《分数的基本性质》课件
分数的基本性质定义
分数的基本性质是指分数的分子和分 母同时乘以或除以同一个非零数,分 数的值不变的性质。
具体描述
如果有一个分数$frac{a}{b}$,其中$a$是分子 ,$b$是分母,那么我们可以将分子和分母同 时乘以或除以同一个非零数$k$,得到新的分 数$frac{a times k}{b times k}$或$frac{a div k}{b div k}$,这两个新的分数与原分数 $frac{a}{b}$相等。
在进行分数的乘法和除法运算时 ,我们可以利用分数的基本性质 ,将分子和分母同时乘以或除以
同一个数,使计算变得简单。
分数的基本性质的证明
证明方法一
通过具体的数学推导和证明,我们可以证明分数的基本性质。我们可以选择一个 具体的非零数$k$,然后通过代数运算证明新的分数与原分数相等。
证明方法二
我们也可以使用数学归纳法来证明分数的基本性质。首先,我们验证基本性质在 $k=1$时成立,然后假设在某个$k$时性质成立,再证明在$k+1$时性质也成立 。这样我们就可以得出结论:分数的基本性质对于任何非零数$k$都成立。
《分数的基本性质》 ppt课件
目录
CONTENTS
• 分数简介 • 分数的基本性质 • 分数运算规则 • 分数与小数的关系 • 分数的实际应用
01 分数简介
分数的定义
分数是一种数学表达 方式,表示整体的一 部分。
分子表示被除数,分 母表示除数,分数线 表示除号。
分数的定义包括分子 、分母和分数线三个 部分。
分数的基本性质应用
约分
利用分数的基本性质,我们可以 将一个复杂的分数化为最简形式 ,即分子和分母没有公因数的分 数。约分是简化分数计算的重要
分数的基本性质ppt课件
分数与百分数的转换
百分数可以通过乘以100来转换为分数,而分数也可以通过除以100来转换为百分数。这种转换关系使得我们可 以利用百分数或分数进行计算和比较。
分数的四则运算及混合运算
加法
分数的加法运算需要先将两个分数的分母统一,然后将分 子相加。例如:1/2+2/3=3/6+4/6=7/6。
减法
分数的减法运算同样需要先将两个分数的分母统一,然后 将分子相减。例如:1/2-1/3=3/6-2/6=1/6。
由整数和真分数组成的分 数,如2又3/4。
02
分数的性质
分数的基本性质
分数相等
如果两个分数的分子与分母分别 相等,那么这两个分数相等。
分数不等
如果两个分数的分子与分母不全 相等,那么这两个分数不等。
分数的唯一性
对于任何一个分数,只有一个分 数与之相等。
分数的大小比较
分子相同
如果两个分数的分子相同,那么分母越大的分数越小。
在数学中的应用
代数
在代数中,分数是重要的基础概念之一 。分数的运算性质在代数方程的求解和 化简中有着广泛的应用。
VS
几何
在几何学中,分数经常用来描述图形的比 例和面积。例如,一个矩形被分割成若干 个小的矩形,每个小矩形的面积占总面积 的比例可以用分数来表示。
在科学中的应用
要点一
化学
在化学中,分数被广泛应用于表示化学反应的平衡常数和 化学式中元素的原子个数比例。例如,水的化学式是H2O ,其中氢和氧原子的个数比例是2:1。
乘法
分数的乘法运算需要将分子与分子相乘,分母与分母相乘 。例如:(1/2)x(3/4)=1x3/(2x4)=3/8。
除法
分数的除法运算需要将除数的分子与被除数的分母相乘, 除数的分母与被除数的分子相乘。例如: (1/2)/(3/4)=1x4/(2x3)=4/6=2/3。
百分数可以通过乘以100来转换为分数,而分数也可以通过除以100来转换为百分数。这种转换关系使得我们可 以利用百分数或分数进行计算和比较。
分数的四则运算及混合运算
加法
分数的加法运算需要先将两个分数的分母统一,然后将分 子相加。例如:1/2+2/3=3/6+4/6=7/6。
减法
分数的减法运算同样需要先将两个分数的分母统一,然后 将分子相减。例如:1/2-1/3=3/6-2/6=1/6。
由整数和真分数组成的分 数,如2又3/4。
02
分数的性质
分数的基本性质
分数相等
如果两个分数的分子与分母分别 相等,那么这两个分数相等。
分数不等
如果两个分数的分子与分母不全 相等,那么这两个分数不等。
分数的唯一性
对于任何一个分数,只有一个分 数与之相等。
分数的大小比较
分子相同
如果两个分数的分子相同,那么分母越大的分数越小。
在数学中的应用
代数
在代数中,分数是重要的基础概念之一 。分数的运算性质在代数方程的求解和 化简中有着广泛的应用。
VS
几何
在几何学中,分数经常用来描述图形的比 例和面积。例如,一个矩形被分割成若干 个小的矩形,每个小矩形的面积占总面积 的比例可以用分数来表示。
在科学中的应用
要点一
化学
在化学中,分数被广泛应用于表示化学反应的平衡常数和 化学式中元素的原子个数比例。例如,水的化学式是H2O ,其中氢和氧原子的个数比例是2:1。
乘法
分数的乘法运算需要将分子与分子相乘,分母与分母相乘 。例如:(1/2)x(3/4)=1x3/(2x4)=3/8。
除法
分数的除法运算需要将除数的分子与被除数的分母相乘, 除数的分母与被除数的分子相乘。例如: (1/2)/(3/4)=1x4/(2x3)=4/6=2/3。
人教版小学数学五年级下册分数的基本性质课件
10
11
请你当法官 (说明理由)
4 9
=
4÷ 2 9÷ 3
=2 3
2 9
=
2 ×4 9 ×4
=
8 36
2 4
=
2 × 1.5 4 × 1.5
=
3 6
4 5
=
4÷ 2 5× 3
=2 3
( ×)
(√ )
(√ )
(×)
12
口头填空:
∶ ∶
∶ ∶
13
例2、把 2 和 10化成分母是12,而大小不变的分数。 3 24
2 3
=(1182)
3 5
= 21 (35)
6 21
=(
2 7
)
27 39
=(193)
20
在括号里填上合适的数。
5 8
=
20 ( 32)
24 42
=
(
4) 7
(
4 5
)=
48 60
8 12
=
( (
24 ) 36 )
21
(对的打“√”, 错的打“×” )
1.分数的分子和分母加上同一个数,分数的大小不变。( ×)
1
2.把 3的分子扩大3倍,要使分数的大小不变,它
的分母应该( 扩大3倍).
3.把
4 12
的分母缩小4倍,要使分数的大小不变,
它的分子应该( 缩小)4倍.
4.把一个分数的分子扩大5倍,分母也扩大5倍,
这个分数的值(
不变)
5. 25的分子加8,要使分数的大小不变,它的分 子应乘( 5)或加( 2)0
23
“右相边同那的样数列”是式指行哪吗? 为什么些?数?
3
11
请你当法官 (说明理由)
4 9
=
4÷ 2 9÷ 3
=2 3
2 9
=
2 ×4 9 ×4
=
8 36
2 4
=
2 × 1.5 4 × 1.5
=
3 6
4 5
=
4÷ 2 5× 3
=2 3
( ×)
(√ )
(√ )
(×)
12
口头填空:
∶ ∶
∶ ∶
13
例2、把 2 和 10化成分母是12,而大小不变的分数。 3 24
2 3
=(1182)
3 5
= 21 (35)
6 21
=(
2 7
)
27 39
=(193)
20
在括号里填上合适的数。
5 8
=
20 ( 32)
24 42
=
(
4) 7
(
4 5
)=
48 60
8 12
=
( (
24 ) 36 )
21
(对的打“√”, 错的打“×” )
1.分数的分子和分母加上同一个数,分数的大小不变。( ×)
1
2.把 3的分子扩大3倍,要使分数的大小不变,它
的分母应该( 扩大3倍).
3.把
4 12
的分母缩小4倍,要使分数的大小不变,
它的分子应该( 缩小)4倍.
4.把一个分数的分子扩大5倍,分母也扩大5倍,
这个分数的值(
不变)
5. 25的分子加8,要使分数的大小不变,它的分 子应乘( 5)或加( 2)0
23
“右相边同那的样数列”是式指行哪吗? 为什么些?数?
3
《分数的基本性质》课件
详细描述
分数与分数的混合运算需要先找公分母,进行通分后再进行运算。例如,计算$frac{2}{3} - frac{1}{4} = frac{8}{12} - frac{3}{12} = frac{5}{12}$。
分数运算的简便方法
总结词
运用简便方法进行分数运算
详细描述
在进行分数运算时,可以采用一些简便方法,如乘法分配律、提取公因数等。例如,计算$(frac{1}{2} + frac{1}{3}) times frac{1}{2} = frac{5}{6} times frac{1}{2} = frac{5}{12}$。
在数学中,分数是基本的算术概念之一,它可以用于解决各种数学问题,例如分 数的加减法、乘除法等。通过分数的运算,我们可以得到更精确的结果。
在几何学中,分数也可以用于描述长度、面积和体积等,例如在计算圆的面积时 ,我们需要用到圆周率π的分数形式。
分数在科学计算中的应用
在物理学中,分数的概念被广泛应用,例如在计算速度、 密度、压强等物理量时,我们都需要使用分数。分数的精 确度可以让我们更好地理解物理现象和规律。
同分母分数的减法
如果两个分数的分母相同,可以直接将分子相减得到结果。
异分母分数的减法
如果两个分数的分母不同,需要先通分,再按照同分母分数的减法 进行计算。
分数的乘法运算
分数乘法运算的定义
将一个分数的分子与另一个分数的分母相乘得到结果分子, 再将一个分数的分母与另一个分数的分子相乘得到结果分母 。
约分
05
分数的应用
分数在实际生活中的应用
分数在日常生活中的应用非常广泛,例如在食品分配、物品 分配、时间计算等方面。通过分数,我们可以更加精确地描 述和解决这些问题,使生活更加便利。
分数与分数的混合运算需要先找公分母,进行通分后再进行运算。例如,计算$frac{2}{3} - frac{1}{4} = frac{8}{12} - frac{3}{12} = frac{5}{12}$。
分数运算的简便方法
总结词
运用简便方法进行分数运算
详细描述
在进行分数运算时,可以采用一些简便方法,如乘法分配律、提取公因数等。例如,计算$(frac{1}{2} + frac{1}{3}) times frac{1}{2} = frac{5}{6} times frac{1}{2} = frac{5}{12}$。
在数学中,分数是基本的算术概念之一,它可以用于解决各种数学问题,例如分 数的加减法、乘除法等。通过分数的运算,我们可以得到更精确的结果。
在几何学中,分数也可以用于描述长度、面积和体积等,例如在计算圆的面积时 ,我们需要用到圆周率π的分数形式。
分数在科学计算中的应用
在物理学中,分数的概念被广泛应用,例如在计算速度、 密度、压强等物理量时,我们都需要使用分数。分数的精 确度可以让我们更好地理解物理现象和规律。
同分母分数的减法
如果两个分数的分母相同,可以直接将分子相减得到结果。
异分母分数的减法
如果两个分数的分母不同,需要先通分,再按照同分母分数的减法 进行计算。
分数的乘法运算
分数乘法运算的定义
将一个分数的分子与另一个分数的分母相乘得到结果分子, 再将一个分数的分母与另一个分数的分子相乘得到结果分母 。
约分
05
分数的应用
分数在实际生活中的应用
分数在日常生活中的应用非常广泛,例如在食品分配、物品 分配、时间计算等方面。通过分数,我们可以更加精确地描 述和解决这些问题,使生活更加便利。
分数的基本性质练习题ppt课件
一、判断
ቤተ መጻሕፍቲ ባይዱ
1、分数的分子和分母同时乘或除以相同的
数,分数的大小不变。
(×)
2、分数的分子和分母同时加上或减去同一
个数,分数的大小不变。
(×)
分数的分子和分母同时乘或者除以相同 的数 (0除外), 分数的大小不变。
3 33
8
8
(×)
3
4
33 44
9 16
(
×
)
10 102
14 142
(×)
3、一个分数的分子不变,分母乘5,这 个分数就会扩大到原来的五倍。 ( × )
4、分数的分子增加7,要是分数的大 小不变,分母也应该增加7。 ( × )
5、与5/8相等的分数有 无数个。( ∨ )
6、一个 分数分子缩小到原来的1/4,分
母扩大到原来的4倍,这个分数缩小到原
来的16倍。
(∨ )
二、把下面的分数化成分母是36而大 小不变的分数。
8/9 =(
)
4/6 =(
)
3/4 =(
) 5/12 =(
)
三、把下面的分数化成分子是1而分数 值不变的分数。
4/12 =( ) 3/15=( )
2/6 =( ) 6/36 =( )
• 四、在括号内填上合适的数。
3 () 12
4
8 16 27 ()
8
4 ()
12 () 24
15 9
(5)(2) 7 (2) 0 () 9
• 五、一个分数的分子扩大四倍,分母缩
小7倍之后是12/8,原分数是多少?
3/56
• 六、8/13的分子加上80,如果要使这个
分数的大小不变,分母应该?
• 1.扩大到原来的11倍 • 2.增加原来的10倍 • 3.加上130
ቤተ መጻሕፍቲ ባይዱ
1、分数的分子和分母同时乘或除以相同的
数,分数的大小不变。
(×)
2、分数的分子和分母同时加上或减去同一
个数,分数的大小不变。
(×)
分数的分子和分母同时乘或者除以相同 的数 (0除外), 分数的大小不变。
3 33
8
8
(×)
3
4
33 44
9 16
(
×
)
10 102
14 142
(×)
3、一个分数的分子不变,分母乘5,这 个分数就会扩大到原来的五倍。 ( × )
4、分数的分子增加7,要是分数的大 小不变,分母也应该增加7。 ( × )
5、与5/8相等的分数有 无数个。( ∨ )
6、一个 分数分子缩小到原来的1/4,分
母扩大到原来的4倍,这个分数缩小到原
来的16倍。
(∨ )
二、把下面的分数化成分母是36而大 小不变的分数。
8/9 =(
)
4/6 =(
)
3/4 =(
) 5/12 =(
)
三、把下面的分数化成分子是1而分数 值不变的分数。
4/12 =( ) 3/15=( )
2/6 =( ) 6/36 =( )
• 四、在括号内填上合适的数。
3 () 12
4
8 16 27 ()
8
4 ()
12 () 24
15 9
(5)(2) 7 (2) 0 () 9
• 五、一个分数的分子扩大四倍,分母缩
小7倍之后是12/8,原分数是多少?
3/56
• 六、8/13的分子加上80,如果要使这个
分数的大小不变,分母应该?
• 1.扩大到原来的11倍 • 2.增加原来的10倍 • 3.加上130
北师大版五年级数学上册《分数基本性质》PPT课件
分数的大小不变。 (0除外) 这叫做分数的 基本性质。
“右相边同的那数样”是列指式哪些行数?吗? 为什么?
3 4
30 40
?
.
11
分数的基本性质
分数的基本性质:
分数的分子和分母都同时乘或 除以一个相同的数(0除外),分 数的大小不变。
.
12
2 3
=
2 3
×6 ×6
6
=(1182)12
=162÷÷66=(12)
就大吵起来。你觉得分法合理吗?为什
么?
.
3
3
6
9
4
8
12
用分数表示涂色部分。
老大
老二
老三
×4
×2
=
=
×2
.
×4
5
分数的分子、分母都乘以相同的数, 分数的大小不变。
右边的式子对吗?为 什么?
3 33 9
4 44 16
2 5
2 52
54
.
7
慧慧在玩折纸,她用了彩 纸的一小部分,你能用分数表 示剩下的绿色部分吗?
3 5
=
35××77=(231)5
.
13
小猴子过河
= 58
20
(32)
4
48
= 24 (4) (5) 60
= 42
7
= 8 (2)
12 ( 3)
.
14
4.抢答练习:在下面的括号里填上适当的数:
3 4
3
12
10
18
27
4
2
.
15
3.请你当法官 (说明理由)
4=42=2 9 93 3
2=24=6 9 94 36 2=21.5=3 4 41.5 6 4=42=2 5 52 10
“右相边同的那数样”是列指式哪些行数?吗? 为什么?
3 4
30 40
?
.
11
分数的基本性质
分数的基本性质:
分数的分子和分母都同时乘或 除以一个相同的数(0除外),分 数的大小不变。
.
12
2 3
=
2 3
×6 ×6
6
=(1182)12
=162÷÷66=(12)
就大吵起来。你觉得分法合理吗?为什
么?
.
3
3
6
9
4
8
12
用分数表示涂色部分。
老大
老二
老三
×4
×2
=
=
×2
.
×4
5
分数的分子、分母都乘以相同的数, 分数的大小不变。
右边的式子对吗?为 什么?
3 33 9
4 44 16
2 5
2 52
54
.
7
慧慧在玩折纸,她用了彩 纸的一小部分,你能用分数表 示剩下的绿色部分吗?
3 5
=
35××77=(231)5
.
13
小猴子过河
= 58
20
(32)
4
48
= 24 (4) (5) 60
= 42
7
= 8 (2)
12 ( 3)
.
14
4.抢答练习:在下面的括号里填上适当的数:
3 4
3
12
10
18
27
4
2
.
15
3.请你当法官 (说明理由)
4=42=2 9 93 3
2=24=6 9 94 36 2=21.5=3 4 41.5 6 4=42=2 5 52 10
五年级下学期数学 分数的基本性质+分数的大小比较 完整版课件
原分数为27 。 63
例5 已知分数 11 在分子、分母中加上相同的一个什么数,才能使它变成 3 ?
41
8
【分析】 抓住同增同减差不变,运用差倍和份数的思想解决。
分子分母同加一个自然数,差不变,依然为:41-11=30 新的分数约分后为,说明新的分数分子为3份,分母为8份, tong'j相差:8-3=5(份) 一份量:30÷5=6 分子:6×3=18 所加的自然数:18-11=7
一份量:72÷8=9
分子:9×3=27
这个自然数:29-27=2
答:这个自然数是2。
演练4 一个分数约分之后是 3 ,已知分子、分母的和为90,求原分数是 7
多少?
解析: 最简分数为,说明原分数分子为3份,分母为7份,一共就是: 3+7=10(份) 一份量:90÷10=9 分子:9×3=27 分母:9×7=63
3
2
24
的分子只相差1,于是继续对两个分数的分子分母进行扩倍:
2 44 ,4 3 6 48 48
答:原分数是 5 。 8
分数的比较大小
演练1
1.(错) 分子相同,分母大的分数值反而小 2.(错) 错,分数的基本性质 3.(错) 分母相同时才需要比较分子
演练2
(1)通分子 (2)[21,35]=105
,原分数
【分析】 抓住最简分数的条件,利用分子和分母的变化关系,运用倒推的思路解决问题。
分子除以5等于2,可得分子:5×2=10
分母乘9等于27,可得分母:27÷9=3
原分数为 10 3
答:原分数是10 。 3
演练1、判断正误
(1)分数的分子和分母乘上或除以一个数,分数的大小不变。( )
(2)分数的分子和分母加上同一个数,分数的大小不变。( )
分数的基本性质课件(1)
的性质。
例2
把 和32 化21成40 分母是12而大小 不变的分数。
2 3
2× 4 = 3× 4
8
= 12
10 24
=
10 ÷ 24 ÷
2 2
=
5 12
做一做
1.口答:
3 10
=
3 × (3) (9) 10×( 3 ) = 30
4 20
4÷ = 20÷
(0)
= 1158(√)
4 8
=
4÷ 4 8÷ 8
(×)
4 8
=
4÷ 4 8÷ 4
3 12
=132÷÷
3 4
3 = 3÷ 3 12 12÷ 3
=
1(×) 3
=
1
4
3 6
3 6
= =
3÷3 6×3 3×3 6×3
(×)
2.判断并订正。
5 6
=
5×3 6×3
= 1158(√)
4 8
=
4÷ 4 8÷ 8
(×)
10 15
=(32 )
1 3
=(62 )
2.判断并订正。
5 6
=
5×3 6×3
= 1158(√)
4 8
=
4÷ 4 8÷ 8
(×)
4 8
=
4÷ 4 8÷ 4
3 12
=132÷÷
3 4
=
1(×) 3
3 6
=
3÷3 6×3
(×)
3 = 3÷ 3 12 12÷ 3
=
1
4
2.判断并订正。
5 6
=
5×3 6×3
=
1(×) 3
=
例2
把 和32 化21成40 分母是12而大小 不变的分数。
2 3
2× 4 = 3× 4
8
= 12
10 24
=
10 ÷ 24 ÷
2 2
=
5 12
做一做
1.口答:
3 10
=
3 × (3) (9) 10×( 3 ) = 30
4 20
4÷ = 20÷
(0)
= 1158(√)
4 8
=
4÷ 4 8÷ 8
(×)
4 8
=
4÷ 4 8÷ 4
3 12
=132÷÷
3 4
3 = 3÷ 3 12 12÷ 3
=
1(×) 3
=
1
4
3 6
3 6
= =
3÷3 6×3 3×3 6×3
(×)
2.判断并订正。
5 6
=
5×3 6×3
= 1158(√)
4 8
=
4÷ 4 8÷ 8
(×)
10 15
=(32 )
1 3
=(62 )
2.判断并订正。
5 6
=
5×3 6×3
= 1158(√)
4 8
=
4÷ 4 8÷ 8
(×)
4 8
=
4÷ 4 8÷ 4
3 12
=132÷÷
3 4
=
1(×) 3
3 6
=
3÷3 6×3
(×)
3 = 3÷ 3 12 12÷ 3
=
1
4
2.判断并订正。
5 6
=
5×3 6×3
=
1(×) 3
=
《分数的基本性质》分数的意义和性质PPT课件 (共16张PPT)
观察小结
1 = 2 2 4
3 = 6
3 = 6 4 8
9 = 16
讨论探究
小组合作学习要求:
(1)每个学习小组找出一组大小相等 的分数,并想办法证明这组分数大小 相等。
(2)思考:在写分数的过 程中你们发现了什么规律?
例题
1 2
=
1 = 2 2 4 1 = 3 2 6 2 = 3 4 6
2 = 4 ×2 ×2 ×3 ×3 ×1.5 ×1.5
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
《分数的基本性质》分数的意义和性质PPT课件-(共16张PPT)可修改全文
人教版九年义务教育小学数学
分数的基本性质
激趣导入
妈妈买了一个西瓜回来给全家人消暑,妈妈
打算这样进行分配.
小明分给
1 4
,爸爸和妈妈
各分给
2 8
.
爷爷分给
4 16
.
不公平!不公平!
为什么我只得1份,你 们各得几份?
同学们,你们呢?是不是也认为不公平呀?
复习
120÷30的商是多少? 120÷30= 4
•
42、自信人生二百年,会当水击三千里。
•
43、要纠正别人之前,先反省自己有没有犯错。
•
44、仁慈是一种聋子能听到、哑巴能了解的语言。
•
45、不可能!只存在于蠢人的字典里。
•
46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。
•
47、小事成就大事,细节成就完美。
•
48、凡真心尝试助人者,没有不帮到自己的。
•
15、不管怎样,仍要坚持,没有梦想,永远到不了远方。
•
16、心态决定命运,自信走向成功。
•
17、第一个青春是上帝给的;第二个的青春是靠自己努力的。
•
18、励志照亮人生,创业改变命运。
•
19、就算生活让你再蛋疼,也要笑着学会忍。
•
20、当你能飞的时候就不要放弃飞。
•
21、所有欺骗中,自欺是最为严重的。
•
54、最伟大的思想和行动往往需要最微不足道的开始。
•
55、不积小流无以成江海,不积跬步无以至千里。
•
56、远大抱负始于高中,辉煌人生起于今日。
•
57、理想的路总是为有信心的人预备着。
•
58、抱最大的希望,为最大的努力,做最坏的打算。
分数的基本性质
激趣导入
妈妈买了一个西瓜回来给全家人消暑,妈妈
打算这样进行分配.
小明分给
1 4
,爸爸和妈妈
各分给
2 8
.
爷爷分给
4 16
.
不公平!不公平!
为什么我只得1份,你 们各得几份?
同学们,你们呢?是不是也认为不公平呀?
复习
120÷30的商是多少? 120÷30= 4
•
42、自信人生二百年,会当水击三千里。
•
43、要纠正别人之前,先反省自己有没有犯错。
•
44、仁慈是一种聋子能听到、哑巴能了解的语言。
•
45、不可能!只存在于蠢人的字典里。
•
46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。
•
47、小事成就大事,细节成就完美。
•
48、凡真心尝试助人者,没有不帮到自己的。
•
15、不管怎样,仍要坚持,没有梦想,永远到不了远方。
•
16、心态决定命运,自信走向成功。
•
17、第一个青春是上帝给的;第二个的青春是靠自己努力的。
•
18、励志照亮人生,创业改变命运。
•
19、就算生活让你再蛋疼,也要笑着学会忍。
•
20、当你能飞的时候就不要放弃飞。
•
21、所有欺骗中,自欺是最为严重的。
•
54、最伟大的思想和行动往往需要最微不足道的开始。
•
55、不积小流无以成江海,不积跬步无以至千里。
•
56、远大抱负始于高中,辉煌人生起于今日。
•
57、理想的路总是为有信心的人预备着。
•
58、抱最大的希望,为最大的努力,做最坏的打算。
2022年小学数学《分数的基本性质》课件(精品)PPT省优获奖课件
第二课时
长方形的面积=长×宽 正方形的面积=边长×边长
(一)计算下面各图形的面积(单位:厘米)
6
8
6 7
6×6=36(平方厘米) 9×2=18(平方厘米) 8×7=56(平方厘米)
(二)将下表填写完整
6
9
7
8
4
20
二、探究新知
5 数学书封面的长大约是26厘米,宽大约是18厘
米。数学书封面的面积大约是多少平方厘米?
五年级数学下册(RJ) 教学课件
第 4 单元 分数的意义和性质
第 5 课时 分 数 的 基 本 性 质
一、复习导入
120÷30的商是多少? 120÷30= 4
被除数和除数都扩大3倍,商是多少? (120×3)÷(30×3)= 4 被除数和除数都缩小10倍呢? (120÷10)÷(30÷10)= 4
分子和分母 同时乘或除以相同的数时, 为什么0要除外?
因为分数的分子、分母都乘0, 则分数成为 0 ,
0 在分数里分母不能为0,
所以分数的分子、分母不能同时乘0,
又因为在除法里零不能作除数,
所以分数的分子、分母
也不能同时除以0。
2
把
2 3
和
1204化成分母是12而大小
不变的分数。
2 3
=
2× 3×4
26×18=468(平方厘米) 答:数学书封面的面积大约是468平方厘米。
利用数学书封面的面积,估计一下 你的课桌面的面积。
怎样才能量出 课桌面有几本 数学书封面那 么大呢?
其实,也就是估计 课桌面有几本数学 书封面那么大。
可以小组合作,多本数学书平 铺在课桌面上;还可以自己完成, 一本数学书比完,画好标记,接着 标记继续比。
最新人教版五年级数学下册第4单元《分数的基本性质》精品教学课件
五(9)班有50人,在视力检测中,视力达标的人数
占全班人数的
80 100
占全班总人数的
,小明说,也可以说成视力达标的人数 40 或 20 ,小明的说法对吗?为什么?
50
25
= = 80 40 20
100 50 25
答:小明说得对。
课后小结
Add You Text Here Add You Text Here
课堂小结
1.说一说本节课的收获。 2.谈谈在解决实际问题中有哪些需要 注意或不太懂的地方。
课后作业
作业 内容
教材作业 从课后习题中选取
自主安排 配套练习册练习
ቤተ መጻሕፍቲ ባይዱ课啦
分数的大小不变。
(2)分数的分子和分母同时加或减相同的数 (× )
(0除外),分数的大小不变。
(3)
= = 2
2
2
3 3×5
15
(× )
二、在下面的括号里填上适当的数。
3
(
6
)
4
8
7 10
(
14
20
)
2×3
2 5
(6 )
5 10
5×3 15
÷3
5
15 24
15 10
8
÷3
小 结【课堂小结】
三、想一想。
×2
×2
1 24
2
4
8
×2
×2
×4
÷4
÷2
÷2
1 24
2
4
8
÷2
÷2
÷4
分数的基本性质
分数的分子和分母都同时乘或者除以相 同的数(0除外),分数的大小不变
你能根据分数与除法的关系以及商 不变的规律,说明分数的基本性质吗?
苏教版小学数学 五年级下册 《第四单元 第10课时 分数的基本性质和约分练习》教学课件PPT
9 = 9÷3 27 27÷3
(√ )
6 = 6÷2
9
9÷3
(× )
4 5
=
4+2 5+2
(×)
课堂作业
绿色三角形面积是红色三角形面积的几 2 分之几?梯形面积是红色三角形面积的
几分之几?
答:绿色三角形面积是红色三角形面积的 , 梯形面积是红色三角形面积的 。
7 右图统计的是星光小学五年级三个班科技作品数量。 (1)一班科技作品的件数占总件数的几分之几? 二班和三班呢?(得数用最简分数表示) 36+24+30=90(件) 一班:
二班:
三班:
新知探究
7 右图统计的是星光小学五年级三个班科技作品数量。 (1)一班科技作品的件数占总件数的几分之几? 二班和三班呢?(得数用最简分数表示)
【重点】分数的基本性质和约分。
【难点】分数的基本性质和约分。
课堂导入
什么是分数的基本性质?你会根据分数的 基本性质约分吗?这节课我们来做些练习吧。
新知探究
1
新知探究
2 你能用不同的分数表示下面各题的商吗?
2
1
8
4
24
1
18
4
你还会用其它分数表示吗?
新知探究
3 在 里填上“>”“<”或“=”。
>
<
=
>
新知探究
计算下面各题,把得数约成最简分数。
4
新知探究
4 计算下面各题,把得数约成最简分数。
新知探究
在括号里填上最简分数。
5
6分米=( )米 6÷10=
40厘米=( 40÷100=
)米
15秒=( )分 15÷60=
25分=( )时 25÷60=
北师大版五年级数学上册分数基本性质课件
×3
÷2
×2
÷2
×2
=
=
×3
=
2.涂一涂,填一填。
2
6
3.在括号里填上合适的数。
=
( 32 )
=
( 5 )
( 4 )
=
(4 )
=
( 6 )
4.(1)把 和 都化成分母是12而大小不变的分数。
5.如果
的分子加上9,要使这个分数的大小不变,分母应该加上多少?
思路分析:
将 的分子加上 9 后变成 ,相当于分子3乘4,根据分数
的基本性质,要使这个分数的大小不变,分母也应乘4 ,
5×4=20,分母5要变成 20,应该加上15。
5.如果
的分子加上9,要使这个分数的大小不变,分母应该加上多少?
分数的基本性质
北师大版五年级上册
激趣导入
用分数表示涂色部分。
这几个分数的大小
有什么关系?
新知探究
用分数表示涂色部分。
请你再举出一组这
样的例子。
比一比:
=
=
举例:
涂色部分和分数都表示正方形面积的一半。
÷2
×2
÷2
×2
=
=
×3
=
2.涂一涂,填一填。
2
6
3.在括号里填上合适的数。
=
( 32 )
=
( 5 )
( 4 )
=
(4 )
=
( 6 )
4.(1)把 和 都化成分母是12而大小不变的分数。
5.如果
的分子加上9,要使这个分数的大小不变,分母应该加上多少?
思路分析:
将 的分子加上 9 后变成 ,相当于分子3乘4,根据分数
的基本性质,要使这个分数的大小不变,分母也应乘4 ,
5×4=20,分母5要变成 20,应该加上15。
5.如果
的分子加上9,要使这个分数的大小不变,分母应该加上多少?
分数的基本性质
北师大版五年级上册
激趣导入
用分数表示涂色部分。
这几个分数的大小
有什么关系?
新知探究
用分数表示涂色部分。
请你再举出一组这
样的例子。
比一比:
=
=
举例:
涂色部分和分数都表示正方形面积的一半。
新苏教版五年级下册《分数的基本性质》课件
辨析:
分数的基本性质
分数的分子和分母同时乘或除以相同的数 (0除外),分数的大小不变。 分数的分子和分母同时扩大或缩小相同的倍数 商不变的规律 (0除外),分数的大小不变。 被除数和除数同时乘或除以相同的数 1 2 ×( 0.5 ) (0除外),商不变。 例: 2
4 4 ×( 0.5 ) 2
你知道,阿凡提为什 么会笑吗?他对三兄 弟讲了哪些话?
分数的基本性质
你知道,阿凡提为什 么会笑吗?他对三兄 弟讲了哪些话?
有位老爷爷把一块地分给三个儿子。老
大分到了这块地的 1 ,老二分到了这块地 的 2 。老三分到了这块的 3 。老大、老二
6 9 3
觉得自己很吃亏,于是三人就大吵起来。刚 好阿凡提路过,问清争吵的原因后,哈哈的 笑了起来,给他们讲了几句话,三兄弟就停 止了争吵。
1 把一张正方形纸对折,涂色表示它的 。 2 1 继续对折,每次找出一个和 相等的分数, 2 并用等式表示出来。
1 2
×2 ×2
=
2 4
=
4 8
=
8 16
先在括号里填上合适的数,再交流。
2 2 2 2
4 4
8 8 2 4
4 4
8 8
4 8
8 16
① 看看分子、分母是怎样变化的?从上面的变化中你发现 了什么?与你的同桌说一说。
1 9 18 ( 2 ) 3 15 25 ( 5 )
有位老爷爷把一块地分给三个儿子。老
大分到了这块地的 1 ,老二分到了这块地
的 2 。老三分到了这块的 3 。老大、老二
6 9 3
觉得自己很吃亏,于是三人就大吵起来。刚 好阿凡提路过,问清争吵的原因后,哈哈的 笑了起来,给他们讲了几句话,三兄弟就停 止了争吵。
分数基本性质-小学课件PPT
青云路小学
3
第 一 层 次 练 习
青云路小学
4
1、在下面各图中画出阴影,表示图1 下面的分数,再比较它们的大小。
青云路小学
5
2、(1)把 的分母乘 3,分子怎样变化, 才能使 分数的大小不变?
(2)把 的分子除以 4,分母怎样 变化,才能 使分数的大小不变?
青云路小学
6
3、
=
=
=
青云路小学
7
青云路小学
36
希望大家多多指导
青云路小学
37
谢谢大家
青云路小学
38
希望大家多多指导
青云路小学
39
谢谢大家
青云路小学
40
希望大家多多指导
青云路小学
41
谢谢大家
青云路小学
42
希望大家多多指导
青云路小学
43
谢谢大家
青云路小学
44
希望大家多多指导
青云路小学
45
青云路小学
14
希望大家多多指导
青云路小学
15
谢谢大家
青云路小学
16
希望大家多多指导
青云路小学
17
谢谢大家
青云路小学
18
希望大家多多指导
青云路小学
19
谢谢大家
青云路小学
20
希望大家多多指导
青云路小学
21
谢谢大家
青云路小学
22
希望大家多多指导
青云路小学
23
谢谢大家
青云路小学
24
希望大家多多指导
青云路小学
25
谢谢大家
青云路小学
26
希望大家多多指导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有位老爷爷把一块地分给三个儿子。
你知道,
老大分到了这块地的 1 , 3
老二分到了这块地的 2 。 6
老三分到了这块地的 3 。 9
阿凡提为什么会笑吗? 他对三兄弟讲了哪些话?
老大、老二觉得自己很吃亏,于是三人就大吵起来。
老大
老二
老三
分数的基本性质 分数的分子分母同时乘或除以相同的数(0除外),
分数的大小不变。
×3
÷3
描点题(课本第58页第5题)
下面哪些分数在直线上能用同一个点表示?
把它们在直线上表示出来。
6
10
3
5
3
1
12
8
12
4
6
4
1
3
5
4
6
4
0
3
12
6 66 1 12 12 6 2
6
1
12
10 10 2 5 8 82 4
10 8
3 33 1 12 12 3 4
1 4
2
3 33 1 6 63 2
4
知识 城堡
生活 乐园
解决问题(课本第59页第11题)
科学 园地
历史 开心 足迹 一刻
1 “知识城堡”占 4 版, “生活乐园”占 2 版,
8
12 4 4 8 16
知识 城堡
生活 乐园
科学 园地
历史 足迹
2 1 16 8
开心 一刻
4
“科学园地”占16 版,
“历史足迹”占 2 版,
其余的
1
16 版为
5 4
×2
3
(
4 ×2
×3
填空题(课本第59页第9题)
6 8
) (
9 12
)
×3
7 10
(
14 20
( )
21 30
)
÷7
42
(
35
6 5
) ×2 (
12 10
)
÷7
×2
5分钟后 回来哦!
5 9
(
10 18
) (
15 27
)
÷4
÷2
8 24
(
2 6
( )
1 3
)
÷4
÷2
(
8 48
×8
)
1 6
答:这个分数扩大到原来的5倍。
思考题(变式练习)
5 8
的分子增加10,要使分数的大小不变,分母增加(
A
)
A. 16
B. 24
C. 10
5 5 10 15 53 8 8 16 24 83
分子增加的数:10 5 2 分母增加的数:16 8 2
为什么要
转化为 53 ?
8
“开心一刻”。
哪些栏目 的版面一 样大?
解决问题(课本第59页第12题)
我国由56个民族组成,其中汉族占全国人口的 92 。 100
也可以说汉族
占全国人口的
46 或 23 。
50
25
92 92 2 46 100 100 2 50 46 46 2 23 50 50 2 25
答:她的说法是对的,因为这三个分数相等。
她的说法对吗?为什么?
思考题(课本第59页第13题)
一个分数的分母不变,分子乘3,这个分数的大小有什么变化?
举例:
1
分子乘3 13 3
10
10 10
答:这个分数扩大到原来的3倍。
思考题(课本第59页第13题)
如果分子不变,分母除以5呢?
举例:
1 分母除以5 10
1 1 10 5 2
.5
123
369
×2
×1.5
×3
÷3
÷1.5
÷2
321
963
÷1.5
÷2
÷3
判断题(课本第58页第2题)
下面每组中的两个分数是否相等?
相等的在括号里画“✔”,不相等的画“✖”
×2
÷9
3 和 6( ✔ )
9 和 1( ✖ )
5 10
18 9
×2
÷2
×3
7 和 21( 12 36
✔
)
÷5
5 和 1( ✖ ) 15 5
(×9
9 54
)
×8 ×9
解决问题(课本第59页第10题)
40分钟的 1 是(10)分钟
4
如果一堂课40分钟,哪个班做练习用的时间长?
这堂课,我们 五(1)班做了 10分钟的练习。
10 40 10 40
10 10 10 1 40 40 10 4
答:两个班做练习用的时间相等。
我们五(2)班 做练习的时间 占整堂课的 1 。
你知道,
老大分到了这块地的 1 , 3
老二分到了这块地的 2 。 6
老三分到了这块地的 3 。 9
阿凡提为什么会笑吗? 他对三兄弟讲了哪些话?
老大、老二觉得自己很吃亏,于是三人就大吵起来。
老大
老二
老三
分数的基本性质 分数的分子分母同时乘或除以相同的数(0除外),
分数的大小不变。
×3
÷3
描点题(课本第58页第5题)
下面哪些分数在直线上能用同一个点表示?
把它们在直线上表示出来。
6
10
3
5
3
1
12
8
12
4
6
4
1
3
5
4
6
4
0
3
12
6 66 1 12 12 6 2
6
1
12
10 10 2 5 8 82 4
10 8
3 33 1 12 12 3 4
1 4
2
3 33 1 6 63 2
4
知识 城堡
生活 乐园
解决问题(课本第59页第11题)
科学 园地
历史 开心 足迹 一刻
1 “知识城堡”占 4 版, “生活乐园”占 2 版,
8
12 4 4 8 16
知识 城堡
生活 乐园
科学 园地
历史 足迹
2 1 16 8
开心 一刻
4
“科学园地”占16 版,
“历史足迹”占 2 版,
其余的
1
16 版为
5 4
×2
3
(
4 ×2
×3
填空题(课本第59页第9题)
6 8
) (
9 12
)
×3
7 10
(
14 20
( )
21 30
)
÷7
42
(
35
6 5
) ×2 (
12 10
)
÷7
×2
5分钟后 回来哦!
5 9
(
10 18
) (
15 27
)
÷4
÷2
8 24
(
2 6
( )
1 3
)
÷4
÷2
(
8 48
×8
)
1 6
答:这个分数扩大到原来的5倍。
思考题(变式练习)
5 8
的分子增加10,要使分数的大小不变,分母增加(
A
)
A. 16
B. 24
C. 10
5 5 10 15 53 8 8 16 24 83
分子增加的数:10 5 2 分母增加的数:16 8 2
为什么要
转化为 53 ?
8
“开心一刻”。
哪些栏目 的版面一 样大?
解决问题(课本第59页第12题)
我国由56个民族组成,其中汉族占全国人口的 92 。 100
也可以说汉族
占全国人口的
46 或 23 。
50
25
92 92 2 46 100 100 2 50 46 46 2 23 50 50 2 25
答:她的说法是对的,因为这三个分数相等。
她的说法对吗?为什么?
思考题(课本第59页第13题)
一个分数的分母不变,分子乘3,这个分数的大小有什么变化?
举例:
1
分子乘3 13 3
10
10 10
答:这个分数扩大到原来的3倍。
思考题(课本第59页第13题)
如果分子不变,分母除以5呢?
举例:
1 分母除以5 10
1 1 10 5 2
.5
123
369
×2
×1.5
×3
÷3
÷1.5
÷2
321
963
÷1.5
÷2
÷3
判断题(课本第58页第2题)
下面每组中的两个分数是否相等?
相等的在括号里画“✔”,不相等的画“✖”
×2
÷9
3 和 6( ✔ )
9 和 1( ✖ )
5 10
18 9
×2
÷2
×3
7 和 21( 12 36
✔
)
÷5
5 和 1( ✖ ) 15 5
(×9
9 54
)
×8 ×9
解决问题(课本第59页第10题)
40分钟的 1 是(10)分钟
4
如果一堂课40分钟,哪个班做练习用的时间长?
这堂课,我们 五(1)班做了 10分钟的练习。
10 40 10 40
10 10 10 1 40 40 10 4
答:两个班做练习用的时间相等。
我们五(2)班 做练习的时间 占整堂课的 1 。