核医学重点归纳

合集下载

核医学复习重点总结

核医学复习重点总结

第一章总论核医学定义:是一门研究核素和核射线在医学中的应用及其理论的学科。

主要任务是用核技术进行诊断、治疗和疾病研究。

核医学三要素:研究对象放射性药物核医学设备一、核物理基础(一)基本概念:元素---凡质子数相同的一类原子称为一种元素核素---质子数、中子数、质量数及核能态均相同的原子称为一种核素。

放射性核素----能自发地发生核内结构或能级变化,同时从核内放出某种射线而转变为另一种核素,这种核素称为放射性核素。

(具有放射性和放出射线)稳定性核素----能够稳定地存在,不会自发地发生核内结构或能级的变化。

不具有放射性的核素称为稳定性核素。

(无放射性)同位素----具有相同的原子序数(质子数相同),但质量数(中子数)不同的核素互为同位素。

同质异能素----- 核内质子数、中子数相同,但处在不同核能态的一类核素互为同质异能素。

(质量数相同,能量不同,如99mTc和99Tc)(二)核衰变类型四种类型五种形式α衰变释放出α粒子的衰变过程,并伴有能量释放。

β衰变放射出β粒子或俘获轨道电子的衰变。

β衰变后,原子序数可增加或减少1,质量数不变。

•β-衰变•β+衰变•电子俘获(EC)γ衰变核素由激发态或高能态向基态或低能态跃迁时,放射出γ射线的衰变过程γ衰变后子核的质量数和原子序数均不变,只是核素的能态发生改变。

放射性核素的原子核不稳定,随时间发生衰变,衰变是按指数规律发生的。

随时间延长,放射性核素的原子核数呈指数规律递减。

N=N0e-λtN0:t=0时原子核数N:t时间后原子核数e:自然对数的底(e≈2.718)λ:衰变常数(λ=0.693/T1/2)物理半衰期(T1/2)生物半衰期(Tb)有效半衰期(Te)1/Te=1/T1/2+1/ Tb放射性活度描述放射性核素衰变强度的物理量。

用单位时间内核衰变数表示,国际制单位:贝可(Becquerel,Bq)定义为每秒1次衰变(s-1),旧制单位:居里(Ci)、毫居里(mCi)、微居里(μCi)换算关系:1Ci=3.7×1010Bq比活度单位质量物质内所含的放射性活度。

核医学重点归纳

核医学重点归纳

核医学重点归纳核医学是一门结合核物理学、生物学和医学的学科,利用放射性同位素及其产生的辐射,应用于诊断和治疗疾病。

本文将对核医学的重要概念和应用进行详细阐述。

1. 核医学概述核医学是利用放射性同位素技术进行医学诊断和治疗的一门学科。

它主要包括核医学影像学和核医学治疗两个方面。

核医学影像学主要通过放射性同位素的放射性衰变过程及其特征辐射来获取人体内部器官的形态、功能和代谢信息,为疾病的诊断和治疗提供依据。

核医学治疗则是利用放射性同位素的特殊性质和作用机制,直接作用于人体,治疗某些疾病。

2. 核医学影像学2.1 放射性同位素的选择和制备核医学影像学中,选择合适的放射性同位素是关键。

常用的同位素有技99mTc、201Tl、131I等。

制备这些同位素通常需要一个核反应堆作为能源供应的源泉。

2.2 核医学影像设备核医学影像设备主要包括单光子发射计算机断层摄影(SPECT)和正电子发射计算机断层摄影(PET)。

SPECT技术使用单个探测器在360度旋转的过程中记录放射性同位素的发射。

PET技术则利用正电子发射的特性来观察放射性同位素的分布。

2.3 核医学影像的分类核医学影像可分为核素显像和功能代谢显像。

核素显像是通过观察放射性同位素在人体内部分布情况,来获得器官形态的影像。

功能代谢显像则是通过观察人体器官的代谢情况,来评估其功能状态。

2.4 核医学临床应用核医学影像学在临床上广泛应用于诊断各种疾病,如癌症、心脏病、骨科疾病等。

核医学影像可以提供关于病变的位置、大小、代谢活性以及与周围组织的关系等信息,为医生制定诊断方案提供重要依据。

3. 核医学治疗3.1 放射性同位素治疗核医学治疗主要通过放射性同位素的放射性衰变来实现。

这些同位素可以通过口服、静脉注射等方式进入人体,在体内靶向作用于病变部位,杀死或抑制异常细胞的生长。

3.2 放射性碘治疗放射性碘治疗是一种常见的治疗甲状腺疾病的方法。

通过口服放射性碘同位素,碘同位素会富集在甲状腺组织中,辐射杀死异常细胞,从而治疗甲状腺癌和甲状腺功能亢进等疾病。

(完整版)核医学重点

(完整版)核医学重点

核医学第一章1。

放射性核素:是一类原子核能自发的,不受外界影响也不受元素所处状态的影响,只和时间有关而转变成其它原子核的核素。

2放射性活度:单位时间内发生衰变的原子核数。

3元素:指质子数、核外电子数和化学性质都相同的同一类原子.4核素:质子数,中子数,能量状态均相同的原子称为核素。

5同位素:质子数相同,中子数不同的元素互称同位素。

6同质异能素:质子数相同,中子数相同,而处于不同能量状态的元素.7电离:带电粒子通过物质时和物质原子的核外电子发生静电作用,使电子脱离原子轨道而形成自由电子的过程。

8激发:原子的电子所获得的能量不足以使其脱离原子,而只能从内层轨道跳到外层轨道,是原子从稳定状态变成激发状态的作用。

9湮灭辐射:正电子衰变产生的正电子,在介质中运行一定距离,当其能量耗尽时可与物质中的自由电子结合,而转化为两个方向相反、能量各自为0。

511MeV的y光子而自身消失的现象。

10光电效应:y光子和原子中的内层壳层电子相互作用,将全部能量交给电子,使其脱离原子成为自由光子的过程。

11康普顿效应:能量较高的y光子与原子核中的核外电子作用时,只将部分能量传递给核外电子,使其脱离原子核束缚成为高速运行的自由电子,而y光子本身能量降低、运行方向发生改变的现象.12有效半衰期:由于物理衰变与生物代谢共同作用而使体内放射性核素减少一半所需要的时间。

13放射性核素的特点是什么?放射性核素具有核衰变和物理半衰期两个特点。

(1)核衰变是指不稳定的核素自发放出射线转变成另一种核素的过程,包括a,B+,B—,y衰变。

(2)物理半衰期是指放射性核素从No衰变到No的一半所需要的时间.14核衰变的方式?a衰变:不稳定原子核放出a粒子(即一个氦核)转变成另一个核素的过程。

每次衰变母核便失去两个质子和两个中子。

B+衰变:指放射性核素放出B+的衰变。

每次衰变时核中一个质子转化为中子,同时释放出一个正电子及一个中微子。

B—衰变:指放射性核素放出B-的衰变。

核医学要点总结

核医学要点总结

核医学要点总结核医学要点总结1、放射性核衰变:原子核只有在中子和质子的数目之间保持一定的比例时才稳定。

当原子核中质子数过多或过少,或者中子数过少或过多,原子核便不稳定。

这时的原子核就会自发地放出射线,转变成另一种核素,同时释放出一种或一种以上的射线。

这个过程称~或蜕变(简称核衰变)。

2、核衰变的类型:(1)α衰变:不稳定原子核自发地放射出α粒子而变成另一个核素的过程称~(2)β衰变:放射性核素的核内放射出β粒子的衰变。

(3)β+衰变(正电子衰变):β+衰变主要发生在中子相对不足的核素。

可以看做是β衰变相反的过程,即核中一个质子转化为中子,同时释出一个正电子及一个中微子,故核子总数也不变,原子序数减少1而原子质量数不变。

(4)电子俘获衰变:(5)γ衰变:即γ跃迁/同质异能跃迁,原子核从激发态回复到基态,通过发射γ光子释放过剩能量的过程。

3、韧致辐射:快速电子通过物质时,在原子核电场作用下,急剧减低速度,电子的一部分货全部动能转化为连续能量的某射线发射出来,称~。

韧致辐射释放的能量与所通过介质的原子序数的平方成正比,与带电粒子的质量成反比,并且随带电粒子的能量增大而增大。

4、电离辐射的作用机制:(1)电离辐射的原发作用:①直接作用:指放射线直接作用于具有生物活性的大分子,使其发生电离、激发或化学键的断裂而造成分子结构和性质的改变,从而引起功能和代谢的障碍。

②间接作用:指放射线作用于体液中的水分子,引起水分子的电离和激发,形成化学性质活泼的产物自由基,继而作用于生物大分子引起损伤。

(2)电离辐射的继发作用:5、外照射防护的基本原则:(1)时间防护:缩短受照时间,时间与剂量成正比。

应避免一切不必要的辐射场逗留。

(2)距离防护:增大与辐射源的距离,距离与剂量成反比。

(3)屏蔽保护:人与源之间设置防护屏障。

根据辐射源种类,采用不同的屏蔽材料。

6、γ闪烁探测器的工作原理:注入人体的放射性核素发射出γ射线,经过准直器准直进入NaI晶体,使晶体分子受激发产生荧光光子,后入射到光电倍增管,通过光电效应产生光电子,光电倍增管有多个联极可以倍增光电子,光电子聚集在阳极产生电位差,随之阳极电压又恢复到原来水平,不断重复形成一系列脉冲讯号经前置器放大,再经计算机处理还原成图像或数据。

医学核医学知识点

医学核医学知识点

医学核医学知识点1. 介绍医学核医学是一门应用核技术在医学领域的学科,通过注射放射性物质,利用放射性同位素在人体内发出的射线进行成像和诊断。

它在疾病的早期诊断、治疗计划的确定以及治疗效果的评估中发挥着重要作用。

本文将介绍一些重要的医学核医学知识点。

2. 放射性同位素放射性同位素是一种具有放射性衰变的同位素,常用于核医学成像。

例如,技技术常用的放射性同位素有碘-131、锝-99m、氟-18等。

不同的放射性同位素在体内的分布和代谢方式不同,用于检查不同的组织和器官。

3. 单光子发射计算机体层摄影(SPECT)单光子发射计算机体层摄影是一种核医学成像技术,通过放射性同位素发出的单个光子来获取图像。

它可以用于诊断心血管疾病、骨骼疾病以及其他一些器官的异常。

SPECT能提供关于组织和器官功能的信息,并对疾病进行评估。

4. 位置发射计算机体层摄影(PET)位置发射计算机体层摄影是一种通过注射放射性同位素追踪代谢活性的核医学成像技术。

它可以用于诊断和评估肿瘤、脑血流以及心脏疾病等。

与传统的成像技术相比,PET可以提供更准确的病灶定位和代谢活性信息,有助于医生做出更准确的诊断和治疗方案。

5. 放射性同位素治疗除了作为成像工具,放射性同位素也可以用于治疗。

在核医学中,放射性同位素治疗被广泛应用于甲状腺疾病、骨骼疾病和肿瘤治疗等方面。

例如,碘-131可用于治疗甲状腺癌,锝-99m可用于治疗风湿性关节炎等。

6. 医学核医学的安全性医学核医学的安全性是非常重要的。

在进行核医学检查或治疗之前,医生会评估患者的病情,并谨慎选择适合的放射性同位素和剂量。

医学核医学操作人员需要具备专业的知识和技能,严格遵循操作规程,确保患者和操作人员的安全。

7. 未来发展医学核医学在影像学领域发挥着越来越重要的作用,并在不断发展。

随着技术的进步,新的放射性同位素和成像设备的应用也不断涌现。

例如,混合成像技术结合了PET和MRI或CT的优势,为诊断提供更全面的信息。

核医学重点知识整理

核医学重点知识整理

第一章核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。

我国核医学分为临床核医学和实验核医学。

核素(nuclide):具有相同的质子数、中子数和核能态的一类原子同位素(isotope):是表示核素间相互关系的名称,凡具有相同的原子序数(质子数)的核素互称为同位素,或称为该元素的同位素。

同质异能素(isomer):具有相同质子数和中子数,处于不同核能态的核素互称为同质异能素。

稳定性核素(stable nuclide):原子核极为稳定而不会自发地发生核内成分或能态的变化或者变化的几率极小放射性核素(radionuclide):原子核不稳定,会自发地发生核内成分或能态的变化,而转变为另一种核素,同时释放出一种或一种以上的射线核衰变(nuclear decay):放射性核素自发地释放出一种或一种以上的射线并转变为另一种核素的过程,核衰变实质上就是放射性核素趋于稳定的过程衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。

α粒子的电离能力极强,故重点防护内照射。

β-粒子的射程较短,穿透力较弱,而电离能力较强,因此不能用来作显像,但可用作核素内照射治疗。

γ衰变(γdecay):核素由激发态向基态或由高能态向低能态跃迁时发射出γ射线的衰变过程,也称为γ跃迁。

γ衰变只是能量状态改变,γ射线的本质是中性的光子流。

电子俘获衰变:一个质子俘获一个核外轨道电子转变成一个中子和放出一个中微子。

电子俘获时,因核外内层轨道缺少了电子,外层电子跃迁到内层去补充,外层电子比内层电子的能量大,跃迁中将多余的能量,以光子形式放出,称其为特征x射线,若不放出特征x射线,而把多余的能量传给更外层的电子,使其成为自由电子放出,此电子称为俄歇电子内转换(internal conversation)核素由激发态向基态或由高能态向低能态跃迁时,除发射γ射线外也可将多余的能量直接传给核外电子(主要是K层电子),使轨道电子获得足够能量后脱离轨道成为自由电子,此过程称为内转换,这种自由电子叫做内转换电子衰变公式:Nt=No e衰变常数:某种放射性核素的核在单位时间内自发衰变的几率它反映该核素衰变的速度和特性;λ值大衰变快,小则衰变慢,不受任何影响不同的放射性核素有不同的λ一定量的放射性核素在一很短的时间间隔内发生核衰变数除以该时间间隔,即单位时间的核衰变次数;A=dN/dt放射性活度是指放射性元素或同位素每秒衰变的原子数,目前放射性活度的国际单位为贝克(Bq),也就是每秒有一个原子衰变,一克的镭放射性活度有3.7×1010Bq。

核医学重点

核医学重点

1核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。

2核素(nucliide)是指质子数.中子数均相同,并且原子核处于相同能级状态的原子称为一种核素。

3同位素(isotope)凡具有相同质子数但中子数不同的核素互称同位素4同质异能素(isomer)质子数和中子数都相同,所处的核能状态不同的原子5放射性衰变类型;a衰变;B衰变;正电子衰变;电子俘获;r衰变.6a衰变:放射性核衰变时释放出a射线的衰变;B衰变:原子核释放出B射线而发生的衰变称为B``衰变(B``衰变放射出的射线分为B`` B`+射线);正电子衰变:原子核释放出正电子(B+射线)的衰变方式.7SPECT:单光子发射计算机断层成像术. PET:正电子发射计算机断层成像术8核探测仪器的基本原理;电子作用,荧光作用,感光作用9放射性探测仪器按探测原理可分为电离探测仪和闪烁探测仪两类10r照相机基本结构:准直器,晶体,光电倍增管,脉冲幅度分析器,信号分析和数据处理系统.11图像融合技术:是将来自相同或不同成像方式的图像进行一定的变化处理,使其之间的空间位置,空间坐标达到匹配的一种技术。

12放射性药物(radio pharmaceutical)指含有放射性核素供医学诊断和治疗用的一类特殊药物。

用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂。

13放射性药物具有的特点:具有放射性;具有特定的物理半衰期和有效期;计量单位和使用量;脱标及辐射自分解.14放射化学纯度:是指以特定化学形式存在的放射性活度占总放射性活度的百分比。

15化学纯度:是指以特定化学形式存在的某物质的质量占总质量的比例,与放射性无关。

16辐射生物效应(电离辐射作用于机体后,其传递的能量对机体的分子、细胞、组织和器官所造成的形态和(或)功能方面的后果):确定性效应和随机性效应17确定性效应;是指辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。

核医学考试重点总结

核医学考试重点总结

1.核医学基本概念(名解填空)利用核素及其标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科2.核素、同位素、同质异能素概念(选择、填空)①核素:质子数和中子数均相同,且原子核处于相同能级状态的原子②同位素:具有相同质子数,但中子数不同的核素,互称同位素3.半衰期(名解选择填空,必考)放射性核素由于衰变其数量和活度减少一半所需时间,用T1/2表示4.放射性活度:单位时间内发生衰变的原子核数量,国际单位是贝克(Bq)5.湮灭辐射:β+衰变产生的正电子具有一定动能,能在介质中运行一定距离,当其能量耗尽时可与物质中的自由电子结合,转化为两个方向相反、能量各为0.511MeV的γ光子而自身消失6.SPECT:单光子发射断层显像7.动态显像:在显像剂引入体内后,迅速以设定的显像速度动态采集脏器的多帧连续影像或系列影像8.阳性显像:又称“热区显像”,指显像剂主要被病变组织摄取,而正常组织一般不摄取或摄取很少,在静态影像上病变组织的放射性比正常组织高而呈“热区”改变9.负荷显像:又称介入显像,指受检者在药物或生理性活动干预下所进行的显像10.核医学影像在医学中应用的特点和优势(问答,必考)优势:可同时提供脏器组织的功能和结构变化,有助于疾病早期诊断具有较高的特异性;安全无创可用于定量分析不足:对组织结构的分辨率不及其他影像学方法任何脏器的显像都需使用显像剂11.本底当量时间:表示接受核医学检查的患者所受的辐射剂量相当于在一定时间内内受的天然本底辐射的剂量12.确定性效应:研究对象为个体。

指辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应13.随机效应:研究对象为群体。

指辐射效应发生的概率与剂量相关的相应,不存在具体阈值,意味着低的辐射剂量也可能造成伤害(12、13,二选一必考)14.放射防护的基本原则:实践正当化、放射防护最优化、个人剂量的限制15.外照射防护的措施:时间防护、距离防护、设置屏蔽(填空)16.固体废物的处理:放置10个半衰期17.甲状腺摄131 I试验大多数甲亢患者的甲状腺摄131 I率极高,且部分患者可见摄131 I高峰提前的现象18.甲状腺静态显像临床意义(问答)诊断异位甲状腺判定甲状腺结节的功能及性质寻找甲状腺癌转移灶在甲亢中的应用判断颈部肿块与甲状腺关系辅助诊断甲状腺炎19.凉结节与热结节(名解填空)凉结节:称为低功能或无功能结节,结节显像剂分布降低,多见于甲状腺囊肿热结节:称为高功能结节,结节显像剂分布增高,多见于功能自主性甲状腺腺瘤20.心肌血流灌注显像①显像剂为99m TC—MIBI②正常断层显像分为短轴断层影像、水平长轴断层、垂直长轴断层③异常显像可逆性缺损:为负荷显像心肌分布缺损或稀疏,静息或延迟显像填充或“再分布”固定缺损:运动和静息显像都存在分布缺损而没有变化21.心肌代谢显像①葡萄糖代谢显像,显像剂为18F—FDG②血流—代谢显像异常图像灌注—代谢不匹配:心肌灌注显像稀疏、缺损区,葡萄糖代谢显像示18F—FDG摄取正常或相对增加,是局部心肌缺血但存活的标准灌注—代谢匹配:心肌灌注显像稀疏、缺损区,葡萄糖代谢显像示18F—FDG摄取呈一致性稀疏或缺损,是局部心肌无存活的标志22.心肌显像临床应用(问答)①冠心病预测:对冠状动脉疾病的概率约为40%~70%范围的群体,复合心肌显像的鉴别价值最好②诊断心肌缺血:准确评价心肌缺血部位、范围、程度和冠状动脉储备功能,还可检出无症状心肌缺血,提示冠状动脉病变部位,早期诊断冠心病③诊断心肌梗死:常在心肌梗死后6小时几乎均表现为灌注异常,定位诊断灵敏度高,99mTc标记的心肌灌注显像剂适用于对急性心肌梗死患者的濒危心肌情况进行准确判断④判断存活心肌:心肌代谢显像可有效判断心肌存活性,对决定冠心病患者是否该做冠脉血运重建术,对再灌注治疗疗效的评估有重要意义23.反向运动,又称矛盾运动,是诊断室壁瘤的特征影像24.PET/CT常用于肿瘤显像的显像剂:18F—FDG25.PET/CT肿瘤运用的适应症(问答)(1)肿瘤的临床分期及治疗后再分期(2)肿瘤治疗过程中疗效监测和治疗后疗效评价(3)肿瘤的良、恶性鉴别诊断(4)肿瘤患者随访过程中监测肿瘤复发及转移(5)肿瘤治疗后残余与纤维化或坏死的鉴别(6)恶性肿瘤的预后评估和生物学特征(7)肿瘤治疗新药与新技术的客观评价(8)已发现肿瘤转移而临床需要寻找原发灶26.骨显像①显像剂为99m TC—MDP②骨显像的异常显像及临床意义(意义只要说一个)(问答)放射性异常浓聚,见于恶性肿瘤、创伤、炎性病变放射性稀疏或缺损,见于骨囊肿、梗死、缺血性坏死超级骨显像,与弥漫的反应性骨形成有关,见于恶性肿瘤广泛性骨转移显像剂分布呈“混合型”,见于骨无菌性坏死、骨膜下血肿骨外异常放射性分布,见于局部组织坏死、急性心肌梗死病灶③超级骨显像:放射性显像剂在全身骨骼分布呈均匀、对称性的异常浓聚,骨骼影像非常清晰,而双肾常不显影,膀胱不显影或轻度显影,软组织内放射性分布极低(名解)27.亲骨性肿瘤:肺癌、乳腺癌、前列腺癌常以骨转移为首显症状,因此这三种肿瘤也常被称为“亲骨性肿瘤”(填空名解)28.代谢性骨病:一组以骨代谢异常为主要表现的疾病,如骨质疏松症、骨软化症29.肺性肥大性骨关节病时典型改变呈“双轨征”改变30.交叉性小脑失联络征:脑血流灌注显像的异常显像中最常见的类型,即在大脑原发病灶的对侧小脑同时出现血流灌注的减低。

核医学知识点笔记复习整理

核医学知识点笔记复习整理

核医学知识点笔记复习整理第一章中枢神经系统1.脑血流灌注显像及负荷显像的原理、方法、适应症、结果判断和临床应用。

2.脑脊液间隙显像的原理、方法、适应症、影像分析和临床应用。

第二章骨骼系统1.骨显像原理,骨显像的放射性药物,骨显像的方法以及适应证。

2.影像分析要点正常影像,异常影像。

3.骨显像的临床应用第三章泌尿系统1.肾图的原理、适应症、检查方法、正常肾图及其分析指标、异常肾图及临床意义。

2.肾动态显像的原理、适应症、正常影像、异常影像及临床意义。

3.介入试验巯甲丙脯酸试验的原理、适应症、方法及结果分析;利尿剂介入试验的原理、适应症、方法、及曲线结果分析与临床意义。

4.肾有效血浆流量与肾小球滤过率测定的原理、适应症、显像剂、方法、影像分析与临床价值。

5.肾静态显像的原理、适应症、显像方法、正常影像、异常影像及临床意义。

6.膀胱输尿管返流测定的原理、适应症、显像方法及结果分析。

7.生殖器官显像阴囊及睾丸显像的原理;放射性核素子宫输尿管造影术的方法及影像解释第四章消化系统1.胃肠道出血的原理、方法、影像分析和临床应用。

2.异位胃粘膜显像的原理、影像分析和临床应用。

3.唾液腺显像的原理、方法、影像分析和临床应用。

4.放射性核素肝胆动态显像的原理、显像剂、方法、适应症、影像分析和临床应用。

5.肝血流灌注和肝血池显像的概述、原理、显像技术、适应证、影像分析和临床应用。

6.胃幽门螺杆菌检测的原理、方法、适应证、结果分析和临床应用第五章内分泌系统1.甲状腺摄131碘试验的原理、方法、结果判定、影响因素和临床意义;血清甲状腺激素水平测定的原理、正常值、影响因素和临床应用;甲状腺功能测定的综合评价。

2.甲状腺显像的原理、方法、正常影像和临床应用;甲状腺结节的功能判断。

3.甲状旁腺显像的原理、方法、正常影像和临床应用;肾上腺髓质显像的原理、方法、正常影像和临床应用。

第六章血液、淋巴系统1.血液和淋巴显像的原理。

2.血液和淋巴显像的显像剂。

核医学复习重点.doc

核医学复习重点.doc

核医学复习重点名词解释:1.超级骨显像:显像剂在中轴骨和附肢骨近端呈均匀、对称性异常浓聚,或广泛多发异常浓聚。

骨骼影像异常清晰,肾和膀胱影像常缺失。

常见于恶性肿瘤和广泛性骨转移、甲旁亢。

2.核医学:利用放射性核素诊断、治疗疾病和进行医学研究的学科。

3.阳性显像:病灶部位的显像剂分布高于正常组织的异常影像(稀疏或缺损)“热区”显像,如急性心梗病灶、骨骼病灶。

4.有效半衰期:指生物体内的放射性核素由于机体代谢从体内排出和物理衰变两个因素作用,减少至原有放射性活动度的一半所需的时间。

5.同位素:同一元素中,具有相同的质子数而中子数不同。

6.同质异能素:质子数和中子数都相同,处于不同核能状态的原子。

7.填空题:1.甲状腺结节类型分为温结节,热结节,凉结节,冷结节。

2.脑血流灌注显像(rCBF)的显像剂特点:99mTC-ECD相对分子质量小,不带电荷,脂溶性高,通过血脑屏障。

3.心肌灌注显像剂分为:静息显像,负荷显像。

4.肾静态显像显像剂:99mTC-DMSA;肾动态显像显像剂:肾小球滤过型-99mTC-DTPA (首选),肾小管分泌型--131I-OIH (经典)。

5.肝脏主要显像方法有:肝胶体显像、肝血池显像、血流灌注显像。

6.正电子发射型计算机断层显像(PET)适用于肿瘤病人,a 经系统疾病和精神病患者,心血管疾病患者。

7.核医学中国际制单位:Bq (贝克)惯用单位:Ci (居里)8.脑血流灌注显像适用于癫痼,TIA等疾病的诊断。

9.癫痫发作期显像表现:稀疏。

发作间期:增强。

简答题:1.肺通气灌注显像在诊断肺栓塞时影像特点:肺栓塞早期即可出现肺灌注显像和通气显像结果不匹配,即出现局部灌注缺损而通气正常。

2.骨显像的原理:显像剂:99mTC-MDP;原理:把亲骨性放射性核素或放射性核素标记的化合物引入体内与骨的主要无机盐成分-羟基磷灰石晶体发生化学吸附、离子交换以及与骨组织中有机成分相结合沉积在骨骼内。

核医学知识点总结笔记复习整理

核医学知识点总结笔记复习整理

核医学知识点总结笔记复习整理核医学是一门利用放射性核素诊断、治疗疾病和进行医学研究的学科。

它涉及到物理学、化学、生物学、医学等多个领域的知识,对于疾病的诊断和治疗具有重要意义。

以下是对核医学知识点的总结复习整理。

一、放射性核素的基本概念放射性核素是指不稳定的原子核,会自发地发生衰变,放出射线。

放射性衰变的类型主要有α衰变、β衰变和γ衰变。

α衰变是指原子核放出一个α粒子(由两个质子和两个中子组成),导致原子核的质量数减少 4,原子序数减少 2。

β衰变分为β⁻衰变和β⁺衰变。

β⁻衰变是原子核中的一个中子转变为一个质子,同时放出一个电子和一个反中微子;β⁺衰变则是一个质子转变为一个中子,放出一个正电子和一个中微子。

γ衰变是指在原子核从激发态向基态或从高能态向低能态跃迁时,放出γ光子。

γ射线的穿透力较强,但电离作用较弱。

放射性核素的半衰期是指放射性核素衰变一半所需要的时间,它是衡量放射性核素稳定性的重要指标。

不同的放射性核素半衰期差异很大,从几秒到数十亿年不等。

二、放射性核素的制备放射性核素可以通过核反应堆、加速器和放射性核素发生器等方式制备。

核反应堆通过控制中子的通量和能量,使靶物质发生核反应,产生放射性核素。

加速器利用带电粒子在电场和磁场中的加速和偏转,使粒子与靶物质发生核反应,生成所需的放射性核素。

放射性核素发生器是一种可以从长半衰期的母体核素中分离出短半衰期子体核素的装置。

例如,⁹⁹Mo ⁹⁹mTc 发生器,通过定期洗脱可以获得⁹⁹mTc 用于临床诊断。

三、放射性核素示踪技术放射性核素示踪技术是核医学的核心技术之一。

其基本原理是将放射性核素标记到化合物上,引入体内后,通过探测放射性核素的分布和变化,来研究被标记物质在体内的代谢、分布、排泄等过程。

示踪剂的选择需要考虑放射性核素的物理半衰期、射线类型和能量、标记化合物的稳定性和生物活性等因素。

在应用中,放射性核素示踪技术可以用于研究物质的吸收、分布和排泄,了解器官的功能状态,诊断疾病等。

核医学领域重点

核医学领域重点

核医学领域重点核医学是一门综合性的学科领域,结合了核物理学、医学成像和生物医学等多个学科的知识和技术。

在核医学领域,有几个重要的研究方向和技术应用值得重点关注。

1. 诊断核医学诊断核医学是核医学领域的核心部分,主要应用于疾病的早期预测、诊断和治疗过程的监测。

其中,最常用的技术是放射性同位素显像,常见的包括正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)等。

这些技术可以提供有关病变位置、大小和代谢活动的定量信息,为医生制定治疗方案提供重要依据。

2. 治疗核医学治疗核医学主要应用于放射性核素治疗和放射治疗。

其中,放射性核素治疗是利用放射性同位素的放射性衰变来破坏异常细胞。

这种治疗方法常用于甲状腺癌、骨转移瘤等疾病的治疗。

另外,放射治疗主要包括放射性粒子植入、外部放射治疗等技术,常应用于肿瘤治疗。

3. 核医学影像重建核医学影像重建是核医学领域重要的研究方向之一,旨在提高影像的分辨率和准确性。

现代核医学影像重建主要依赖于计算机算法和图像处理技术的应用,可以从多个角度对患者进行全面的检查和评估。

4. 核医学安全与辐射防护核医学涉及放射性物质的应用,因此安全与辐射防护是核医学领域的重要议题。

在核医学实验室和医疗机构中,需要建立严格的辐射防护措施,保护医务人员和患者免受放射线的伤害。

此外,还需要严格控制核医学设备的操作和放射性物质的使用,确保安全性和可靠性。

5. 核医学在研究领域的应用核医学在研究领域有着广泛的应用,可以用于疾病机制的研究、新药研发和基础科学研究等。

核医学的技术和方法不断创新发展,为研究人员提供了强有力的工具,可以深入了解疾病的生理、代谢和分子水平的变化。

综上所述,核医学领域的重点主要包括诊断核医学、治疗核医学、核医学影像重建、核医学安全与辐射防护以及核医学在研究领域的应用。

这些重点领域的研究和应用将为人类的健康提供更好的服务和支持。

核医学要点归纳指南

核医学要点归纳指南

绪论核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断、治疗疾病和进行科学研究的医学学科。

第一章 核物理1.核素(nuclide):是指质子数、中子数均相同,并且原子核处于相同能级状态的原子2.同位素(isotope):具有相同质子数但中子数不同的核素互称同位素,同位素具有相同的化学性质。

3.同质异能素(isomer ):质子数和中子数都相同,所处的核能状态不同的原子称为同质异能素,激发态的原子和基态的原子互为同质异能素。

4.核衰变的类型:① α衰变:放射性衰变时释放出α射线的衰变。

这种衰变方式主要发生于原子序数大于82的核素中。

衰变后母核的质子数减少2,质量数减少4,在元素周期表中子核的位置比母核左移两位。

α射线实质上是由氦核组成,用衰变反应式可表示为: ② β衰变:原子核释放出β射线而发生的衰变。

β- 衰变时放射出的β- 射线分为β- 和β+ 射线。

β- 射线的本质是高速运动的电子流。

发生β- 衰变后质子数增加1,原子序数增加1,原子的质量数不变,原子核释放出一个β- 粒子和反中微子(ν),衰变反应式如下:③ 正电子衰变:原子核释放出正电子(β+ 射线)的衰变方式。

正电子衰变发生在贫中子核素,原子核中的一个质子转变为中子。

衰变时发射一个正电子和一个中粒子(ν),质子数减少1,质量数不变,衰变反应式表示为:④ 电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程。

母核经电子俘获后,子核比母核中子数增加1,质子数减少1,质量数不变。

电子俘获衰变时原子核结构的变化与正电子衰变类似,发生在贫中子的原子核。

衰变反应式表示为:⑤ γ衰变:原子核从激发态回复到基态时,以发射γ光子形式释放过剩的能量,这一过程称为γ衰变。

这种激发态的原子核是在α衰变、β衰变或核反应之后形成的,衰变反应式为:各种衰变的比较5.放射性活度(radioactivity ,A ):表示为单位时间内原子核的衰变数量。

(完整版)核医学总结(DOC),推荐文档

(完整版)核医学总结(DOC),推荐文档

核医学第一讲总论、甲状腺※一、定义、内容及核物理基础1、※核医学:是研究核技术在医学诊断、治疗和科学研究中的应用及其理论的科学,是一门边缘学科。

2、※核物理基本概念:①核素:凡具有特定质子数、中子数及核能态的一类原子称为核素。

②同位素:原子序数相同,质量数不同的核素,互称为同位素。

③同质异能素:有相同的质量数和原子序数,但核能态不同的一类核素互称为同质异能素。

3、核衰变(1)核衰变类型:α衰变、β衰变、γ衰变、电子俘获(2)核衰变规律:衰变公式→Nt=N0e-λt①放射性活度:单位时间内原子核的衰变数目,也称为放射性强度。

国际单位Bq(贝克)。

即一秒钟内发生一次核衰变。

惯用单位Ci(居里)1 Ci = 3.7×1010Bq 1 mCi = 37 MBq②半衰期A物理半衰期:放射性核素由于衰变减少一半所需要的时间。

B生物半衰期:生物体内的放射性核素经由各种途径从体内排出一半所需要的时间。

③常见放射性核素的半衰期:99m Tc→6.02小时;131I→8.04天;89Sr→50.55天125I→59.7天4、射线与物质的相互作用及防护①电离辐射生物效应:是指电离辐射能量传递给生物机体后所形成的结果。

②放射性防护:内照射防护、外照射防护。

A外照射防护三个基本原则:时间、距离、屏蔽 B内照射防护原则:实践的正当化、放射防护最优化、个人剂量限值。

二、核医学仪器1、闪烁照相机:γ照相机2、单光子发射型计算机断层仪(SPECT):利用注入人体的单光子放射性药物发出的γ射线在计算机辅助下重建影响,构成断层影像的仪器。

3、正电子发射型计算机断层仪(PET):利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能,代谢成像的仪器。

4、功能测定仪:甲状腺功能测定仪、肾图仪、局部脑血流测定仪、心功能仪5、其它:活度计,污染、剂量监测仪等三、放射性药物1、放射性药物:含有放射性核素用于医学诊断和治疗的一类特殊药物或制剂称放射性药物,须符合药用要求,即安全、有效而性能稳定。

核医学知识点总结最终版

核医学知识点总结最终版

一、前三章: 1、基本概念:①核医学:是用放射性核素诊断、治疗疾病和进行医学研究的医学学科。

②核素nuclide :指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。

③同位素isotope :具有相同质子数而中子数不同的核素互称同位素。

同位素具有相同的化学性质和生物学特性,不同的核物理特性。

④同质异能素isomer :质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

⑤放射性活度radioactivity 简称活度:单位时间内原子核衰变的数量。

⑥放射性药物(radiopharmaceutical )指含有放射性核素供医学诊断和治疗用的一类特殊药物。

⑦SPECT :即单光子发射型计算机断层仪,是利用注入人体内的单光子放射性药物发出的γ射线在计算机辅助下重建影像,构成断层影像。

⑧PET :即正电子发射型计算机断层仪,利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能、代谢成像的仪器。

⑨小PET :即经济型PET ,也叫SPECT_PET_CT ,是对SPECT 进行稍加工后,使其可行使PET 的功能。

⑩放射性核素(radionuclide):是指原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素。

⑾放射性核素纯度:也称放射性纯度,指所指定的放射性核素的放射性活度占总放射性活度的百分比,放射性纯度只与其放射性杂质的量有关;⑿放射化学纯度:指以特定化学形式存在的放射性活度占总放射性活度的百分比。

“闪烁现象 (flare phenomenon ): 在肿瘤病人放疗或化疗后,临床表现有显著好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。

2、人工放射性核素的来源:加速器生产11C 、13N 、15O 、18F 、反应堆生产、从裂变产物中提取、放射性核素发生器淋洗99mTc 3、核衰变的类型和用途:①α衰变:放射性核衰变时释放出α射线的衰变,射程短,穿透力弱,对局部的电离作用强,因此在放射性核素治疗方面有潜在优势;②β衰变:指原子核释放出β射线的衰变,穿透力弱,可用于治疗;③正电子衰变:原子核释放出正电子(β+射线)的衰变,可用于PET 显像;④电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程,电子俘获导致核结构的改变可能伴随放出多种射线,因此可用于核医学显像、体外分析和放射性核素治疗;⑤γ衰变:原子核从激发态回复到基态时,以发射γ光子的形式释放过剩的能量,这一过程称为…,穿透力强,电离作用小,适合放射性核素显像。

核医学知识点总结

核医学知识点总结

一、前三章:1、基本概念:①核医学:是用放射性核素诊断、治疗疾病和进行医学研究的医学学科。

②核素nuclide:指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。

③同位素isotope:具有相同质子数而中子数不同的核素互称同位素。

同位素具有相同的化学性质和生物学特性,不同的核物理特性。

④同质异能素isomer:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

⑤放射性活度radioactivity简称活度:单位时间内原子核衰变的数量。

⑥放射性药物(radiopharmaceutical)指含有放射性核素供医学诊断和治疗用的一类特殊药物。

⑦SPECT:即单光子发射型计算机断层仪,是利用注入人体内的单光子放射性药物发出的γ射线在计算机辅助下重建影像,构成断层影像。

⑧PET:即正电子发射型计算机断层仪,利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能、代谢成像的仪器。

⑨小PET:即经济型PET,也叫SPECT_PET_CT,是对SPECT 进行稍加工后,使其可行使PET的功能。

⑩放射性核素(radionuclide):是指原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素。

⑾放射性核素纯度:也称放射性纯度,指所指定的放射性核素的放射性活度占总放射性活度的百分比,放射性纯度只与其放射性杂质的量有关;⑿放射化学纯度:指以特定化学形式存在的放射性活度占总放射性活度的百分比。

“闪烁现象(flarephenomenon):在肿瘤病人放疗或化疗后,临床表现有显着好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。

2、人工放射性核素的来源:加速器生产11C、13N、15O、18F、反应堆生产、从裂变产物中提取、放射性核素发生器淋洗99mTc3、核衰变的类型和用途:①α衰变:放射性核衰变时释放出α射线的衰变,射程短,穿透力弱,对局部的电离作用强,因此在放射性核素治疗方面有潜在优势;②β衰变:指原子核释放出β射线的衰变,穿透力弱,可用于治疗;③正电子衰变:原子核释放出正电子(β+射线)的衰变,可用于PET 显像;④电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程,电子俘获导致核结构的改变可能伴随放出多种射线,因此可用于核医学显像、体外分析和放射性核素治疗;⑤γ衰变:原子核从激发态回复到基态时,以发射γ光子的形式释放过剩的能量,这一过程称为…,穿透力强,电离作用小,适合放射性核素显像。

核医学完整版-复习考试必备,全面有重点资料

核医学完整版-复习考试必备,全面有重点资料

第一章核物理1、核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。

2、元素(element)——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I;3、核素(nuclide)——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。

同一元素可有多种核素,如131I、127I、3H、99mTc、99Tc分别为3种元素的5种核素;4、同质异能素(isomer)——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc 。

5、同位素(isotope)——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。

6、稳定核素(stable nuclide)——原子核稳定,不会自发衰变的核素;7、放射性核素(radionuclide)原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素8、放射性衰变(radiation decay)——放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程9、放射性衰变方式:1)α衰变;2)β- 衰变:实质:高速运动的电子流;3)正电子衰变(β+衰变);4)电子俘获;5)γ衰变。

10、半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间11、放射性活度(activity, A)单位时间内发生衰变的原子核数12、韧致辐射(bremsstrahlung)湮灭辐射(annihilation radiation) 康普顿效应(compton effect)光电效应(photoelectric effect)γ光子与介质原子碰撞,把能量全部交给轨道电子,使之脱离原子而发射出来,而整个光子被吸收消失。

r射线与物质相互作用产生哪些效应?光电效应康普顿效应电子对生成13、物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。

核医学知识点总结

核医学知识点总结

核医学知识点总结1. 核医学的基本原理核医学是利用放射性同位素进行医学诊断和治疗的一种方法。

放射性同位素是指原子核具有相同的原子序数,但质子数或中子数不同的同一元素。

放射性同位素的原子核不稳定,会发出粒子或电磁辐射进行衰变,这种衰变过程是放射性同位素的特征。

核医学主要有三种应用方式:核医学诊断、核医学治疗和分子影像学。

核医学诊断主要是通过放射性同位素在体内的分布和代谢特点,来观察生物组织和器官的生理功能和病理状态,从而实现疾病的早期诊断和治疗效果评估。

核医学治疗则是利用放射性同位素的放射性衰变作用,直接破坏肿瘤细胞或者调节机体的生理代谢,达到治疗疾病的目的。

分子影像学是指利用放射性同位素标记的生物分子,来研究生物体内的分子生物学过程和病理生理学过程。

2. 核医学的放射性同位素及其应用核医学常用的放射性同位素有:碘-131、钴-60、钴-57、镉-109等。

这些放射性同位素在医学领域有着广泛的应用:碘-131广泛用于甲状腺诊断和治疗。

在甲状腺诊断中,碘-131被甲状腺摄取,通过放射性衰变产生γ射线,从而实现对甲状腺功能和结构的评估;在甲状腺治疗中,碘-131被甲状腺直接摄取,在体内发射β射线,破坏甲状腺组织,达到治疗目的。

钴-60是一种常用的放射源,广泛用于放射治疗、癌症治疗等。

钴-57可用于心肌灌注显像,可用于心肌缺血、心肌梗死等疾病的早期诊断和评估。

镉-109可用于骨矿物质密度测定,对于骨质疏松症的诊断和骨质疏松治疗效果的评估有重要意义。

3. 核医学的临床应用核医学在临床上有着广泛的应用,主要包括以下几个方面:(1)肿瘤的诊断和治疗:核医学可以通过肿瘤的代谢活性和血液灌注情况等特征,对肿瘤进行早期诊断和治疗效果评估。

例如,利用正电子发射计算机断层显像技术(PET-CT)可以实现对肿瘤的精准定位和评估,为肿瘤的精准治疗提供重要信息。

(2)心血管疾病的诊断和治疗:核医学可以通过心肌灌注显像和心脏功能评价等技术,对冠心病、心肌梗死等心血管疾病进行早期诊断和治疗效果评估,为心血管疾病的诊治提供重要的辅助信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、正电子显像常用标记核素 11C、13N、15O和18F 18F-FDG半衰期:110分钟。
4、AD病影像学表现 双侧顶叶和颞叶为主的大脑皮质放射性对称性明显减低,一般不累及基底节和小脑
5、室壁瘤表现 反向运动
6、肺栓塞 肺灌注显像出现≥2个肺段放射性缺损区(左下图),肺通气显像或X-ray胸片的相应部位正常或病变范围小于灌注影像缺损区,肺灌注显像与通气显像不匹配、肺通气灌注显像的正常表现 正常影像各体位肺影像清晰,放射性分布基本均匀。部分人可见大气道显影
7 a衰变
a粒子得到大部分衰变能, a粒子含2个质子,2个中子
a射线射程短 能量单一 对开展体内恶性组织的放射性治疗具有潜在的优势
8 b衰变 发生原因——母核中子或质子过多
β射线本质是高速运动的电子流
Β粒子穿透力弱 ,射程仅为厘米水平 ,可用于治疗如I 131治疗甲状腺疾病。
9电子俘获
4辐射损伤的化学基础
\\1.直接作用:放射线与物质的相互作用导致的生物分子的电离和激发
\\2.间接作用:电离和激发产生的自由基导致的继发作用。 主要是水自由基对生物分子的损伤作用
自由基(radicals): 有一个或多个不配对电子而能独立存在的原子或分子,具有极高的不稳定性和化学反应性,存在的时间极其短暂。
当量剂量 定义:组织或器官的当量剂量是此组织或器官的平均吸收剂量与辐射权重因子的乘积正两个方向相反,能量各为0.511 MeVγ光子而自身消失
第二章 核医学工作中的辐射防护知识radiation protection
1核医学辐射的特点
(1)对病人主要是内照射(即放射性核素进入人体内产生的照射),对医务人员主要是外照射(即放射性核素从人体外发射的射线对人体产生的照射),但管理不当也可产生内照射。
总之是使一切具有正当理由的照射保持在可以合理做到的最低水平。
2)辐射防护的原则 实践的正当化 放射防护最优化 个人剂量限值
3)外照射防护措施 时间(time)防护 距离(distance)防护 屏蔽(shielding)防护
4)内照射防护
1放射性核素物质中的自由电子结合,而转化为
光电效应 光子同(整个)原子作用把自己的全部能量传递给原子,壳层中某一电子获得动能克服原子束缚跑出来,成为自由电子,光子本身消失了。
2核素——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。同一元素可有多种核
素,如131I、127I、3H、99mTc、99Tc分别为3种元素的5种核素;
3同质异能素——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc 。
电子对效应能量≥1.02 MeV 的γ射线与原子核作用可能产生一对正-负电子。
照射量 照射量是以直接度量X射线或γ射线对空气电离能力来表示射线空间分布的物理量。即表示照射到某一定质量物质上的射线有多少。
其含义是:X射线或γ射线在单位质量的空气中完全被阻止时,形成的同种符号离子的总电荷绝对值与空气质量之比。照射量的国际制单位是C/kg(库仑/千克)。旧的专用单位是R(伦琴)。
低辐射剂量的兴奋效应 增进动物的生长与发育 延长寿命 改善幼体存活率 改善伤口愈合 增强对感染的抵抗力 降低致癌机率
5辐射防护的原则和措施
1)辐射防护的目的
防止有害的确定性效应,
限制随机效应的
发生率,使之达到可以接受的水平。
吸收剂量 吸收剂量是反映被照射物质吸收电离辐射能量大小的物理量。
其含义是:电离辐射授予单位质量物质的平均能量与该单位物质的质量之比。吸收剂量的国际制单位是Gy(戈瑞),1 Gy=1 J/kg。旧的专用单位是rad(拉德),1 Gy=100 rad。
单位时间内的吸收剂量称为吸收剂量率。
原子核俘获核外的轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程
10 g衰变发生由于原子核能量态高,从高能态向低能态跃迁,在这个过程中发射g 射线,原子核能态降低。
g射线是高能量的电磁辐射—— g光子
11放射性衰变基本规律
对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变。放射性核素衰变是随机的、自发的按一定的速率进行,各种放射性核素都有自己特有的衰变速度。放射性核素原子随时间而呈指数规律减少,其表达式为: N=N0e-λt
6、肾动态显像剂的介入实验 利尿试验;巯甲丙脯酸试验
7、肾动态显像剂的分类 ①肾小球滤过型 ②肾小管分泌型
填空
1、放射防护三原则 ①实践的正当化②防护的最优化③个人剂量的限制
2、医用核素的来源 加速器生产、反应堆生产、从裂变产物中提取和放射性核素发生器淋洗获得 生产器
3、心肌存活的金指标 心肌葡萄糖代谢显像
激发 如果核外电子获得的能量不足以使其形成自由电子,只能有能量较低的轨道跃迁到能量较高的轨道
散射 带电粒子与物质的原子核碰撞而改变运动方向的过程
韧致辐射 带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低,多余的能量以x射线的形式辐射出来
湮灭辐射 正电子衰变产生的正电子具有一定的动能,能在介质中
第三章 核医学仪器
1.PET 是一种利用示踪原理和正电子符合探测技术反映活体生物活动的医学影像技术 PET(正电子发射型计算机断层):是利用引入机体的18F、11C、13N、15O等正电子核素标记或合成的显像剂,通过晶体探测器探测到的湮没辐射光子,从而获得机体正电子核素的断层分布图,以显示病变的位置、形态、大小、代谢和功能而达到诊断目的的医学影像技术
4.18F-FDG肿瘤显象的原理 作为葡萄糖代谢显像剂条件: ? 基本性能与天然葡萄糖一致 ? 能够沉积在葡萄糖代谢部位 ? 又不能象天然葡萄糖一往无前代谢下去
5. 影响18F-FDG摄取的因素 肿瘤细胞数量和代谢活性(糖酵解有无或强弱),高摄取病灶:腺癌、鳞癌、淋巴瘤和黑色素瘤 低或无摄取病灶:粘液腺癌、透明细胞癌、高分化肝细胞肝癌、前列腺癌、肺泡癌、高级别胶质瘤 ;化疗或/和放疗后 ;生理、炎症和良性病变:凡是以无氧糖酵解为获取能量为主要模式的组织、器官和病变 ? 红细胞、神经元细胞体(大脑皮质)、心肌细胞、骨骼肌细胞(运动状态)、脂肪细胞(寒冷刺激) ? 感染、肉芽肿等炎性病变、良性肿瘤(腺瘤)和增生性病变
指数衰减规律
N = N0e-lt
N0: (t = 0)时放射性原子核的数目
N: 经过t时间后未发生衰变的放射性原子核数目
l:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快
12 半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间
7、肝血管瘤 肝血池显像表现为相应部位的放射性“过度填充”
多选
1、β衰变分:β+衰变、β-衰变、电子俘获
2、外照射防护措施 ⑴ 时间防护⑵距离防护⑶屏蔽防护
3、脑血流显像剂的特点 静脉注射分子量小、不带电荷且脂溶性高的显像剂
4、心肌血流显像剂 201Tl 99mTc-MIBI
5、肾动态显像临床应用 a、判断肾实质功能;b、上尿路梗阻的诊断与鉴别诊断;c、诊断肾血管性高血压;d、移植肾的监测;
4同位素——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。
5原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称为放射性核素
6放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程称为放射性衰变。
1、99m Tc半衰期计算 T1/2为6.02 h
2、电离辐射生物学效应对机体变化:按效应出现的对象,分为躯体效应(somatic effect)及遗传效应(genetic effect)。按效应出现的时间,分为近期效应(short-term effect)及远期效应( long-term effect)。按效应发生的规律,分为随机效应(stochastic effect)及非随机效应( non-stochastic effect)。
(2)由于放射性药物在体内的特殊分布,病人全身受照剂量小,个别器官、组织受照剂量高。
2确定性效应 确定性效应是指辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。一般是在短期内受较大剂量照射时发生的急性损害
3随机效应 随机效应研究的对象是群体,是辐射效应发生的几率(或发病率而非严重程度)与剂量相关的效应,不存在具体的阈值
7、转移性骨肿瘤 肺癌、乳腺癌、前列腺癌、鼻咽癌、甲状腺癌P154
1定义:
核医学是利用放射性核素诊断、治疗疾病和进行医学研究的学科。
2核医学的内容出来显像外还有 器官功能测定 体外分析法 放射性核素治疗
第一章
1元素——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I和127I;
2.湮没辐射18F、11C、13N、15O等正电子核素在衰变过程中发射(产生)正电子,正电子与原子核周围的轨道电子(负电子)发生结合,同时释放两个能量相等方向相反的γ光子(511kev),这种现象就叫正电子湮灭辐射现象
3.肿瘤代谢现象 由正电子核素标记的代谢底物或药物,注射到生物体内,参与机体的糖、蛋白质、核酸、磷脂等物质的代谢,通过符合探测技术(探测γ光子),反映器官或病变组织的代谢变化、准确测定放射性药物的浓度,进而重建生成最后的诊断图像,主要应用于肿瘤诊断
6. 肿瘤是PET/CT主要的适应证 ? 良恶性病变的鉴别诊断 ? 当发现转移灶或副
肿瘤综合症时,寻找原发灶 ? 已知恶性肿瘤的分期 ? 肿瘤治疗后的变化监测,如疤痕组织、放射性坏死,与肿瘤复发的鉴别 ? 探测肿瘤复发,特别是肿瘤标志物升高时 ? 监测疗效和预后判断(治疗响应和治疗效果) ? 确定肿瘤内最可能获得诊断信息的活检区域 ? 指导放疗计划 ? 长期“不明原因发热” ? 多发浆膜腔积液和/或浆膜肥厚
相关文档
最新文档