概率统计练习题答案

合集下载

概率统计练习册习题解答[定]

概率统计练习册习题解答[定]

习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t > 2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :(1)同时掷三枚骰子,记录三枚骰子的点数之和,事件A 表示“点数之和大于10”。

解:{},18543,,,=Ω ;{}18,,12,11 =A 。

(2)对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。

解:{} ,,,=321Ω;{}54321A ,,,,=。

(3)车工生产精密轴干,其长度的规格限是15±0.3。

现抽查一轴干测量其长度,事件A 表示测量长度与规格的误差不超过0.1。

3.设A ,B ,C 为三个事件,用A ,B ,C 的运算关系表示下列各事件: (1) A ,B ,C 都发生:解: ABC ;(2) A ,B ,C(3) A 发生,B 与C(4) A ,B ,C 中至少有一个发生:解:C B A ⋃⋃(5)A ,B ,C 4.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2)至少有一个次品;(3)恰好有两个是次品;(4习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P,则)(A P)(AB P)(B A P )(B A P =)(B A P 0 ,)(B A P(2)设事件A 与B 互不相容,()0.4,()0.3P A P B ==,则()P AB ()P AB 0.6(3)盒子中有10个球,其中3(4)一批产品由45件正品、5件次品组成,现从中任取3件产品,其中恰有1件次品的概率为(5)某寝室住有6名学生,至少有两个同学的生日恰好在同一个月的概率为2.选择题(1)如果A 与B 互不相容,则(C )(A) AB =∅ (B) A B = (C ) AB =Ω (D) A B =Ω(2)设A 、B 是任意两事件,则=-)(B A P ( B 、C )。

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)若()0,P A = 则A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。

(B )(8)若P(A)P(B)≤,则⊂A B 。

(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

经济数学基础——概率统计课后习题答案

经济数学基础——概率统计课后习题答案

经济数学基础——概率统计课后习题答案1⽬录习题⼀ (1)习题⼆ (16)习题三 (44)习题四 (73)习题五 (97)习题六 (113)习题七 (133)1习题⼀写出下列事件的样本空间:(1) 把⼀枚硬币抛掷⼀次;(2) 把⼀枚硬币连续抛掷两次;(3) 掷⼀枚硬币,直到⾸次出现正⾯为⽌;(4) ⼀个库房在某⼀个时刻的库存量(假定最⼤容量为M ).解 (1) Ω={正⾯,反⾯} △ {正,反}(2) Ω={(正、正),(正、反),(反、正),(反、反)}(3) Ω={(正),(反,正),(反,反,正),…}(4) Ω={x ;0 ≤x ≤ m }掷⼀颗骰⼦的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数⼩于5”,D =“⼩于5的偶数点”,讨论上述各事件间的关系.解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对⽴事件,即B =A ;B 与D 互不相容;A ?D ,C ?D.3. 事件A i 表⽰某个⽣产单位第i 车间完成⽣产任务,i =1,2,3,B 表⽰⾄少有两个车间完成⽣产任务,C 表⽰最多只有两个车间完成⽣产任务,说明事件B 及B -C 的含义,并且⽤A i (i =1,2,3)表⽰出来. 解 B 表⽰最多有⼀个车间完成⽣产任务,即⾄少有两个车间没有完成⽣产任务.313221A A A A A A B ++=B -C 表⽰三个车间都完成⽣产任务321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =-4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB ⽤⼀些互不相容事件的和表⽰出来.解 B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=- 5.两个事件互不相容与两个事件对⽴的区别何在,举例说明.解两个对⽴的事件⼀定互不相容,它们不可能同时发⽣,也不可能同时不发⽣;两个互不相容的事件不⼀定是对⽴事件,它们只是不可能同时发⽣,但不⼀定同时不发⽣. 在本书第6页例2中A 与D 是对⽴事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否⼀定互不相容?画图说明.解不⼀定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系.解由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B).因此有A =C +F ,C 与F 互不相容,D ?A ?F ,A ?C.8. 袋内装有5个⽩球,3个⿊球,从中⼀次任取两个,求取到的两个球颜⾊不同的概率.解记事件A 表⽰“取到的两个球颜⾊不同”. 则有利于事件A 的样本点数⽬#A =1315C C .⽽组成试验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1 图1-22P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表⽰有利于A 的样本点数⽬与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有⿊球的概率.解设事件B 表⽰“取到的两个球中有⿊球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P - 10. 抛掷⼀枚硬币,连续3次,求既有正⾯⼜有反⾯出现的概率.解设事件A 表⽰“三次中既有正⾯⼜有反⾯出现”, 则A 表⽰三次均为正⾯或三次均为反⾯出现. ⽽抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开⼀个门锁,今任取两把,求能打开门锁的概率.解设事件A 表⽰“门锁能被打开”. 则事件A 发⽣就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对⽴事件概率⽐较⽅便.12. ⼀副扑克牌有52张,不放回抽样,每次⼀张,连续抽取4张,计算下列事件的概率:(1)四张花⾊各异;(2)四张中只有两种花⾊.解设事件A 表⽰“四张花⾊各异”;B 表⽰“四张中只有两种花⾊”.,113113113113452##C C C C A , C Ω==)+#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P === 30006048+74366##)(452 )(.C ΩB B P === 13. ⼝袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹⾓的概率. 解设事件A 表⽰“取出的5枚硬币总值超过壹⾓”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##= 14. 袋中有红、黄、⿊⾊球各⼀个,每次任取⼀球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全⽩”,C =“全⿊”,D =“⽆红”,E =“⽆⽩”,F =“⽆⿊”,G =“三次颜⾊全相同”,H =“颜⾊全不相同”,I =“颜⾊不全相同”.解#Ω=33=27,#A =#B =#C =1,#D =#E =#F =23=8,#G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =243271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. ⼀间宿舍内住有6位同学,求他们中有4个⼈的⽣⽇在同⼀个⽉份的概率.解设事件A 表⽰“有4个⼈的⽣⽇在同⼀个⽉份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P17. 设事件B ?A ,求证P (B )≥P (A ).证∵B ?A∴P (B -A )=P (B ) - P (A )∵P (B -A )≥0∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ).解由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +bP (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中⼀次抽取三个,计算取到废品的概率.解设事件A 表⽰“取到废品”,则A 表⽰没有取到废品,有利于事件A 的样本点数⽬为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA -=##=0.225520. 已知事件B ?A ,P (A )=ln b ≠ 0,P (B )=ln a ,求a 的取值范围.解因B ?A ,故P (B )≥P (A ),即ln a ≥ln b ,?a ≥b ,⼜因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都⼤于0,⽐较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的⼤⼩(⽤不等号把它们连接起来).解由于对任何事件A ,B ,均有AB ?A ?A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. ⼀个教室中有100名学⽣,求其中⾄少有⼀⼈的⽣⽇是在元旦的概率(设⼀年以365天计算).解设事件A 表⽰“100名学⽣的⽣⽇都不在元旦”,则有利于A 的样本点数⽬为#A =364100,⽽样本空间中样本点总数为#Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P = 0.239923. 从5副不同⼿套中任取4只⼿套,求其中⾄少有两只⼿套配成⼀副的概率.解设事件A 表⽰“取出的四只⼿套⾄少有两只配成⼀副”,则A 表⽰“四只⼿套中任何两只均不能配成⼀副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职⼯订阅报纸,93%的⼈订阅杂志,在不订阅报纸的⼈中仍有85%的职⼯订阅杂志,从单位中任找⼀名职⼯求下列事件的概率:(1)该职⼯⾄少订阅⼀种报纸或期刊;(2)该职⼯不订阅杂志,但是订阅报纸.解设事件A 表⽰“任找的⼀名职⼯订阅报纸”,B 表⽰“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学⽣们的数学与外语两科考试成绩,抽查⼀名学⽣,记事件A 表⽰数学成绩优秀,B 表⽰外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解 P (A |B )=7.04.028.0)()(==B P AB P P (B |A)=7.0)()(=A P AB P P (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ).证∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1∴P ( A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独⽴,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ).解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B ) ? 0.7=0.4+0.6P ( B )P ( B )=0.528. 设事件A 与B 的概率都⼤于0,如果A 与B 独⽴,问它们是否互不相容,为什么?解因P ( A ),P ( B )均⼤于0,⼜因A 与B 独⽴,因此P ( AB )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.29. 某种电⼦元件的寿命在1000⼩时以上的概率为0.8,求3个这种元件使⽤1000⼩时后,最多只坏了⼀个的概率.解设事件A i 表⽰“使⽤1000⼩时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独⽴,事件A 表⽰“三个元件中最多只坏了⼀个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上⾯等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P +=0.83+3×0.82×0.2=0.89630. 加⼯某种零件,需经过三道⼯序,假定第⼀、⼆、三道⼯序的废品率分别为0.3,0.2,0.2,并且任何⼀道⼯序是否出现废品与其他各道⼯序⽆关,求零件的合格率.解设事件A 表⽰“任取⼀个零件为合格品”,依题意A 表⽰三道⼯序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定⼆者独⽴,现在从外部打电话给该车间,求⼀次能打通的概率;第⼆次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数). 解设事件A i 表⽰“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42P (A 2)=0.58 × 0.42=0.2436P (A m )=0.58m -1 × 0.4232. ⼀间宿舍中有4位同学的眼镜都放在书架上,去上课时,每⼈任取⼀副眼镜,求每个⼈都没有拿到⾃⼰眼镜的概率.解设A i 表⽰“第i ⼈拿到⾃⼰眼镜”,i =1,2,3,4. P ( A i )=41,设事件B 表⽰“每个⼈都没有拿到⾃⼰的眼镜”. 显然B 则表⽰“⾄少有⼀⼈拿到⾃⼰的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4)=∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i ) =)41(1213141≤≤=?j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j ) =41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4) =P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141= 85241241121414)(3424=-?+?-?=C C B P 83)(1)(=-=B P B P 33. 在1,2,…,3000这3000个数中任取⼀个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A2A 3),P (A 2+A 3),P (A 2-A 3).解依题意P (A 2)=21,P (A 3)=31 P (A 2A 3)=P (A 6)=61 P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3) =32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=- 34. 甲、⼄、丙三⼈进⾏投篮练习,每⼈⼀次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有⼀⼈投中;(2)最多有⼀⼈投中;(3)最少有⼀⼈投中.解设事件A 、B 、C 分别表⽰“甲投中”、“⼄投中”、“丙投中”,显然A 、B 、C 相互独⽴.设A i 表⽰“三⼈中有i ⼈投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P ===0.2×0.3×0.4×=0.024P ( A 3 )=P ( ABC )=P ( A ) P ( B ) P ( C )=0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452(1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212(3) P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、⼄⼆⼈轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较⼤,为什么?解设事件A 2n -1B 2n 分别表⽰“甲在第2n -1次投中”与“⼄在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独⽴.设事件A 表⽰“甲先投中”.+++=)()()()(543213211A B A B A P A B A P A P A P=+++0.40.5)(0.60.40.50.60.42743.014.0=-= 计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较⼤.36. 某⾼校新⽣中,北京考⽣占30%,京外其他各地考⽣占70%,已知在北京学⽣中,以英语为第⼀外语的占80%,⽽京外学⽣以英语为第⼀外语的占95%,今从全校新⽣中任选⼀名学⽣,求该⽣以英语为第⼀外语的概率.解设事件A 表⽰“任选⼀名学⽣为北京考⽣”,B 表⽰“任选⼀名学⽣,以英语为第⼀外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个⾏政⼩区,其⼈⼝⽐为9 : 7 : 4,据统计资料,甲种疾病在该地三个⼩区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解设事件A 1,A 2,A 3分别表⽰从A 地任选⼀名居民其为南、北、中⾏政⼩区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表⽰“任选⼀名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005=0.003538. ⼀个机床有三分之⼀的时间加⼯零件A ,其余时间加⼯零件B ,加⼯零件A 时,停机的概率为0.3,加⼯零件B 时停机的概率为0.4,求这个机床停机的概率.解设事件A 表⽰“机床加⼯零件A ”,则A 表⽰“机床加⼯零件B ”,设事件B 表⽰“机床停⼯”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=?+?= 39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个⼝袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取⼀个球,放⼊与球上号数相同的⼝袋中,第⼆次从该⼝袋中任取⼀个球,计算第⼆次取到⼏号球的概率最⼤,为什么?解设事件A i 表⽰“第⼀次取到i 号球”,B i 表⽰第⼆次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成⼀个完全事件组.41)()(,21)(321===A P A P A P 41)|()|(,21)|(131211===A B P A B P A B P 41)|()|(,21)|(232221===A B P A B P A B P 61)|(,31)|(,21)|(333231===A B P A B P A B P 应⽤全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第⼆次取到1号球的概率最⼤.40. 接37题,⽤⼀种检验⽅法,其效果是:对甲种疾病的漏查率为5%(即⼀个甲种疾病患者,经此检验法未查出的概率为5%);对⽆甲种疾病的⼈⽤此检验法误诊为甲种疾病患者的概率为1%,在⼀次健康普查中,某⼈经此检验法查为患有甲种疾病,计算该⼈确实患有此病的概率.解设事件A 表⽰“受检⼈患有甲种疾病”,B 表⽰“受检⼈被查有甲种疾病”,由37题计算可知P (A )=0.0035,应⽤贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P += 01.09965.095.00035.095.00035.0=+ 25.0=41. 甲、⼄、丙三个机床加⼯⼀批同⼀种零件,其各机床加⼯的零件数量之⽐为5 : 3 : 2,各机床所加⼯的零件合格率,依次为94%,90%,95%,现在从加⼯好的整批零件中检查出⼀个废品,判断它不是甲机床加⼯的概率.解设事件A 1,A 2,A 3分别表⽰“受检零件为甲机床加⼯”,“⼄机床加⼯”,“丙机床加⼯”,B 表⽰“废品”,应⽤贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P 7305020+1030+06.05.006.05.0== (7)4)|(1)|(11=-=B A P B A P 42. 某⼈外出可以乘坐飞机、⽕车、轮船、汽车4种交通⼯具,其概率分别为5%,15%,30%,50%,乘坐这⼏种交通⼯具能如期到达的概率依次为100%,70%,60%与90%,已知该旅⾏者误期到达,求他是乘坐⽕车的概率.解设事件A 1,A 2,A 3,A 4分别表⽰外出⼈“乘坐飞机”,“乘坐⽕车”,“乘坐轮船”,“乘坐汽车”,B 表⽰“外出⼈如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P 1.05.04.03.03.015.0005.03.015.0?+?+?+??==0.20943. 接39题,若第⼆次取到的是1号球,计算它恰好取⾃Ⅰ号袋的概率.解 39题计算知P (B 1)=21,应⽤贝叶斯公式 21212121)()|()()|(111111=?==B P A B P A P B A P 44. ⼀箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求⽽拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解设事件A i 表⽰⼀箱中有i 件次品,i =0, 1, 2. B 表⽰“抽取的10件中⽆次品”,先计算P ( B )∑++?===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P 37.0)(31)|(0==B P B A P 45. 设⼀条昆⾍⽣产n 个卵的概率为λλ-=e !n p nn n =0, 1, 2, … 其中λ>0,⼜设⼀个⾍卵能孵化为昆⾍的概率等于p (0<p <1). 如果卵的孵化是相互独⽴的,问此⾍的下⼀代有k 条⾍的概率是多少?解设事件A n =“⼀个⾍产下⼏个卵”,n =0,1,2….B R =“该⾍下⼀代有k 条⾍”,k =0,1,….依题意λλ-==e !)(n p A P nn n ≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p . 应⽤全概率公式有∑∑∞=∞===k n n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=l n k n k n q p k n k n n !)(!!e !∑∞=-λ--λλk n k n k k n q k p !)()(e !)( 由于q k n kn k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有,2,1,0e )(e e !)()(===--k k p k p B P p pq kk λλλλλ习题⼆1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. ⼀箱产品20件,其中有5件优质品,不放回地抽取,每次⼀件,共抽取两次,求取到的优质品件数X的概率分布.解 X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P m m 依次计算得X 的概率分布如下表所⽰:3. 上题中若采⽤重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是0, 1, 2.每次抽取⼀件取到优质品的概率是1/4,取到⾮优质品的概率是3/4,且各次抽取结果互不影响,应⽤伯努利公式有{}1694302=??? ??==X P {}1664341112=??==C X P {}1614122=??? ??==X P 4. 第2题中若改为重复抽取,每次⼀件,直到取得优质品为⽌,求抽取次数X 的概率分布.解 X 可以取1, 2, …可列个值. 且事件{X = n }表⽰抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431???? ??-n .因此X 的概率分布为{}?=??==-,2,143411n n X P n 5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次⼀个直到取得新球为⽌,求下列随机变量的概率分布.(1)抽取次数X ; (2)取到的旧球个数Y .解 (1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=?====X P X P {}22091091121233=??==X P {}2201991011121234===X P (2) Y 可以取0, 1, 2, 3各值 .{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若⼀次取出3个,求取到的新球数⽬X 的概率分布.解 X 可以取0, 1, 2, 3各值.{}2201031233===C C X P {}2202713122319===C C C X P {}22010823121329===C C C X P {}22084331239===C C X P 7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.解根据{}∑=∞=11n n X P =, 有 ∑-==∞=111n n pp P 解上⾯关于p 的⽅程,得p =0.5.8. 已知P {X =n }=p n , n =2, 4, 6, …,求p 的值.解 1122642=-=?+++p p p p p 解⽅程,得p =2±/29. 已知P {X =n }=cn , n =1, 2, …, 100, 求c 的值.解 ∑=+?++==10015050)10021(1n cc cn =解得 c =1/5050 .10. 如果p n =cn _2,n =1, 2, …, 问它是否能成为⼀个离散型概率分布,为什么?解 ,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=, 则有∑∞=1n n p =1, 且p n >0. 所以它可以是⼀个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均⼤于零且不相等并⼜组成等差数列,求X 的概率分布. 解设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =31, 但是a -d 与a +d 均需⼤于零,因此|d |<31, X 的概率分布为其中d 应满⾜条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c .解 {}∑∑∞=-∞====11e !1m mm m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm m m m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ解得λ--=e 11c 13. 甲、⼄⼆⼈轮流投篮,甲先开始,直到有⼀⼈投中为⽌,假定甲、⼄⼆⼈投篮的命中率分别为0.4及0.5,求:(1)⼆⼈投篮总次数Z 的概率分布;(2)甲投篮次数X 的概率分布;(3)⼄投篮次数Y 的概率分布.解设事件A i 表⽰在第i 次投篮中甲投中,j 表⽰在第j 次投篮中⼄投中,i =1, 3, 5, …, j =2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独⽴.(1){}{}1222321112---=-=k k k A B A B A p k Z P = (0.6×0.5)1-k ·0.4= 0.4(0.3)1-k k=1, 2, …{})(2212223211k k k k B A B A B A p k Z P ---===0.5×0.6×(0.6×0.5)1-k =0.3kk=1, 2, …(2) {}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+)5.06.04.0()5.06.0(1?+?=-n,2,13.07.01=?=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P)4.05.05.0(6.0)5.06.0(1?+=-n,2,13.042.01=?=-n n 14. ⼀条公共汽车路线的两个站之间,有四个路⼝处设有信号灯,假定汽车经过每个路⼝时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停⽌前进,其概率为0.4,求汽车开出站后,在第⼀次停车之前已通过的路⼝信号灯数⽬X 的概率分布(不计其他因素停车).解 X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24P { X =2 } =0.62×0.4=0.144P { X =3 } =0.63×0.4=0.0864P { X =4 } =0.64=0.1296 15. ∈=.,0],[,sin )(其他,b a x x x f 问f (x )是否为⼀个概率密度函数,为什么?如果 (1).π23 ,)3( ;π,0)2( ;2π,0======b a b a b a π解在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π0≠?x x ,1d sin 2π0=?x x ⽽在??π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是⼀个概率密度函数.16. ≤=-.0,00e )(,22x x c x x f c x ,>其中c >0,问f (x )是否为密度函数,为什么?解易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,⼜1d e 202=?-∞+x c x c x f (x )是⼀个密度函数 .17. +=.0.2<<,2)(其他,a x a x x f 问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由.解如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==??++a x x a a a a由于x x f d )(?+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解 )arctan 2π(2arctan π2d )1(π22a x x x a a -π==+??+∞+∞ 解⽅程π2??a arctan - 2π=1 得 a = 0{}b x x x f b x P b b arctan π2|arctan π2d )(000==?=<<解关于b 的⽅程:π2arctan b =0.5 得 b =1.19. 某种电⼦元件的寿命X 是随机变量,概率密度为≥=.100,0,100100)(2<x x x x f 3个这种元件串联在⼀个线路中,计算这3个元件使⽤了150⼩时后仍能使线路正常⼯作的概率. 解串联线路正常⼯作的充分必要条件是3个元件都能正常⼯作. ⽽三个元件的寿命是三个相互独⽴同分布的随机变量,因此若⽤事件A 表⽰“线路正常⼯作”,则3])150([)(>X P A P ={}32d 1001502150=?∞+x x X P => 278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解 A x A x A x x 2d e 2d e 10||=?=?=∞+-∞+∞--解得 A =21 {}??---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的⼆次⽅程4x 2+4xY +Y +2=0有实数根的概率. 解 4x 2+4xY +Y +2=0.有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P=0.622. 设随机变量X ~ f ( x ),-=.,01||,1)(2其他,<x x cx f确定常数c ,计算.21||≤X P解π|arcsin d 1111211c x c x x c==-?=--c =π131arcsin 2d 1121||0212121 2=π=-π=≤?-x x x X P23. 设随机变量X 的分布函数F ( x )为≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1. =.,0,10,21)(其他<<x x x f{}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解 {}t x X P x F t x d e 21)(||-∞-?=≤=当t ≤ 0时,x t x t x F e 21d e 21)(=?=∞-当t >0时,t t t x F tx t t x d e 21d e 21d e 21)(-00||?+?=?=-∞--∞-x x ---=-+=e 211)e 1(212125. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么?解不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解 a x a x x a ==?+=∞+∞-∞+∞-arctan πd )1(π12 因此a =1x x t t t x F ∞-∞-=?+=arctan π1d )1(π1)(2 x arctan π121+= {}?+=?+=-102112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x 27. 随机变量X 的分布函数F ( x ) 为:≤-=.2,02,1)(2x x x A x F ,>确定常数A 的值,计算{}40≤≤X P .解由F ( 2+0 )=F ( 2 ),可得4,041==-A A {}{})0()4(4X 040F F P X P -=≤=≤≤<28. 随机变量X ~f ( x ),f ( x )=,ee x x A -+确定A 的值;求分布函数F ( x ) . 解 ?+=?+=∞∞-∞∞--x A x A x x x x d e 1e d e e 12 A A x 2πe a r c t a n ==∞∞- 因此 A =π2, xtx t t t x F ∞-∞--=+=?e arctan π2d )e e (π2)(x e arctan π2= 29. 随机变量X ~f ( x ),=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解 220222ππd π21a x x x a a ==?= 因此,a = π当0<x <π时,=x x t t x F 0222πd π2)( 其他≥≤=π1,π0,π0,0)(22x x xx x F <<30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax ++-≤=-求X 的概率密度并计算a X P 10<<.解当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )≤=-.0,e 2,0,0)(23> x x a x x f ax(1010F a F a x P a x P -=≤=?<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解 X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0}=P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布.解 Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a , b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a >0时,Y 的取值为[a 2+b , ab +b ],a x y hb y a y h x y 1)(,)(1)(='='-==],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,⽆论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 ,2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ). 解 y =cos x 在[0, 2π]上单调,在(0 , 1)上,h ( y ) = x =arccos y h′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π . 因此 -=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解 y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y1 , f X ( x ) =1 0 < x < 1 , 因此有.,0,e 1,1)(其他 <<y y y f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有∞+=-.,0,0e )(其他<<,z z f z z 36. 随机变量X ~f ( x ) ,≤=-0,00,e )(x x x f x > Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) .解当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z 21 ≤=-.0,00e 21)(z ,z z z f z z > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X , Z = X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在?? -2π,0内恒不为零,因此,当0 < y <π2时,π2)tan 1(π2sec )(22=+=y yy f Y 即Y 服从区间(0 , 2π)上的均匀分布. z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-. 因此当z >0时, )1(π2])1(1[π21)(222z zz z fz +=+-= ??≤+=0,00,)1(π2)(2z z z z f z >即Z = X1 与X 同分布. 38. ⼀个质点在半径为R ,圆⼼在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) . 解如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是⼀个连续型随机变量,L 服从[0,πR ]上的均匀分布.≤≤=.,0π0,π1)(其他,R l R l f L M 点的横坐标X 也是⼀个随机变量,它是弧长L 的函数,且 X = R cos θ= R cos RL 函数x = R cos l / R 是l 的单调函数 ( 0< l <πR ) ,其反函数为 l = R arccos Rx 22xR R l x --=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R R x f X -=?--= 当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望.解根据第2题中所求出的X 概率分布,有2138223815138210=?+?+?=EX 亦可从X 服从超⼏何分布,直接计算2120521=?==N N n EX 在第3题中21161216611690=?+?+?=EX 亦可从X 服从⼆项分布(2,41),直接⽤期望公式计算: 21412=?==np EX 在第5题中图2-1(1) 3.122014220934492431=?+?+?+?=EX (2) 3.022013220924491430=?+?+?+?=EY 在第6题中,25.2220843220108222027122010=?+?+?+?=EX 在第11题中,??+++ -=d 313312d 311EX 31 |<d <|0 d 22+= 40. P { X = n } =nc , n =1, 2, 3, 4, 5, 确定C 的值并计算EX . 解 160137543251==++++=∑=c c c c c c n c n13760=C 137300551==∑?==C n c n EX n 41. 随机变量X 只取-1, 0, 1三个值,且相应概率的⽐为1 : 2 : 3,计算EX . 解设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 }=3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=?+?+?-=EX 42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解 EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数. 解当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞?收敛,因此0d e 5.0||=?=-∞+∞-x x EX x n n 当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-?=?=!)1(d e 0n n x x x n =+Γ=?=-∞+44. 随机变量X ~f ( x ) ,-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解 x x x x x x x f x EX n n n n d )2(d d )(21101?-+?=?=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n 45. 随机变量X ~f ( x ) ,≤≤=.,0,10,)(其他x cx x f b b ,c 均⼤于0,问EX 可否等于1,为什么?其他其他。

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。

求三位同学中至少有一位通过考试的概率。

答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。

现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。

答案约为0.599。

2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。

答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。

答案约为0.201。

3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。

答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。

答案约为0.967。

以上为高中数学概率统计专题练习题及答案。

希望对您的学习有所帮助!。

概率统计练习册习题解答(定)

概率统计练习册习题解答(定)

概率统计练习册习题解答(定)习题1-1 样本空间与随机事件A,B,C 为三个事件,则A,B,C 中至少有一个不发 ”这一事件可表示为(D )(A ) ABU AC U BC (B ) AU BUC ( C ) ABC U ABC U ABC ( D )BUC 2)设三个元件的寿命分别为T”T 2,T 3,并联成一个系 ,则只要有一个元件正常工作则系统能正常工作, 件 系统的寿命超过t”可表示为(D )B TT 2T 3t C min T I ,T 2,T 3 t用集合的形式表示下列随机试验的样本空间 机事件A : 1)同时掷三枚骰子,记录三枚骰子的点数之和, 件A 表示 点数之和大于10”。

O2)对目标进行射击,击中后便停止射击,观察射 击的次数;事件A 表示 射击次数不超过5次o3)车工生产精密轴干,其长度的规格限是15±0.3。

现抽查一轴干测量其长度,事件 A 表示测1.选择题(1)设 生AUT i T 2 T 3tTT 2T3t 2. 随( 事 解: =3,4,5, ,18; A = 11,12, ,18解: =簽2,3,- A = ^2,3,4,5量长度与规格的误差不超过0.1。

O3 .设A ,B ,C 为三个事件,用A ,B ,C 的运算关0.3; A= x; x-15 0.1x; x -15 解:系表示下列各事件:(1)A, B, C 都发生:解:ABC;(2)A, B, C都不发生:解:ABC(3)A发生,B与C不发生:解:A§C (或A-B-C);(4)A, B, C中至少有一个发生:解:AuBuC(5)A, B, C中不多于两个发生:解:刁MUJ4.设某工人连续生产了4个零件,人表示他生产的件:(1 ) 只有一个是次品;A( A2A3A4 u A】A? A3A4 u A t A2 A3A4U A!A2A3A4(2)至少有一个次品;A-55uA。

(3)恰好有两个是次品;1.填空题(1)已知AuB, P(A) = 0.4 9 P(B) = 0.6 9贝|| P(A)=_0.6, P(AB)=0.4,P(JU^)=_0.6, P(AB) =_0.2 , P(AB) = 0 9 P(A B)=A P42A3 A4 uA] A2J3 A4 uAj A2A3J4A2 A3A4 u J]J2J3A4<J A}A2A3A4(4)至多有三个不是次品;A, u A2 u A? u A4 0习题1-2机事件的概率及计算第,个零件是正品(i = 1,2,3,4 ), 试用4表示下列各事0.4 o(2)设事件/与B互不相容,P(A) = 0A9 P(B) = 0.3,贝!| P(AB)=0.3 9 P(A\JB)= 0.6 o(3)盒子中有10个球,其中3个红球,接连不放回抽取五次,第一次抽到红球的概率 三次抽到红球的概率 4) 一批产品由45件正品、5件次品组成,现从中 任取3件产品,其中恰有 1件次品的概率为5)某寝室住有6名学生,至少有两个同学的生日 恰好在同一个月的概率为0.3 , 0.3 。

概率统计练习题答案

概率统计练习题答案

概率统计练习题答案一.1.C;.A; .D; .B; .A。

二. 1.1,n;.1?e?1;.;.2?25.[114.24,135.76]。

三.1. 设A发生k0次概率最大,因A发生次数X服从二项分布B,knkn?kP?Cpp]8分;2. 设A?{任意挑选一人为男性},B?{患有色盲},已知 P?5%,P?0.25%,P?0.5,则有P?PPPP?PP?1,第i个部件正常工作,第i个部件不能正常工作.?0,?0.5?5%0.5?5%?0.5?0.25%?0.9524.分;3. 令Xi??i?1,2,?,100.则有P{Xi?1}?0.9,E?0.9,D?0.09,X1,X2,?,X100相互独立.分;?100?X?90?i?5i?1?Xi?85??P10.9525. ??分;33?100于是 P???i?14. 当0?y?1时,FY?P{sinX?y}?P{0?X?arcsiny}?P{??arcsiny?X??} ??arcsiny01?dx?????arcsiny1?dx??acrsiny;分;当y?0时,FY?P{sinX?y}?0;当y?1时,FY?P{sinX?y}?1。

分; ?,0?x?1;?于是,fY分;?其它.?0,?2,?G;5. 的联合概率密度为 f??0,其它.?fX???2,0?x?1;,分; fdy??0,其它.?⑵ P{Y?X}???y?xfdxdy?20dy?1?yy2dx?12。

10分;6. 设赢利为Y,则有Y????300,X?1;?150,X?1.分;1?E??300P{X?1}?150P{X?1}??300?edx?150?edx?450e 1?x?x?1?300. ? 10分;四. 矩估计法: E??10?xdx??1??,令 X???1,得X1?X。

??分n极大似然估计法:L??,令 ni?1dlnLd??0 ,则有nn???i?1lnxi?0,于是n。

《概率统计》练习题及参考答案

《概率统计》练习题及参考答案

习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。

2. 记三事件为C B A ,,。

试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。

3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。

4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。

5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。

6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。

7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。

8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。

9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。

10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。

概率统计高二练习题及答案

概率统计高二练习题及答案

概率统计高二练习题及答案一、选择题1. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5, 6},事件A={2, 4, 6},事件B={3, 4, 5},则事件A∪B的元素个数是:A. 2B. 3C. 4D. 5答案:C2. 将两个硬币抛掷,它们的结果可以分别是正面(正)、反面(反)。

S表示随机试验“抛掷两个硬币,观察正反面”,事件A表示“至少有一个正面朝上”,则事件A的对立事件是:A. 两个硬币都是反面朝上B. 两个硬币都是正面朝上C. 两个硬币正反面朝上D. 至少有一个反面朝上答案:A3. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={1, 3, 4},则事件A∩B的元素个数是:A. 0B. 1C. 2D. 3答案:14. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={3, 4},则事件A∪B的元素个数是:A. 4B. 5C. 6D. 7答案:45. 在某次抽查中,2人中至少有1人精通英语的概率为0.8,两人都不精通英语的概率为0.1,则恰有1人精通英语的概率为:A. 0.1B. 0.2C. 0.3D. 0.4答案:C二、填空题1. 样本空间为Ω={1, 2, 3, 4, 5}的随机试验,以P表示概率函数,则P(Ω)=____。

答案:12. 设随机试验S可有n个结果,而其样本空间的元素个数为m个,则事件A发生的可能性大小为 ________。

答案:m/n3. 在某乡村学校的学生中,男生占40%,女生占60%,男生与女生都占的概率是______。

答案:04. 把两颗骰子分别投掷一次,事件A表示两颗骰子的点数和为8,则事件A发生的概率为________。

答案:5/365. 在两人赛马中,甲、乙、丙三匹马参赛,任一马获胜的概率均为1/3,则甲、乙、丙三匹马同时获胜的概率为______。

答案:0三、计算题1. 有n个袜子,有黑、白两种颜色,从中任取3只,问至少有1只黑袜子的概率是多少?答案:1 - (C(n, 3)/C(n, 3 - 0))*(C(n - 2, 3)/C(n, 3))2. 某商场推出一种新产品,调查发现客户购买此产品的概率为0.25,连续3个客户中至少有一个购买此产品的概率是多少?答案:1 - (1 - 0.25)^33. 一批零件中有5个次品,从中任取4个进行抽样,假设各个零件取得的概率相同,计算抽到至少1个次品的概率。

概率统计练习题6答案

概率统计练习题6答案

《概率论与数理统计》练习题6考试时间:120分钟题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分)1、设某人射击的命中率为0.4,共进行了n 次独立射击,恰能使至少命中一次的概率大于0.9,则n 值为( )。

A 、3B 、4C 、5D 、6 答案:C2、设,,A B C 为随机试验中的三个事件,则A B C 等于( )。

A 、A B C B 、A B C C 、A B C D 、A B C答案:B3、设随机变量ξ服从0-布,又知ξ取1的概率为它取0的概率的一半,则{1}p ξ=是( )。

A 、13B 、0C 、12D 、1答案:A4、设二维随机变量(,)ξη的联合概率密度为(,)x y ϕ,记在条件{}x ξ=下η的条件分布密度为1(|)y x ϕ,则1122P ηξ⎧⎫⎛⎫⎛⎫≤≤⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭的值为( )。

A 、112212(,)(,)x y dxdyx y dxϕϕ-∞-∞-∞⎰⎰⎰B 、11221(|)y x dxdy ϕ-∞-∞⎰⎰C 、112212(,)(,)x y dxdyx y dyϕϕ-∞-∞-∞⎰⎰⎰D 、112212(,)(,)x y dxdy x y dy dxϕϕ-∞-∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰⎰⎰答案:D5、具有下面分布密度的随机变量中,数学期望不存在的是( )。

A 、()1200102x x x e x ϕ-≤⎧⎪=⎨>⎪⎩B 、()2218x x ϕ⎧⎫=-⎨⎬⎩⎭C 、()2300exp 02x x x x x ϕ≤⎧⎪=⎧⎫⎨->⎨⎬⎪⎩⎭⎩D 、()()4211x x ϕπ=+ 答案:D6、具有下面分布密度的随机变量中方差不存在的是( )。

A 、()150050x x x e x ϕ-≤⎧=⎨>⎩B 、()262x x ϕ-=C 、()312x x e ϕ-=D 、()()4211x x ϕπ=+ 答案:D7、设随机变量的数学期望和方差均是1m +(m 为自然数),那么(){}041P m ξ<<+≥( )。

概率统计练习题答案

概率统计练习题答案

概率统计练习题答案概率统计练习题答案概率统计是一门重要的数学学科,它研究的是随机事件的概率和统计规律。

在学习概率统计的过程中,练习题是非常重要的一部分,通过解答练习题可以巩固知识,提高解题能力。

下面我们来看一些常见的概率统计练习题及其答案。

1. 随机变量X服从正态分布N(2, 4),求P(X<3)。

答案:首先计算标准差,标准差为2,然后计算X的标准化值z=(3-2)/2=0.5。

查找标准正态分布表可得P(Z<0.5)=0.6915,所以P(X<3)=0.6915。

2. 一批产品中有10%的次品,从中随机抽取5个产品,求恰好有1个次品的概率。

答案:假设成功事件为抽到次品,失败事件为抽到正品。

根据二项分布的公式,概率P(X=k)=C(n,k)p^k(1-p)^(n-k),其中n为试验次数,k为成功次数,p为成功概率。

代入数据可得P(X=1)=C(5,1)0.1^1(1-0.1)^(5-1)=0.32805。

3. 某班级有60%的学生喜欢数学,40%的学生喜欢英语,20%的学生既喜欢数学又喜欢英语,求一个学生既不喜欢数学也不喜欢英语的概率。

答案:根据概率公式P(A∪B)=P(A)+P(B)-P(A∩B),其中A、B为事件。

代入数据可得P(数学∪英语)=P(数学)+P(英语)-P(数学∩英语)=0.6+0.4-0.2=0.8。

所以一个学生既不喜欢数学也不喜欢英语的概率为1-0.8=0.2。

4. 某地每天的天气有30%的可能是晴天,20%的可能是雨天,50%的可能是阴天。

如果今天是晴天,那么明天是雨天的概率是多少?答案:根据条件概率公式P(B|A)=P(A∩B)/P(A),其中A为今天是晴天的事件,B为明天是雨天的事件。

代入数据可得P(明天是雨天|今天是晴天)=P(今天是晴天∩明天是雨天)/P(今天是晴天)=0.3*0.2/0.3=0.2。

5. 一批产品中有10%的次品,从中随机抽取10个产品,求至少有1个次品的概率。

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。

概率统计精选练习题及答案

概率统计精选练习题及答案

概率统计精选练习题及答案练题一- 问题:有一袋子里面装有5个红球和3个蓝球,从袋子里随机取两个球,求取出的两个球颜色相同的概率。

- 解答:首先,我们计算取两个红球的概率。

从5个红球中取出2个红球的组合数为C(5, 2) = 10。

总的取球组合数为C(8, 2) = 28。

所以,取两个红球的概率为10/28。

同理,取两个蓝球的概率为C(3, 2)/C(8, 2) = 3/28。

因为取球的过程是相互独立的,所以取出的两个球颜色相同的概率等于取两个红球的概率加上取两个蓝球的概率,即(10/28) + (3/28) = 13/28。

练题二- 问题:某商场每天的顾客数量服从均值为100,标准差为20的正态分布。

求该商场下一个月(30天)的总顾客数量的期望值和标准差。

- 解答:下一个月的总顾客数量等于每天顾客数量的总和。

因为每天的顾客数量服从正态分布,所以总顾客数量也服从正态分布。

总顾客数量的期望值等于每天顾客数量的期望值的总和,即30 * 100 = 3000。

标准差等于每天顾客数量的标准差的总和,即sqrt(30) * 20 ≈ 109.544。

练题三- 问题:某城市的交通事故发生率为每年100起。

求在下一个月内该城市发生至少一起交通事故的概率。

- 解答:在下一个月内,发生至少一起交通事故的概率等于1减去没有发生交通事故的概率。

没有发生交通事故的概率可以用泊松分布来计算。

假设一个月内发生交通事故的平均次数为100/12 ≈ 8.333,那么没有发生交通事故的概率为P(X = 0),其中X服从参数为8.333的泊松分布。

计算得到P(X = 0) ≈ 0.。

所以,在下一个月内该城市发生至少一起交通事故的概率为1 - P(X = 0) ≈ 0.。

以上是概率统计的精选练习题及答案,希望能对您的学习有所帮助。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

高中数学《计数原理与概率统计》练习题(含答案解析)

高中数学《计数原理与概率统计》练习题(含答案解析)

高中数学《计数原理与概率统计》练习题(含答案解析)一、单选题1.某校有学生800人,其中女生有350人,为了解该校学生的体育锻炼情况,按男、女学生采用分层抽样法抽取容量为80的样本,则男生抽取的人数是( ) A .35B .40C .45D .602.数据3.2,3.4,3.8,4.2,4.3,4.5,,6.6x 的65百分位数是4.5,则实数x 的取值范围是( ) A .[4.5,)+∞ B .[4.5,6.6) C .(4.5,)+∞D .(4.5,6.6]3.若书架上放的工具书、故事书、图画书分别是5本、3本、2本,则随机抽出一本是故事书的概率为( )A .15B .310 C .35D .124.已知随机变量X 服从二项分布(),XB n p ,若()54E X =,()1516=D X ,则p =( )A .14B .13C .34D .455.总体由编号01,02,…,29,30的30个个体组成.利用下面的随机数表选取6个个体,选取方法是从如下随机数表的第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为( )第1行78 16 62 32 08 02 62 42 62 52 53 69 97 28 01 98 第2行32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81 A .27B .26C .25D .196.已知随机变量X 的分布列为设23Y X =+,则()D Y 等于( ) A .83B .53C .23D .137.将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.88.为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在[)25,35内的产品为一等品,则该企业生产的产品为一等品的概率约为( )A .0.38B .0.61C .0.122D .0.759.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A .甲与丙相互独立 B .甲与丁相互独立 C .乙与丙相互独立D .丙与丁相互独立10.在一副去掉大小王的52张扑克牌中随机抽取1张,记M 表示事件“取到红桃”,N 表示事件“取到J”,有以下说法:①M 与N 互斥;①M 与N 相互独立;①M 与N 相互独立.则上述说法中正确说法的序号为( ) A .①B .①C .①①D .①①二、填空题11.已知随机变量X 服从正态分布2(1,)N σ,且(01)0.4P X <≤=,则(2)P x >=_______.12.从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的样本点个数为___________. 13.已知随机变量X ,Y 分别满足(),X B n p ,()5,4Y N ,且均值()()E X E Y =,方差()()D X Y D =,则p =________.14.若随机变量X 服从二项分布115,4B ⎛⎫⎪⎝⎭,则使()P X k =取得最大值时,k =______.三、解答题15.某科技公司研发了一项新产品A ,经过市场调研,对公司1月份至6月份销售量及销售单价进行统计,销售单价x (千元)和销售量y (千件)之间的一组数据如下表所示:(1)试根据1至5月份的数据,建立y 关于x 的回归直线方程;(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过065.千件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?参考公式:回归直线方程ˆˆˆybx a =+,其中i ii 122ii 1ˆnnx y n x yb xnx==-⋅⋅=-∑∑.参考数据:5i i i 1392x y ==∑,52i i 1502.5x ==∑.16.某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)如下: 甲班:75、78、80、89、85、92、96. 乙班:75、80、80、85、90、90、95.求甲、乙两班学生成绩的方差,并从统计学角度分析该校应选择甲班还是乙班参赛.17.第24届冬季奥运会将于2022年2月在北京和张家口举办,为了普及冬奥知识,京西某校组织全体学生进行了冬奥知识答题比赛,从全校众多学生中随机选取了20名学生作为样本,得到他们的分数统计如下: 我们规定60分以下为不及格;60分及以上至70分以下为及格;70分及以上至80分以下为良好;80分及以上为优秀.(I )从这20名学生中随机抽取2名学生,恰好2名学生都是优秀的概率是多少?(II )将上述样本统计中的频率视为概率,从全校学生中随机抽取2人,以X 表示这2人中优秀人数,求X 的分布列与期望.18.某保险公司根据官方公布的2011—2020年的营业收入,制成表格如下:表1由表1,得到下面的散点图:根据已有的函数知识,某同学选用二次函数模型2y bx a =+(b 和a 均为常数)来拟合y 和x 的关系,这时,可以令2t x =,得y bt a =+,由表1可得t 与y 的相关数据如表2(1)根据表2中数据,建立y 关于t 的回归直线方程(系数精确到个位数);(2)根据(1)中得到的回归直线方程估计2023年的营业收入以及营业收入首次超过4000亿元的年份.参考公式;回归直线方程ˆˆˆvu βα=+中,()()()121ˆnii i nii uu v v uu β==--=-∑∑,ˆˆv u αβ=-. 参考数据:38.5t =,703.45y =,()102411.05110i i t t=-=⨯∑,()()10512.32710i i i t ty y =--=⨯∑.参考答案与解析:1.C【解析】利用分层抽样的定义直接求解即可 【详解】由题意可得男生抽取的人数是8003508045800-⨯=. 故选:C 2.A【分析】根据%p 分位数的定义判断求解.【详解】因为65%8 5.2⨯=,第65百分位数是4.5,故这组数据的第65百分位数是第六个数,所以x 的取值范围是[4.5,)+∞, 故选:A. 3.B【分析】由古典概率模型的计算公式求解.【详解】样本点总数为10,“抽出一本是故事书”包含3个样本点,所以其概率为310. 故选:B. 4.A【分析】由二项分布的均值和方差公式列方程组求解. 【详解】由题意5415(1)16np np p ⎧=⎪⎪⎨⎪-=⎪⎩,解得145p n ⎧=⎪⎨⎪=⎩. 故选:A . 5.D【分析】根据随机数表法的步骤即可求得答案.【详解】由题意,取出的数有23,20,80(超出范围,故舍去),26,24,26(重复,故舍去),25,25(重复,故舍去),36(超出范围,故舍去),99(超出范围,故舍去),72(超出范围,故舍去),80(超出范围,故舍去),19. 故选:D. 6.A【分析】根据分布列求出()E X ,()D X ,再根据条件得()()4D Y D x =,计算答案即可. 【详解】由X 的分布列得()1110121333E X =⨯+⨯+⨯=,()()()()22211120111213333D X =-⨯+-⨯+-⨯=,因为23Y X =+, 则()()843D Y D x == 故选:A. 7.C【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610, 故选:C. 8.B【分析】利用频率=频率组距⨯组距,即可得解. 【详解】根据频率分布直方图可知,质量指标值在[)25,35内的概率()0.0800.04250.12250.61P =+⨯=⨯=故选:B 9.B【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁, , 1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁, 1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙, 故选:B【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立 10.D【分析】根据互斥事件和相互独立事件的定义逐一判断即可得出答案. 【详解】解:因为M 表示事件“取到红桃”,包括“取到红桃J ”, N 表示事件“取到J”, 包括“取到红桃J ”, 所以事件,M N 可以同时发生,所以事件,M N 不是互斥事件,故①错误; 52张扑克牌中有13张红桃,4张J , 所以()()()1314113,,1524521344P M P N P M =====-=, 事件M N ⋂表示“取到红桃J ”,有1张, 事件MN 表示“取到除了红桃J 的J ”,有3张,所以()()()152P M N P M P N ⋂==,()()()352P M N P M P N ⋂==, 所以M 与N 相互独立,M 与N 相互独立, 故①①正确. 故选:D. 11.0.1【分析】利用正态分布对称性可求解. 【详解】由正态分布密度曲线对称性可知, (1)(01)(0)0.5P X P X P X ≤=<≤+<=,所以(0)0.1P X <=,所以(2)P x >=(0)0.1P X <=,故答案为:0.1. 12.4【分析】直接列举基本事件即可.【详解】从1,2,3,4,5中随机取三个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种情况,其中(1,2,4),(1,3,5),(2,3,4),(2,4,5)中三个数字之和为奇数,共有4种. 故答案为:4.13.15##0.2【分析】由二项分布和正态分布的期望、方差公式建立方程,求解即可. 【详解】解:因为随机变量X ,Y 分别满足(),XB n p ,()5,4Y N ,所以()()5E X np E Y ===,()()()14D X np p D Y =-==, 解得125,5n p ==,故答案为:15.14.3或4【分析】先求得()P X k =的表达式,利用列不等式组的方法来求得使()P X k =取得最大值时k 的值. 【详解】依题意015,N k k ≤≤∈,依题意()1515151515151********C 1C C 344444kkk k k kk k k P X k ----⎛⎫⎛⎫==⋅⋅-=⋅⋅=⋅⋅ ⎪⎪⎝⎭⎝⎭,()()15150151141515151513130C 3,1C 354444P X P X ⎛⎫⎛⎫==⋅⋅===⋅⋅=⨯ ⎪ ⎪⎝⎭⎝⎭,()151154P X ⎛⎫== ⎪⎝⎭,()()()1501P X P X P X =<=<=,所以()0P X =、()15P X =不是()P X k =的最大项, 当114k ≤≤时,由1511615151515151141515151511C 3C 34411C 3C 344k k k k k k k k ----+-⎧⋅⋅≥⋅⋅⎪⎪⎨⎪⋅⋅≥⋅⋅⎪⎩,整理得1151511515C 3C 3C C k k k k -+⎧≥⎨≥⎩,即()()()()()()15!15!3!15!1!16!15!15!3!15!1!14!k k k k k k k k ⎧≥⨯⎪⨯--⨯-⎪⎨⎪⨯≥⎪⨯-+⨯-⎩, 整理得131631151k kk k ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,163343315k k k k k -≥⎧⇒≤≤⎨+≥-⎩, 所以当k 为3或4时,()P X k =取得最大值. 故答案为:3或415.(1)ˆ3240y x =-+.;(2)是.【分析】(1)先由表中的数据求出,x y ,再利用已知的数据和公式求出,b a ,从而可求出y 关于x 的回归直线方程;(2)当8x =时,求出y 的值,再与15比较即可得结论 【详解】(1)因为()199.51010.511105x =++++=,()1111086585y =++++=,所以23925108ˆ 3.2502.5510b-⨯⨯==--⨯,得()ˆ8 3.21040a=--⨯=, 于是y 关于x 的回归直线方程为 3.240ˆyx =-+; (2)当8x =时,ˆ 3.284014.4y=-⨯+=, 则ˆ14.4150.60.65yy -=-=<, 故可以认为所得到的回归直线方程是理想的. 16.该校应该选择乙班参赛.【分析】设有n 个数据为i x (1≤i≤n ,*i ∈N ),则其平均数为11n i i x x n ==∑,其方差为()2211n ii s x x n ==-∑,据此代入题干数据即可计算求解. 【详解】由题意,知75788089859296857x ++++++==甲,75808085909095857x ++++++==乙.①()()()2222136075857885968577s ⎡⎤=⨯-+-++-=⎣⎦甲,()()()2222130075858085958577s ⎡⎤=⨯-+-++-=⎣⎦乙. ①x x =乙甲,22s s >乙甲.即两班平均成绩相同,但乙班成绩较甲班成绩稳定,故应该选择乙班参赛. 17.(1)395;(2)分布列见详解;()25E X =.【分析】(1)利用组合数以及古典概型的概率计算公式即可求解.(2)由题意可得0,1,2x =,再利用二项分布的概率计算公式列出分布列,从而求出数学期望. 【详解】(1)记恰好2名学生都是优秀的事件为A ,则()242206319095C P A C ===. (2)抽到一名优秀学生的概率为41205p ==, X 的取值为0,1,2,()2002411605525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,()111241815525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()022241125525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, 故X 的分布列为:()168120122525255E X =⨯+⨯+⨯= 18.(1)ˆ22144yt =- (2)3574亿元,2024年【分析】(1)根据所给数据先求出ˆ22b≈,再利用ˆˆa y bt =-求得ˆ144a ≈-,即可得回归方程;第 11 页 共 11 页 (2) 2023年对应的13169x t =⇒=,代入回归方程计算即可;再令221444000t ->,解得188.4t >,即2188.4x >,即可求得所对应的年份.【详解】(1)解:易得()()()105110421 2.32710ˆ221.05110i i i i i t ty y b tt ==--⨯=≈≈⨯-∑∑, ˆˆ703.452238.5144ay bt =-≈-⨯≈-, 故y 关于t 的回归直线方程为ˆ22144yt =-. (2)解:2023年对应的t 的值为169,故该年的营业收入为ˆ221691443574y =⨯-=(亿元),所以估计2023年的营业收入为3574亿元.依题意,有221444000t ->.解得188.4t >,即2188.4x >.因为1314<,所以估计营业收入首次超过4000亿元的年份序号为14.即2024年.。

初中数学解概率与统计题练习题及答案

初中数学解概率与统计题练习题及答案

初中数学解概率与统计题练习题及答案概率与统计是初中数学中的一个重要分支,通过学习概率与统计,可以帮助我们更好地理解和分析数据,提高我们的数学思维能力。

下面是一些概率与统计的练习题,以及它们的详细解答。

1.某班级有30名学生,其中15名男生,15名女生。

在这30名学生中随机选取一名学生,请问选中的学生是男生的概率是多少?解答:由于班级中男生和女生的数量相等,所以男生和女生被选中的概率应该相等。

因此,选中男生的概率为15/30=0.5。

2.一副标准扑克牌共有52张牌,其中有4种花色(红桃、方块、黑桃、梅花),每个花色中有13张牌(A、2、3、...、K)。

从这副牌中随机抽取一张牌,请问抽到红心的概率是多少?解答:由于一副扑克牌中红心的数量为13张,总牌数为52张,所以抽到红心的概率为13/52=0.25。

3.一枚骰子有6个面,分别标有1、2、3、4、5、6这6个数字。

现在同时掷两枚骰子,请问两枚骰子之和为7的概率是多少?解答:两枚骰子之和为7的情况有6种:(1,6)、(6,1)、(2,5)、(5,2)、(3,4)、(4,3)。

一共有36种可能的组合,所以两枚骰子之和为7的概率为6/36=1/6=0.1667。

4.某次考试共有60道选择题,每道选择题有4个选项。

一名考生随机猜答案,请问他答对全部题目的概率是多少?解答:每道选择题的选项有4个,所以考生猜对一道题的概率为1/4。

由于一共有60道题,考生猜对全部题目的概率为(1/4)^60≈6.044×10^(-37),几乎为0。

这些练习题展示了概率与统计在初中数学中的应用,通过解答这些题目,可以帮助学生更好地理解概率与统计的概念和原理。

通过以上的练习题及其解答,我们可以看出概率与统计是数学中一个非常重要的部分,也是与生活息息相关的。

通过学习概率与统计,我们可以更好地理解和分析数据,为我们日常生活中的决策提供科学的依据。

希望以上的练习题及其解答能够帮助到您,更好地掌握概率与统计的相关知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》练习题2答案考试时间:120分钟题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分)1、A 、B 任意二事件,则A B -=( )。

A 、B A -B 、ABC 、B A -D 、A B U答案:D2、设袋中有6个球,其中有2个红球,4个白球,随机地等可能地作无放回抽样,连续抽两次,则使P A ()=13成立的事件A 是( )。

A 、 两次都取得红球 B 、 第二次取得红球C 、 两次抽样中至少有一次抽到红球D 、 第一次抽得白球,第二次抽得红球, 答案:B3、函数()0 0sin 01 x F x x x x ππ<⎧⎪=≤<⎨⎪≥⎩( )。

A 、是某一离散型随机变量的分布函数。

B 、是某一连续型随机变量的分布函数。

C 、既不是连续型也不是离散型随机变量的分布函数。

D 、不可能为某一随机变量的分布函数。

答案:D4、设ξ,η相互独立,且都服从相同的01-分布,即则下列结论正确的是( )。

01q pPξη()(1)q p =-A 、ξη=B 、2ξηξ+=C 、2ξηξ= D 、~(2,)B p ξη+5、设随机变量12,,,n ξξξ⋅⋅⋅相互独立,且i E ξ及i D ξ都存在(1,2,,)i n =L ,又12,,,,n c k k k L ,为1n +个任意常数,则下面的等式中错误的是( )。

A 、11n ni i i i i i E k c k E c ξξ==⎛⎫+=+ ⎪⎝⎭∑∑ B 、11n n i i i i i i E k k E ξξ==⎛⎫= ⎪⎝⎭∏∏C 、11n n i i i i i iD k c k D ξξ==⎛⎫+= ⎪⎝⎭∑∑ D 、()111n n ii i i i D D ξξ==⎛⎫-= ⎪⎝⎭∑∑答案:C6、具有下面分布密度的随机变量中方差不存在的是( )。

A 、()150050x x x ex ϕ-≤⎧=⎨>⎩ B 、()262x x ϕ-=C 、()312xx e ϕ-=D 、()()4211x x ϕπ=+ 答案:D7、设随机变量的数学期望和方差均是1m +(m 为自然数),那么(){}041P m ξ<<+≥( )。

A 、11m + B 、1m m + C 、0 D 、1m答案:B8、设1, , n X X L 是来自总体2(, )N μσ的样本,221111, (),1n n i n i i i X X S X X n n --==--∑∑则以下结论中错误的是( )。

A 、X 与2n S 独立 B 、~(0, 1)X N μσ-C 、2221~(1)n n S X n σ-- D、)~(1)nX t n S μ--答案:B9、容量为n =1的样本1X 来自总体~(1,)X B p ,其中参数01p <<,则下述结论正确的A 、1X 是p 的无偏统计量B 、1X 是p 的有偏统计量C 、21X 是2p 的无偏统计量 D 、21X 是p 的有偏统计量 答案:A10、已知若~(0,1)Y N ,则{ 1.96}0.05P Y ≥=。

现假设总体1225~(,9),,,,X N X X X μL 为样本,X 为样本均值。

对检验问题:0010:,:H H μμμμ=≠。

取检验的拒绝域为1225{(,,,)C x x x =L 0x μ-},取显著性水平0.05α=,则a =( )。

A 、 1.96a =B 、0.653a =C 、0.392a =D 、 1.176a = 答案:D二、填空(5小题,共10分)1、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。

答案:722、已知()0.5 ()0.4 ()0.7P A P B P A B ===U 。

则()P A B -=__________。

答案:0.33、()0 20.4201 0x F x x x <-⎧⎪=-≤<⎨⎪≥⎩是随机变量ξ的分布函数。

则ξ是_________型的随机变量答案:离散型4、设南方人的身高为随机变量ξ,北方人的身高为随机变量η,通常说“北方人比南方人高”,这句话的含义是__________。

答案:E E ηξ>5、设样本12,,,n X X X L 来自总体2~(,)X N μσ,μ已知,要对2σ作假设检验,统计假设为22220010:,:H H σσσσ=≠,则要用检验统计量为_______,给定显著水平α,则检验的拒绝域为_________________。

答案:2221()ni i X μχσ=-=∑,22221(0,()][(),)n n ααχχ-+∞U三、计算(5小题,共40分)1、袋中放有四只白球,二只红球,现从中任取三球, (1)求所取的三个球全是白球的概率;(2)在所取的三个球中有红球的条件下,求三个球中恰有一个红球的概率。

答案:(1,2,3)i A i =“所取的三个球中有i 只白球”(1)()3433615C P A C ==(2)()()()()()2322333P A A P A P A A P A P A ==()()()21422333634,155C C P A P A P A C ===-=得()2334PA A =2、设随机变量ξ的概率密度为21()(1)x x ϕπ=+,求随机变量31ηξ=-的概率密度。

答案:函数31-y x =的反函数13()(1)x h y y ==-()()232311()(1),311h y y h y y ϕπ-'=--=⎡⎤⎣⎦⎡⎤+-⎢⎥⎣⎦于是η的概率密度为()()22331(),13111y y y y ψπ=≠⎡⎤-+-⎢⎥⎣⎦3、袋中有N 个球,其中a 个红球,b 个白球,c 个黑球()a b c N ++=每次从袋中任取一个球,取后不放回,共取n 次,设随机变量ξ及η分别表示取出的n 个球中红球及白球的个数,并设n N ≤,求(ξ,η)的联合分布律。

答案:{,}ij n i ja b c nNC C C P i j C ξη--⋅⋅=== 0,1,2,,0,1,2,,,i a j b i j n ==+≤L L4、设随机变量ξ与η相互独立,均服从(0,1)N 分布,令1,2u v b ξξη==+,求常数b ,使()1D v =,且在这种情况下,计算u 和v 的相关系数。

答案:由题意知0,1,0E E D D Eu Ev ξηξη====== 因为22111()()()()244D v D b D b D b ξηξη=+=+=+ 令2114b +=,得b=2±又211()[()]())()2222E uv E E E E ξξξξη=±=±211[()()]022D E ξξ=++=1cov(,)()()()2u v E uv Eu Ev =-=1(,)2u v ρ==5、设总体~(,0.09)X N μ现获得6个观察值:15.1,15.2,14.8,14.9,15.1,14.6求总体均值μ的98%的置信区间.(注:0.990.9750.9950.952.33, 1.96, 2.57, 1.64)u u u u ====. 答案:10.98,0.01,10.99,622n ααα-==-==0.99 2.33u =60.9910.312.330.285,14.952.456i i u X x ==⨯===∑ ∴μ的98%的置信区间为:(14.95- 0.285,14.95- 0.285)=(14.665,15.235) 四、应用(2小题,共20分)1、设随机变量的分布函数为()0 00441 4x x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩,求方程24420y y ξξ+++=无实根的概率。

答案:方程无实根即要2(4)-44(+2)<0ξξ⨯⨯即是事件(12)ξ-<<1{12}(20)(1)2P F F ξ-<<=+--=2、某系统有12100,,,D D D ⋅⋅⋅,100个电子元件,系统使用元件的方式是:先使用k D 而j D (j k >)备用,若m D 损坏则1m D +立即使用,(m =1,2,…,99),设k D 的寿命kξ服从参数为λ=0.1/小时的指数分布,且12100,,,ξξξ⋅⋅⋅相互独立,求100个元件用的总时间η超过1000小时的概率。

答案:由题设知k ξ的密度为()0.10.100t e t x t ϕ-⎧>=⎨≤⎩于是()0.100.1101,2,,100t k E te dt k ξ+∞-===⎰L()()()2220.100.11002001t k k k D E E t e dt ξξξ+∞-=-=-=-⎰知100121001,,,,kk ηξξξξ==∑L 独立。

由独立同分布中心极限定理知{1000}P η>10001(10010)kP ξ=-⨯>()10000,1111(1000)010100kP F ξ⎧⎫=--≤≈-⎨⎬⎩⎭∑=1-0.5=0.5。

相关文档
最新文档