海南大学概率习题参考答案
论与数理统计参考答案
概率统计参考答案(海南大学,潘伟王志刚版本)第一章 随机事件及其概率1、解 (1)AUBUC ;(2)ABC ;(3)ABC ABC ABC U U ;(4)()()()AB AC BC U U ;(5)A B C U U ;(6)()()()AB AC BC U U 。
2、解 根据题意,113[0,](1,2],[0,)(,2]242A B ==U U ,则 (1)11311313113([0,](1,2])([,])([0,][,])((1,2][,])[,](1,]24224242422AB ===U U U ;(2)1131313(,1][,][,][0,)(,2]2424242AB A B ====U U U ; (3)113113(,1]([0,)(,2])[0,)(1,](,2]242422A B ==U U U U U .3、解 根据图示:()()A B C A AB CAB =U U U U ,所以()()()()0.40.20.10.7p A B C p A p AB p CAB =++=++=U U . 4、解 (1)()()()0.40.250.15,p AB p A p AB =-=-= ()()()0.250.150.1p B A p B p AB -=-=-=;(2)()1()1()1()()()p AB p AB p A B p A p B p AB =-=-=--+U =1-0.4-0.25+0.15=0.2。
5、解 设A=“恰好排成MATHEMA TICIAN ”,样本空间的样本点数为13!n Ω=,事件A 中的样本点数为23222322A n A A A A =(字母M,A,I,T 各自的重复数相乘),所以48().13!p A =6、解 设A=“三件产品中恰好有一件是次品”,根据产品抽样问题,则12540345().C C p A C = 7、解 设A=“12名同学的生日都集中在第二季度”,则12121241().124p A ⎛⎫== ⎪⎝⎭8、解 设A=“第三次才抽到次品”,若A 发生,则意味着前两次都抽到正品,则219553100()A Ap A A =。
海南大学概率统计AB试题与答案(B卷)
海南大学2017—2018学年度第一学期试卷科目:《概率统计A1》 试题答案(B 卷)学院: 专业班级: 姓名: 学 号:成绩登记表(由阅卷教师用红色笔填写)阅卷教师: 2018 年 1 月 日考试说明:本课程为闭卷考试,可携带 计算器 。
一、填空题(每格2分,共20分)1)()0.5,()0.2,()0.6P A P B P A B ==⋃=已知,()=P AB 则 0.1 2)从3黄12白共15个乒乓球中任取1个出来,取到白球的概率为453)()0.5,,()P A A P B A =⊂=已知P(B)=0.3,且B 则354)若随机变量服从参数为5的泊松分布,则它的分布律(列)为55(),0,1,2!k e P X k k k -===5)已知随机变量X 服从二项分布1(100,)25B ,则X 的数学期望为 4 6)设随机变量X 的方差为()=9D X ,则(35)D X += 817)已知),(Y X 服从二维正态分布),,,,(222121ρσσμμN ,且X 与Y 独立,则ρ= 0 8) 0.4,()D X Y ρ=+=XY 设D(X)=25,D(Y)=36,则 85 9) (01)(0,1)XN Y N X Y 设,,,与相互独立,则X+Y 服从(0,2)N 分布。
10) N222129129设X ,X ,,X 相互独立且都服从(0,1),则X +X ++X 服从2(9)χ分布。
二、选择题(每题4分,共20分)1)已知连续型随机变量X 的分布函数为0,0(),01,x F x kx b x x ππ<⎧⎪=+≤<⎨⎪≥⎩ ,则常数k 和b为( B )。
(A )0,1k b == (B )1,0k b π== (C )1,1k b π== (D )1,0k b ==2)设随机变量X 与Y 的协方差为(,)0Cov X Y =,则随机变量X Y 与 ( C ) 。
(A )相互独立 (B)存在线性关系(C)不存在线性关系(D )选A 、B 、C 都不正确 3) 已知随机变量X的概率密度为2(3)16()x f x --=,)(+∞<<-∞x ,则X 的数学期望与方差为( A )。
概率论课后1-8章 习题解答
第一章习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B解:(1)()()A B A B AB AB B B == , (2) ()()A B A B ()AB AB B A A B B ==Ω= .4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
完整版概率论与数理统计习题集及答案文档良心出品
《概率论与数理统计》作业集及答案第1章概率论的基本概念§ 1 .1随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H、反面T出现的情形.样本空间是:S= __________________________(2)—枚硬币连丢3次,观察出现正面的次数.样本空间是:S= _____________________________________ ;2.(1)丢一颗骰子.A :出现奇数点,贝U A= _________________ ; B:数点大于2,则B=(2)一枚硬币连丢2次, A :第一次出现正面,则A= _________________ ;B:两次出现同一面,则 = ________________ ; C :至少有一次出现正面,则C= § 1 .2随机事件的运算1•设A、B C为三事件,用A B C的运算关系表示下列各事件:(1)A、B、C都不发生表示为: __________ .(2)A 与B都发生,而C不发生表示为:(3)A与B都不发生,而C发生表示为:.(4)A 、B C中最多二个发生表示为:(5)A、B、C中至少二个发生表示为:.(6)A 、B C中不多于一个发生表示为:2.设S = {x : 0 _ x _ 5}, A = {x :1 :: x _ 3}, B = {x : 2 _ :: 4}:贝y(1) A 一 B = , (2) AB = , (3) AB = _______________ ,(4) A B = __________________ , (5) AB = ________________________ 。
§ 1 .3概率的定义和性质1.已知P(A B)二0.8, P( A)二0.5, P(B)二0.6,贝U(1) P(AB) = , (2)( P( A B) )= , (3) P(A B)= .2.已知P(A) =0.7, P(AB) =0.3,则P(AB)= .§ 1 .4古典概型1.某班有30个同学,其中8个女同学,随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3)至少有2个女同学的概率.2.将3个不同的球随机地投入到 4个盒子中,求有三个盒子各一球的概率.§ 1 .5条件概率与乘法公式1 •丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是 ____________________ 。
海南大学概率统计期中试题答案
概率论与数理统计期中测试参考答案1. 解:记 1A :甲袋中取得白球;2A :甲袋中取得红球;B :从乙袋中取得白球;由全概率公式12121122()[()]() (|)()(|)()111P B P A A B P A B A B P B A P A P B A P A N nNmM N m n M N m n===++=+++++++2.解:记A :挑选出的人是男人;B :挑选出的人是色盲. 取{,}A A 为样本空间的划分. 由贝叶斯公式:(|)()(|)(|)()(|)()P B A P A P A B P B A P A P B A P A =+0.050.520/210.050.50.00250.5⨯==⨯+⨯3.解:(1)由密度函数的性质得⎰=21)(dx x f ,即15.0)(211=+=-+⎰⎰B A dx x B Axdx ,又由已知知密度函数连续故,1-=B A ,解方程可得2,1==B A .(2)43)2()()2321(5.1115.05.15.0=-+==≤<⎰⎰⎰dx x xdx dx x f X P .(3) 31xy-=的反函数为3)1(y x-=,故Y 的密度函数为其他4.2由⎪⎩⎪⎨⎧<≤----<≤-='=,0021,)1]()1(2[310,)1(3)())(()(3235y y y y y y h y h f y f x X 122+=X Y5. 解:(1)222001()(1)()222a f x d x a x d x x x a +∞-∞==+=+=+⎰⎰∴ 12a=-(2)X 的分布函数为 0,0,()()(1),02,21,2.xxx u F x f u d u d u x x -∞<⎧⎪⎪==-≤≤⎨⎪>⎪⎩⎰⎰20,0,,02,41, 2.x x x x x <⎧⎪⎪=-≤≤⎨⎪>⎪⎩(3)32111(13)()(1)24x P x f x d x d x <<==-=⎰⎰.6.解:(1)0,0()(,),0.xX x x f x f x y d y e d y x +∞--∞≤⎧⎪==⎨>⎪⎩⎰⎰0,0,,0.xx x e x -≤⎧=⎨>⎩0,0()(,),0.Y xy y f y f x y d x e d x y +∞+∞--∞≤⎧⎪==⎨>⎪⎩⎰⎰0,0,,0.yy e y -≤⎧=⎨>⎩(2)11201(1)(,)yxyx y P XY f x y d x d y ed x d y --+<⎡⎤+<==⎢⎥⎣⎦⎰⎰⎰⎰1111220()12yy ee ed ye e----=-⋅=-+⎰.7. 解 设A =‘三段可构成三角形’,又三段的长分别为,,x y a x y--,则0,0,0x a y a x y a <<<<<+<,不等式构成平面域S A 发生0,0,222a a a x y x y a⇔<<<<<+<不等式确定S 的子域A ,所以 1()4A P A ==的面积S 的面积8.91。
大学概率论与数理统计习题及参考答案
十一、两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个 邮筒内只有一封信的概率. 解: 设事件 A 表示“前两个邮筒内没有信”,设事件 B 表示“及第一个邮筒 内只有一封信”,则
22 P ( A) 2 0.25; 4 1 1 C2 C3 P( B) 0.375. 2 4
解
P A B P( A) P( B) P( AB)
P A B P( A) P( B)
AB A ( A B)
P ( AB ) P ( A) P ( A B)
P ( AB ) P ( A) P ( A B) P ( A) P ( B)
3 2 1 C3 C3 C9 27 1 ; 则 P B 0 3 P B1 ; 3 220 C 12 220 C 12 1 2 3 C3 C9 C9 108 84 P B 2 ; P B . 3 3 3 220 C 12 C 12 220
设 A 表示事件“第二次取到的都是新球”,
解: 设事件 A 表示“最强的两队被分在不同的组内”,则
10 基本事件总数为: C 20 9 1 事件 A 含基本事件数为: C 18 C2
9 1 C 18 C2 P A 0.5263. 10 C 20
或
P A 1 P A
8 2C 18 C 22 1 10 C 20
解法1设事件a表示报警系统a有效事件b表示报警系统b有效由已知0862093092006808508006893从而所求概率为解法20012015080988001211三为防止意外在矿内同时设有两种报警系统a与b每种系统单独使用时效的概率系统a为092系统b为093在a失灵的条件下b有效的概率为0851发生意外时这两个报警系统至少有一个有效的概率
概率论与数理统计 海南大学 五六章习题详解
习题五1 .已知()1E X =,()4D X =,利用切比雪夫不等式估计概率{}1 2.5P X -<.解: 据切比雪夫不等式{}221P X σμεε-<≥-{}241 2.51 2.5P X -<≥-925= . 2.设随机变量X 的数学期望()E X μ=,方程2()D X σ=,利用切比雪夫不等式估计{}||3P X μσ-≥.解:令3εσ=,则由切比雪夫不等式{}2()||3D X P X μσε-≥≤, 有{}221||3(3)9P X σμσσ-≥≤=. 3. 随机地掷6颗骰子,利用切比雪夫不等式估计6颗骰子出现点数之和在1527 之间的概率.解: 设X 为6颗骰子所出现的点数之和;i X 为第i 颗骰子出现的点数,1,2,,6i = ,则61i i X X ==∑,且126,,...,X X X 独立同分布,分布律为:126111666⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,于是6117()62i k E X k ==⋅=∑6221191()66ik E X k ==⋅=∑所以22()()()i i i D X E X E X =-914964=- 3512= ,1,2,,6i = 因此 617()()6212i i E X E X ===⨯=∑6135()()612i i D X D X ===⨯∑352= 故由切比雪夫不等式得:{}{}|5271428P X P X ≤≤=<<{}7217P X =-<-< {}|()|7P X E X =-<2()17D X ≥-13559114921414=-⨯=-=.{}1|()|7P X E X =--≥即6颗骰子出现点数之和在1527 之间的概率大于等于914.4. 对敌阵地进行1000次炮击,每次炮击中。
炮弹的命中颗数的期望为0.4,方差为3.6,求在1000次炮击中,有380颗到420颗炮弹击中目标的概率.解: 以i X 表示第i 次炮击击中的颗数(1,2,,1000)i =有()0.4i E X = ,() 3.6i D X =据 定理:则10001380420i i P X =⎧⎫<≤⎨⎬⎩⎭∑≈Φ-Φ11(()33=Φ-Φ-12()13=Φ-20.62931=⨯- 0.2586= .5. 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g ,标准差是10g . 求一盒螺丝钉的重量超过10.2kg 的概率.解: 设i X 为第i 个螺丝钉的重量,1,2,,100i = ,且它们之间独立同分布,于是一盒螺丝钉的重量1001i i X X ==∑,且由()100i E X =10=知()100()10000i E X E X =⨯=100=,由中心极限定理有:100001020010000(10200)10100X P X P --⎧⎫>=>⎨⎬⎩⎭100002100X P -⎧⎫=>⎨⎬⎩⎭ 1000012100X P -⎧⎫=-≤⎨⎬⎩⎭1(2)≈-Φ10.977250.02275=-= .6. 用电子计算机做加法时,对每个加数依四舍五入原则取整,设所有取整的舍入误差是相互独立的,且均服从[]0.5,0.5-上的均匀分布. (1)若有1200个数相加,则其误差总和的绝对值超过15的概率是多少?(2)最多可有多少个数相加,使得误差总和的绝对值小于10的概率达到90%以上.解: 设i X 为第i 个加数的取整舍入误差, 则{}i X 为相互独立的随机变量序列, 且均服从[]0.5,0.5-上的均匀分布,则0.50.5()0i E X xdx μ-===⎰0.5220.51()12i D X x dx σ-===⎰(1) 因1200n =很大,由独立同分布中心极限定理对该误差总和12001i i X =∑,1200115i i P X =⎧⎫>⎨⎬⎩⎭∑P ⎫⎪=12 1.5i i P X =⎫⎪=>⎬⎪⎭ 2(1(1.5))=-Φ0.1336= .即误差总和的绝对值超过15的概率达到13.36% .(2) 依题意,设最多可有n 个数相加,则应求出最大的n ,使得1100.9n k k P X =⎧⎫<≥⎨⎬⎩⎭∑由中心极限定理:1110n ni i i P X P X ==⎧⎧⎫⎪<=<⎨⎬⎨⎪⎩⎭⎩∑∑2(10.9≈Φ-≥ .即(0.95Φ≥查正态分布得 1.64≥ 即21012(446.161.64n ≤≈ 取446n =,最多可有446个数相加 .7. 在人寿保险公司是有3000个同一年龄的人参加人寿保险,在1年中,每人的的死亡率为0.1%,参加保险的人在1年第1天交付保险费10元,死亡时家属可以从保险公司领取2000元,求保险公司在一年的这项保险中亏本的概率.解 以X 表示1年死亡的人数 依题意,(3000,0.001)X B注意到{}{}200030000P P X =>保险公司亏本其概率为{}1530000.001151P X >≈-Φ1(6.932)=-Φ0≈ .即保险公司亏本的概率几乎为0 .8. 假设12,,...,n X X X 是独立同分布的随机变量,已知{}15P X =>()k i k E X α= (1,2,3,4;1,2,,)k i n == .证明:当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布.证明:由于12,,...,n X X X 独立同分布,则22212,,...,n X X X 也独立同分布由()k i k E X α= (1,2,3,4;1,2,,)k i n ==有22()i E X α=,2242()((iiiD XE X E X ⎡⎤=-⎣⎦242αα=-2211()()nn i i E Z E X n α==⋅=∑2242211()()()n n i i D Z D X n n αα==⋅=-∑因此,根据中心极限定理:(0,1)n Z U N即当n 充分大时,n Z 近似服从2242(,())N n ααα- .9. 某保险公司多年的统计资料表明:在索赔户中被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X 的概率分布;(2)利用德莫弗-位普拉斯中心极限定理.求:被盗索赔户不少于14户,且不多于30户的概率.解 (1)(100,0.2)X B ,所以{}1001000.20.80,1,2,,100k k kP X k C k -===()20E X np== ,()(1)16D X np p=⋅-=(2){}|430P X≤≤1420203020XP---=(2.5)(1.5)=Φ-Φ-(2.5)(1.5)1=Φ+Φ--0.9940.93310.927=+-= .10 .某厂生产的产品次品率为0.1p=,为了确保销售,该厂向顾客承诺每盒中有100只以上正品的概率达到95%,问:该厂需要在一盒中装多少只产品?解:设每盒中装n只产品,合格品数 ~(,0.9)X B n,()0.9E X n=,()0.09D X n=则{}{}1001100P X P X>=-≤10.95=-Φ=1.65=-解得117n=,即每盒至少装117只才能以95%的概率保证一盒内有100只正品。
海南大学《概率论与数理统计》课件-第一二三四章
x2 f ( x)d x;
x1
(4) 若 f ( x) 在点 x 处连续,则有 F( x) f ( x).
注意 对于任意可能值 a ,连续型随机变量取 a 的概率等于零.即
P{ X a} 0.
10、 均匀分布 定义 设连续型随机变量X 具有概率密度
例如某无f些线( x元电) 件元 或件0b,设的1 a备寿, 的命其a寿,电它命x,力服设从b,备指的数寿分命布,. 则称动物X 的在寿区命间等(a都,b)服区从间指上数服分从布均. 匀分布, 记为 X ~ U(a,b).
代表事件 A 在试验中发生的概率,它与试验总
数
n 有关。若
lim
n
npn
0
则
lim
n
Cnk
pnk
1 pn
nk
k
k!e
8、 连续型随机变量及其概率密度
设X为 随 机 变 量,F ( x)为X 的 分 布 函 数,若 存 在 非 负 函 数f ( x),使 对 于 任 意 实 数x 有
x
F ( x) f (t)d t,
第一章 随机事件及其概率
1 了解样本空间的概念,理解随机事件的概念,重 点掌握随机事件的关系和运算。 2 理解概率和条件概率的概念,掌握概率的基本性 质,能利用古典概型和几何概型计算一些事件的 概率。 3 掌握概率的加法公式、条件概率公式、乘法公式、 全概率公式和贝叶斯公式计算过事件的概率的方 法 4 理解事件独立性的概念,会利用事件独立性进行 事件概率计算。 5 理解独立重复试验的概率,掌握利用伯努利概型 计算过事件概率的方法。
(3) F () lim F ( x) 0, F () lim F( x) 1;
x
x
海南大学 概率论与数理统计 试题及答案(A卷)
海南大学信息学院《概率论与数理统计》试题(A 卷)一、 填空题(每小题3分,共18分)1,将3个人随机地放入4个房间中,则每个房间至多只有一个人的概率为 1 。
2,设随机变量X 服从参数为λ的泊松分布,且()()121E X X --=⎡⎤⎣⎦,则=λ 334/4P 。
3,设2~(10,0.02)X N ,()2.50.9938Φ=,则{9.9510.05}P X <<=0.98764,掷两颗骰子,已知两颗骰子点数之和为7,则其中有一颗为1点的概率为 1/35, 三个人独立破译一个密码,他们能单独译出的概率分别为1/5,1/3,1/4。
此密码被译出的概率为 0.6。
6,设X 表示掷两颗骰子所得的点数,则EX = 7二、单项选择题(每小题3分,共12分)( A )7,设()()0,1,1,1,X N Y N X Y 相互独立,则A ){}1P X Y +<=0.5B ){}0P X Y +<=0.5C ) {}0.50.5P X Y -<=D ) {}10.5P X Y -<=( D )8,设事件A ,B 互不相容,P (A )=p P(B)=q 则()P AB =(A )(1-p)q B ) pq C ) q D ) p( A ) 9,(){}{}3,4X N C P X C P X C >=≤且常数满足 则 C=A ) 3B ) 2C ) 1D ) 0( B ) 10,设Cov(X,Y)=0, 则以下结论中正确的为A )X ,Y 独立B )D (X+Y )=D (X )+D (Y )C )D (X -Y )=D (X )-D (Y ) D )D (XY )=D (X )×D (Y )三,计算题(每小题10分,共60分)11. 设某种电子元件的寿命X(以小时计)具有以下的概率密度:()21000000x f x x x ⎧>⎪=⎨⎪≤⎩现有一批此种电子元件(设各电子元件损坏与否相互独立),任取5只,问其中至少有2只寿命大于1500小时的概率是多少。
《概率论与数理统计》(第四版)选做习题全解
A B 124题 15.8 图3 51.一打靶场备有5支某种型号的枪,其中3支已经校正,2支未经校正.某人使用已校正的枪击中目标的概率为1p ,使用未经校正的枪击中目标的概率为2p .他随机地取一支枪进行射击,已知他射击了5次,都未击中,求他使用的是已校正的枪的概率(设各次射击的结果相互独立).2.某人共买了11只水果,其中有3只是二级品,8只是一级品.随机地将水果分给C B A 、、三人,各人分别得到4只、6只、1只.(1)求C 未拿到二级品的概率.(2)已知C 未拿到二级品,求B A ,均拿到二级品的概率. (3)求B A ,均拿到二级品而C 未拿到二级品的概率.3.一系统L 由两个只能传输字符0和1的独立工作的子系统1L 和2L 串联而成(如图15.3),每个子系统输入为0输出为0的概率为)10(<<p p ;而输入为1输出为1的概率也是p .今在图中a 端输入字符1,求系统L 的b 端输出字符0的概率.题15.3图4.甲乙二人轮流掷一骰子,每轮掷一次,谁先掷得6点谁得胜,从甲开始掷,问甲、乙得胜的概率各为多少?5.将一颗骰子掷两次,考虑事件=A “第一次掷得点数2或5”,=B “两次点数之和至少为7”,求),(),(B P A P 并问事件B A ,是否相互独立.6.B A ,两人轮流射击,每次各人射击一枪,射击的次序为 A B A B A ,,,,,射击直至击中两枪为止.设各人击中的概率均为p ,且各次击中与否相互独立.求击中的两枪是由同一人射击的概率.7.有3个独立工作的元件1,元件2,元件3,它们的可靠性分别为.,,321p p p 设由它们组成一个“3个元件取2个元件的表决系统”,记为2/3].[G 这一系统的运行方式是当且仅当3个元件中至少有2个正常工作时这一系统正常工作.求这一2/3][G 系统的可靠性.8. 在如图15.8图所示的桥式结构电路中,第i 个继电器触点闭合的概率为i p ,.54321,,,,i =各继电器工作相互独立.求:(1)以继电器触点1是否闭合为条件,求A到B 之间为通路的概率.(2)已知A 到B 为通路的条件下,继电器触 点3是闭合的概率.9.进行非学历考试,规定考甲、乙两门课程,每门课考第一次未通过都允许考第二次.考生仅在课程甲通过后才能考课程乙,如两门课程都通过可获得一张资格证书.设某考生通过课程甲的各次考试的概率为1p ,通过课程乙的各次考试的概率为2p ,设各次考试的结果相互独立.又设考生参加考试直至获得资格证书或者不准予再考为止.以X 表示考生总共需考试的次数.求X 的分布律以及数学期望)(X E .10.(1)5只电池,其中有2只是次品,每次取一只测试,直到将2只次品都找到.设第2只次品在第)5,4,3,2(=X X 次找到,求X 的分布规律(注:在实际上第5次检测可无需进行).(2)5只电池,其中2只是次品,每次取一只,直到找出2只次品或3只正品为止.写出需要测试的次数的分布律.11.向某一目标发射炮弹设炮弹弹着点目标的距离为R (单位:10m ),R 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,252)(25/2r r er r f r R 若弹着点离目标不超过5m 时,目标被摧毁. (1)求发射一枚炮弹能摧毁目标的概率.(2)为使至少有一枚炮弹能摧毁目标的概率不小于0.94,问最少需要独立发射多少枚炮弹.12.设一枚深水炸弹击沉一潜水艇的概率为31,击伤的概率为21,击不中的概率为61.并设击伤两次也会导致潜水艇下沉.求释放4枚深水炸弹能击沉潜水艇的概率.(提示:先求击不沉的概率.)13. 一盒中装有4只白球,8只黑球,从中取3只球,每次一只,作不放回抽样.14.设元件的寿命T (以小时计)服从指数分布,分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(03.0t t e t F t(1)已知元件至少工作了30小时,求它能再至少工作20小时的概率.(2)由3个独立工作的此种元件组成一个2/3][G 系统(参见第7题),求这一系统的寿命20>X 的概率.15.(1)已知随机变量X 的概率密度为,,21)(+∞<<-∞=-x e x f xX 求X 的分布函数. (2)已知随机变量X 的分布函数为),(x F X 另外有随机变量⎩⎨⎧≤->=,0,1,0,1X X Y 试求Y 的分布律和分布函数.16.(1)X 服从泊松分布,其分布律为,,2,1,0,!}{ ===-k k e k X P k λλ问当k 取何值时}{k X P =为最大. (2)X 服从二项分布,其分布律为.,2,1,0,)1(}{n k p p k n k X P kn k =-⎪⎪⎭⎫ ⎝⎛==- 问当k 取何值时}{k X P =为最大.17.. 若离散型随机变量X 具有分布律X 1 2 …nkp n n …n称X 服从取值为n ,,2,1 的离散型均匀分布.对于任意非负实数x ,记][x 为不超过x 的最大整数.记),1,0(~U U 证明1][+=nU X 服从取值为n ,,2,1 的离散型均匀分布.18.设),2,1(~-U X 求X Y =的概率密度. 19.设X 的概率密度⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤<≤<=.1,21,10,21,0,0)(2x xx x x f X求XY 1=的概率密度. 20. 设随机变量X 服从以均值为λ1的指数分布.验证随机变量][X Y =服从以参数为λ--e1的几何分布.这一事实表明连续型随机变量的函数可以是离散型随机变量.21.投掷一硬币直至正面出现为止,引入随机变量 =X 投掷总次数.⎩⎨⎧=.,0,1若首次投掷得到反面若首次投掷得到正面,Y(1)求X 和Y 的联合分布律及边缘分布律. (2)求条件概率}.1|2{},1|1{====X Y P Y X P22.设随机变量),(~λπX 随机变量).2,max(X Y =试求X 和Y 的联合分布律及边缘分布律. 23. 设X ,Y 是相互独立的泊松随机变量,参数分别为,,21λλ求给定n Y X =+的条件下X 的条件分布.24. 一教授将两篇论文分别交给两个打字员打印.以X ,Y 分别表示第一篇第二篇论文的印刷错误.设),(~λπX ),(~μπY X ,Y 相互独立.(1)求X ,Y 的联合分布律;(2)求两篇论文总共至多1个错误的概率.25. 一等边三角形ROT (如图15.25)的边长为1,在三角形内随机地取点),(Y X Q (意指随机点),(Y X 在三角形ROT 内均匀分布).(1) 写出随机变量),(Y X 的概率密度.y(2) 求点Q 的底边OT 的距离的分布密度. 26. 设随机变量),(Y X 具有概率密度⎩⎨⎧>>=+-.,0,0,0,),()1(其他y x xe y x f y x(1) 求边缘概率密度).(),(y f x f Y X (2) 求条件概率密度).|(),|(||x y f y x f X Y Y X27. 设有随机变量U 和V ,它们都仅取1,1-两个值.已知,2/1}1{==U P}.1|1{3/1}1|1{-=-=====U V P U V P(1)求U 和V 的联合分布密度.(2)求x 的方程02=++V Ux x 至少有一个实根的概率.(3)求x 的方程0)(2=+++++V U x V U x 至少有一个实根的概率.28. 某图书馆一天的读者人数)(~λπX ,任一读者借书的概率为p ,各读者借书与否相互独立.记一天读者借书的人数为Y ,求X 与Y 的联合分布律.29. 设随机变量X 和Y 相互独立,且都服从U (0,1),求两变量之一至少为另一变量之值两倍的概率. 30. 一家公司有一份保单招标,两家保险公司竞标.规定标书的保险费必须在20万元至22万元之间.若两份标书保险费相差2千或2千以上,招标公司将选择报价低者,否则就重新招标.设两家保险公司的报价是相互独立的,且都在20万至22万之间均匀分布.试求招标公司需重新招标的概率.31. 设),0(~),,0(~2221σσN Y N X 且Y X ,相互独立,求概率}20{2112σσσσ<-<Y X P .32. NBA 篮球赛中有这样的规律,两支实力相当的球队比赛时,每节主队得分与客队得分之差为正态随机变量,均值为1.5,方差为6,并且假设四节的比分差是相互独立的.问 (1)主队胜的概率有多大?(2)在前半场主队落后5分的情况下,主队得胜的概率有多大? (3)在第1节主队赢5分得情况下,主队得胜的概率有多大?33. 产品的某种性能指标的测量值X 是随机变量,设X 的概率密度为⎪⎩⎪⎨⎧>=-其他.,0,0,)(221x xe x f x X测量误差Y~U (εε,-),X ,Y 相互独立,求Z=X+Y 的概率密度)(z f Z ,并验证du e Z P u⎰-=>εεε202/221}{34. 在一化学过程中,产品中有份额X 为杂质,而在杂质中有份额Y 是有害的,而其余部分不影响产品的质量.设)5.0,0(~),1.0,0(~U Y U X ,且X 和Y 相互独立,求产品中有害杂质份额Z 的概率密度. 35. 设随机变量),(Y X 的概率密度为⎩⎨⎧<<=-.0,,0,),(其他y x e y x f y(1) 求),(Y X 的边缘概率密度. (2) 问Y X ,是否相互独立. (3) 求Y X +的概率密度).(z f Y X + (4) 求条件概率密度).|(|y x f Y X (5) 求条件概率}.5|3{<>Y X P (6) 求条件概率}.5|3{=>Y X P36.设图书馆的读者借阅甲种图书的概率为p ,借阅乙种图书的概率为α,设每人借阅甲、乙图书的行动相互独立,读者之间的行动也相互独立.(1)某天恰有n 个读者,求甲、乙两种图书中至少借阅一种的人数的数学期望.37.某种鸟在某时间区间],0(0t 下蛋数为1~5只,下r 只蛋的概率与r 成正比.一个收集鸟蛋的人在0t 时去收集鸟蛋,但他仅当鸟窝多于3只蛋时他从中取走一只蛋.在某处有这种鸟的鸟窝6个(每个鸟窝保存完好,各鸟窝中蛋的个数相互独立).(1) 写出一个鸟窝中鸟蛋只数X 的分布率.(2) 对于指定的一只鸟窝,求拾蛋人在该鸟窝中拾到一只蛋的概率. (3) 求拾蛋人在6只鸟窝中拾到蛋的总数Y 的分布律及数学期望.(4) 求}4{},4{><Y P Y P(5) 当一个拾蛋人在这6只鸟窝中拾过蛋后,紧接着又有一个拾蛋人到这些鸟窝中拾蛋,也仅当鸟窝 中多于3只蛋时,拾取一只蛋,求第二个拾蛋人拾得蛋数Z 的数学期望.38. 设袋中有r 只白球,r N -只黑球.在袋中取球)(r n n ≤次,每次任取一只做不放回抽样,以Y 表示取到白球的个数,求)(Y E .39.抛一颗骰子直到所有点数全部出现为止,求所需投掷次数Y 的数学期望. 40.设随机变量Y X ,相互独立.且Y X ,分别服从以βα1,1为均值得指数分布.求).(2X Ye X E -+41.一酒吧间柜台前有6张凳子,服务员预测,若两个陌生人进来就坐的话,他们之间至少相隔两张凳子.(1) 若真有2个陌生人入内,他们随机地就坐,问服务员预言为真的概率是多少? (2) 设2个顾客是随机坐的,求顾客之间凳子数的数学期望.42.设随机变量10021,,,X X X 相互独立,且都服从),1,0(U 又设,10021X X X Y ⋅⋅⋅= 求概率}10{40-<Y P 的近似值.43.来自某个城市的长途电话呼叫的持续时间X (以分计)是一个随机变量,它的分布函数是⎪⎩⎪⎨⎧<≥--=--.0,0,0,e 21e 211)(]3[3x x x F x x(其中]3[x 是不大于3x的最大整数). (1) 画出)(x F 的图形.(2) 说明X 是什么类型的随机变量.(3) 求}6{},4{},3{},4{>>==X P X P X P X P (提示)0()(}{--==a F a F a X P ).44.一汽车保险公司分析一组(250人)签约的客户中的赔付情况.据历史数据分析,在未来一周中一组客户中至少提出一项索赔的客户数X 占10%.写出X 的分布,并求12.0250⨯>X (即30>X )的概率.设各客户是否提出索赔相互独立.45.在区间)1,0(随机地取一点X .定义}.75.0,min{X Y = (1) 求随机变量Y 的值域.(2) 求Y 的分布函数,并画出它的图形.(3) 说明Y 不是连续型随机变量,Y 也不是离散型随机变量.46.设21,X X 是数学期望为θ的指数分布总体X 的容量为2的样本,设21X X Y =,试证明θπ=)4(YE .47.设总体n X X X N X ,,,),,(~212 σμ是一个样本.2,S X 分别为样本均值和样本方差,试证[]⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=44222212)(σσμσn n S X E . 48.设总体X 具有概率密度:⎪⎩⎪⎨⎧≤>=-.0,0,0,1)(2x x xe x f x θθ其中0>θ为未知参数,n X X X ,,,21 是来自X 的样本,n x x x ,,,21 是相应的样本观察值.(1) 求θ的最大似然估计量. (2) 求θ的矩估计量.(3) 问求得的估计量是否是无偏估计量.49.设1,,,21n X X X 以及2,,,21n Y Y Y 为分别来自总体),(21σμN 与),(22σμN 的样本,且它们相互独立.221,,σμμ均未知,试求221,,σμμ的最大似然估计量.50.为了探究一批存贮着的产品的可靠性,在产品投入贮存时,即在时刻00=t 时,随机地选定n 只产品,然后在预先规定的时刻k t t t ,,,21 取出来进行检测(检测时确定已失效的去掉,将未失效的继续投入贮存),今得到以下的寿命试验数据.这种数据称为区间数据.设产品寿命T 服从指数分布,其概率密度为⎩⎨⎧>=-,,0,0,)(其它t e t f t λλ0>λ未知.(1) 试基于上述数据写出λ的对数似然方程.(2) 设.,1n s n d <<我们可以用数值解法求得λ的最大似然估计值.在计算机上实现是容易的.特别,取检测 时间是等间隔的,即取.,,2,1,1k i it t i ==验证,此时可得λ的最大似然估计为⎪⎪⎭⎫⎝⎛+--+=∑=ki i sk d i sn t 21)1(1ln 1ˆλ.51. 设某种电子器件的寿命(以小时计)T 服从指数分布,概率密度为:⎩⎨⎧>=-其他,,0,0,e )(t t f t λλ 其中0>λ未知.从这批器件中任取n 只在时刻0=t 时投入独立寿命试验,试验进行到预订时间0T 结束.此时有)0(n k k <<只器件失效,试求λ的最大似然估计.52.设系统由两个独立工作的成败型元件串联而成(成败型元件只有两种状态:正常工作或失效).元件1、元件2的可靠性分别为21,p p ,它们均未知.随机地取N 个系统投入试验,当系统中至少有一个元件失效时系统失效,现得到以下的试验数据:1n -仅元件1失效的系统数; 2n -仅元件2失效的系统数; 12n -元件1,元件2至少有一个失效的系统数;s -未失效的系统数.N s n n n =+++1221.这里12n 为隐蔽数据,也就是只知系统失效,但不知道是由元件1还是元件2单独失效引起的,还是由元件1,2均失效引起的,设隐蔽与系统失效的真正原因独立.(1)试写出21,p p 的似然函数.(2)设有系统寿命试验数据.11,1,3,5,201221=====s n n n N 试求21,p p 的最大似然估计. 53.(1)设总体X 具有分布律0>θ未知,今有样本1 1 1 3 2 1 3 2 2 1 2 2 3 1 1 2.试求θ得最大似然估计值和矩估计值.(2)设总体X 服从Γ分布,其概率密度为⎪⎩⎪⎨⎧>=--.,0,0,)(1)(1其他x e x x f x βαααΓβ其形状参数0>a 为已知,尺度参数0>β未知.今有样本值n x x x ,,,21 ,求β的最大似然估计值. 54.(1)设),,(~ln 2σμN X Z =即X 服从对数正态分布,验证.21exp )(2⎭⎬⎫⎩⎨⎧+=σμX E (2)设自(1)中总体X 中取一容量为n 的样本.,,,21n x x x 求)(X E 的最大似然估计,此处设2,σμ均为未知.(3)已知在文学家萧伯纳的《An Intelligent Women ’s Guide To Socialism 》一书中,一个句子的单词数近似地服从对数指数分布,设μ及2σ为未知.今自该书中随机地取20个句子.这些句子中的单词数分别为 52 24 15 67 15 22 63 26 16 32 7 33 28 14 7 29 10 6 59 30,问这本书中,一个句子的单词数均值的最大似然估计值等于多少?55.考虑进行定数截尾寿命试验,假设将随机抽取的n 件产品在时间0=t 时同时投入试验.试验进行 到m 件)(n m <产品失效时停止,m 件失效产品的失效时间分别为m t t t ≤≤≤≤ 210.m t 是第m 件产品失效的时间.设产品的寿命分布为韦布尔分布,其概率密度为⎪⎩⎪⎨⎧>=⎪⎪⎭⎫ ⎝⎛--其他0,)(1x e x x f x βηββηβ 其中参数β已知.求参数η的最大似然估计.56.设某大城市郊区的一条林荫道两旁开设了许多小商店,这些商店的开设延续时间(以月计)是一个随机变量,现随机地抽取30家商店,将它们的延续时间按自小到大排序,选其中前8家商店,它们的延续时间分别是3.2 3.9 5.9 6.5 16.5 20.3 40.4 50.9X1 2 3k pθ θ θ21-假设商店开设延续时间的长度是韦布尔随机变量. 其概率密度为⎪⎩⎪⎨⎧>=⎪⎪⎭⎫ ⎝⎛--其他0,)(1x e x x f x βηββηβ 其中,.8.0=β(1)试用上题结果,写出η的最大似然估计.(2)按(1)的结果求商店开始延续时间至少为2年的概率的估计.57.设分别自总体),(21σμN 和),(22σμN 中抽取容量21,n n 的两独立样本.其样本方差分别为.,2221S S 试证,对于任意常数2221,)1(,bS aS Z b a b a +==+都是2σ的无偏估计,并确定常数b a ,使)(Z D 达到最小.58.设总体n X X X N X ,,,),,(~212σμ是来自X 的样本.已知样本方差∑=--=ni I X X n S 122)(11 是2σ的无偏估计.验证样本标准差S 不是标准差σ的无偏估计.59.设总体X 服从指数分布,其概率密度为⎪⎩⎪⎨⎧>=-,,0,0,1)(/其他x e x f x θθ0>θ未知.从总体中抽取一容量为n 的样本.,,,21n X X X (1)证明.)2(~22n Xn χθ(2)求θ的置信水平为α-1的单侧置信下限.(3)某种元件的寿命(以小时计)服从上述指数分布,现从中抽得一容量为16-n 的样本,测得样本均值为 5010(小时),试求元件的平均寿命的置信水平为0.90的单侧置信下限.60. 设总体n X X X U X ,,,,),0(~21 θ是来自X 的样本.(1)验证),,,max(21n X X X Y =的分布函数为 ⎪⎩⎪⎨⎧≥<≤<=.,1,0,/,0,0)(θθθy y y y y F nn Y(2)验证θ/Y U =的概率密度为⎩⎨⎧≤≤=-. ,0,10,)(1其他u nu u f n U(3)给定正数,α10<<a ,求U 的分布的上2/α分位点2/αh 以及上2/1α-分位点.2/1α-h (4)利用(2)(3) 求参数θ的置信水平为α-1的置信区间. (5)设某人上班的等车时间θθ,),0(~U X 未知.现在有样本,4.2,2.1,7.1,5.3,2.454321=====x x x x x 求θ的置信水平为0.95的置信区间.61.设总体X 服从指数分布,概率密度为⎪⎩⎪⎨⎧>=-.,0,0,1)(/其他x e x f x θθ.0>θ设n X X X ,,,21 是来自X 的样本.试取59题中当0θθ=时的统计量022θχXn =作为检验统计量,检验假设 .:,:0100θθθθ≠=H H 取水平为α(注意:θ=)(X E ).设某种电子元件的寿命(以小时计)服从均值为θ的指数分布,随机取12只元件,测得它们的寿命分别为 340 , 430 , 560 , 920 , 1380 , 1520 , 1660 , 1770 , 2100 , 2320 , 2件350 , 2650 .试取水平,05.0=α检验假设.1450:,1450:10≠=θθH H62.经过十一年的试验,达尔文于1876年得到15对玉米样品的数据如下表,每对作物除授粉方式不同外,其它条件都是相同的.试用逐对比较法检验不同授粉方式对玉米高度是否有显著的影响(05.0=α).问应增设什么条件才能用逐对比较法进行检验?63.一内科医生声称,如果病人每天傍晚聆听一种特殊的轻音乐会降低血压(舒张压,以Hg mm -记).今选取了10个病人在试验之前和试验之后分别测量了血压,得到以下的数据:设)10,,2,1( =-=i Y X D i i i 为来自正态总体),(2D D N σμ的样本,2,D D σμ均已知.试检验是否可以认为医生的意见是对的(取05.0=α).64.以下是各种颜色汽车的销售情况:试检验顾客对这些颜色是否有偏爱,即检验销售情况是否是均匀的(取). 65.某种闪光灯,每盏灯含4个电池,随机地取150盏灯,经检测得到以下的数据:试取05.0=α检验一盏灯损坏的电池数),4(~θb X (θ未知).66.下面分别给出了某城市在春季(9周)和秋季(10周)发生的案件数.试取03.0=α,用秩和检验法检验春季发生的案件数的均值是否较秋季的为多.67.临界闪烁频率(cff)是人眼对于闪烁光源能够分辨出它在闪烁的最高频率(以赫计).超过cff 的频率,即使光源实际是在闪烁的,而人看起来是连续的(不闪烁的).一项研究旨在判定cff 的均值是否与人眼的虹膜颜色有关,所得数据如下: 临界闪烁频率(cff)分布,且方差相等,样本之间相互独立.68.下面列出了挪威人自1938~1947年间年人均脂肪消耗量,与患动脉粥样硬化症而死亡的死亡率之间相关的一组数据.设对于给定的Y x ,为正态变量,且方差与x 无关. (1) 求回归直线方程bx a y +=.(2) 水平05.0=α下检验假设0:,0:10≠=b H b H .(3)求13|=x y.(4) 求13=x 处)(x μ置信水平为0.95的置信区间.(5) 求13=x 处Y 的新观察值0Y 的置信水平为0.95的预测区间.69. 下面给出1924~1992年奥林匹克运动会女子100米仰泳的最佳成绩(以秒计)(其中1940年及1944年未举行奥运会):年份 1924 1928 1932 1936 1948 1952 1956 1960 成绩 83.2 82.2 79.4 78.9 74.4 74.3 72.9 69.3年份 1964 1968 1972 1976 1980 1984 1988 1992 成绩 83.2 82.2 79.4 78.9 74.4 74.3 72.9 69.3(1)画出散点图.(2)求成绩关于年份的线性回归方程.(3)检验回归效果是否显著(取05.0=α).70.设在时间区间],0(t 内来到某商店的顾客数)(t N 是强度为λ的泊松过程.每个来到商店的顾客购买某些货物的概率是p ,不买货物就离去的概率是p -1,且各个顾客是否购买货物是相互独立的.令)(t Y 为],0(t 内购买货物的顾客数.试证}0),({≥t t Y 是强度为p λ的泊松过程.71.设随机过程,),Ωcos()(∞<<-∞+=t t a t X Θ其中a 是常数,随机变量)2,0(~πΘU ,随机变量Ω具有概率密度)(x f ,设)(x f 连续且为偶函数,Θ与Ω相互独立.试证)(t X 是平稳过程,且其谱密度为)()(2ωπωf a S X =.。
概率论与数理统计(第四版)习题答案全
概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P故 181.01529.00281.0)(=+≈A P 五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合 格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P )()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------= 16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(xx F +=,则1)(0<<x F 因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Aex x,解得21=A ,即有 ).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率. 解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥t st s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<=所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA = (2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π (3)X 及Y 的边缘分布函数分别为 x xxX xdx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan1)4(2),()(2ππ2arctan 121xπ+=yxyY ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx xy dx y x dx y x f y f Y ππ )9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x(3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰30006),()(3032y y ex x dxe e dx y xf y f yy x Y (4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰C x x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 第九章 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xyxy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===2211)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度. 解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是zy x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ijλ先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min (321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2Xp pp p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=- 进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx x x dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x 进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-=即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么?解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-10210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f yy因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==n p q D ξ 于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=;222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=.(2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而 2516)53(1122=-=-r ,5412=-r . 进一步按公式])())((2)([)1(21222222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x e y x f +--=π.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32+-=Y X Z 的概率密度. 解:由题设,有0)(=X E ,1)(=X D ,1)(=Y E ,4)(=Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()(=+-=+-=E Y E X E Y X E Z E . 8)3()()(4)32()(=++=+-=D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z =,故随机变量32+-=Y X Z 的概率密度为16)2(82)2(2241821)(--⨯--==z z Z eez f ππ )(+∞<<-∞z .。
《概率论与数理统计》习题册答案(西农版).
第一章随机事件与概率§1.1 随机试验随机事件一、选择题1.设 B 表示事件“甲种产品畅销” , C 表示事件“乙种产品滞销” ,则依题意得 A=BC .于是对立事件 A B C甲产品滞销或乙产品畅销,故选 D.2. 由 A B B A B B A AB,故选 D.也可由文氏图表示得出.二写出下列随机试验的样本空间1. 3,4,,20 2 0,100 3.{( x, y, z) | x0, y0, z0, x y z 1}, x, y, z 分别表示折后三段长度。
三、( 1)任意抛掷一枚骰子可以看作是一次随机试验,易知共有 6 个不同的结果 . 设试验的样本点i" 出点 i点 ", i1,2,3,4,5,6 ;则 A2, 4,6, B 3 ,6(2)A1,3,5,B1,2,4,5,A B2,3,4,6,AB6,A B 1 , 5四、( 1) ABC ;( 2) ABC ;( 3)“ A、B 、C不都发生”就是“A、B、C 都发生”的对立事件,所以应记为ABC (; 4)A B C (; 5“) ABC、、中最多有一事件发生”就是“ A、B、C中至少有二事件发生”的对立事件,所以应记为:AB AC BC .又这个事件也就是“ A、 B、C 中至少有二事件不发生”,即为三事件AB、 AC、BC 的并,所以也可以记为AB AC BC.§ 1.2随机事件的概率一、填空题1. 试验的样本空间包含样本点数为10 本书的全排列10!,设A指定的 3本书放在一起,所以 A 中包含的样本点数为8! 3!,即把指定的 3 本书捆在一起看做整体,与其他三本书全排,然后这指定的 3 本书再全排。
故 P( A)8! 3! 1 。
10!152. 样本空间样本点 n 7! 5040 ,设事件A表示这7 个字母恰好组成单词SCIENCE ,则P( A)2!2!1 7!1260二、求解下列概率1.C520.36C31C75 5! C31 A750.375 (1); (2)A86C82C86 6!2.A1240.4271 14123. 由图 1.1 所示,样本点为随机点M 落在半圆0y2ax x2 ( a为正常数 ) 内,所以样本空间测度可以用半圆的面积S 表示。
海南大学概率习题参考答案
习题八1,在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)X N σ 。
一日测得5炉铁水含碳量如下:4.48,4.40,4.42,4.45,4.47在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化。
2,根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm 。
该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x 。
经计算得知15148i i x==∑, 1521156.26i i x ==∑。
在显著性水平0.05α=下,试判断该厂是否符合环保法的规定。
(该有毒化学物质含量X 服从正态分布)3,某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率不应低于65。
已知该指标服从正态分布2(,)N μσ, 5.5σ=。
从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸?4,某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根。
现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)?5, 某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布N (100,2σ)。
某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9。
问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(α=0.05)6,某自动机床加工套筒的直径X 服从正态分布。
现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到51124i i x ==∑, 5213139i i x ==∑。
海大概率论考研真题6参数估计
9..考研真题六.,,,,,1.,0,10,)1()(21试分别用矩估计法和最大似然估计法求的估计量的简单随的一个容量为是来自总体是未知参数其中其它的概率密度为设总体n X X X X x x x f X n −>⎪⎩⎪⎨⎧<<+=θθθ1.数一考研题97).((2);(1),,,.,0,0),(6)(213θθθθθθθD X X X X x x x x f X n 的方差求的矩估计量求的简单随机样本是取自总体其它的概率密度为设总体 ⎪⎩⎪⎨⎧<<−=2.数一考研题99求参数的一组样本观测值是又设为未知参数其中的概率密度为设某种元件的使用寿命θθθθθθ,,,,,0,,0,,2);(21)(2X x x x x x ex f X n x >⎪⎩⎪⎨⎧≤>=−−3.机样本^^^的最大似然估计值数一考研题00.),1,():(5.从中随机服从正态分布单位已知一批零件的长度μN cm X ,)210(21)1(2321022的如下样本值利用总体是未知参数其中的概率分布为设总体θθθθθθθX p X X <<−−4./.,3,2,1,3,0,3,1,3的矩估计值和最大似然估计值求θ数一考研题020.95),(40,16的置信的置信度为则得到长度的平均值为个零件μcm 地抽取)95.0)645.1(,975.0)96.1(:(.______=Φ=Φ标准正态分布函数值注数一考研题03区间是10..,,,,.0,,0,,2)(21)(2记中抽取简单随机样本从总体是未知参数其中的概率密度为设总体θθθθX X X X x x ex f X n x >⎪⎩⎪⎨⎧≤>=−−6.).,,,min(21θX X X n =^);((1)的分布函数求总体x F X .,(3));((2)讨论它是否具有无偏性的估计量作为如果用的分布函数求统计量θθθθx F .(2);(1):,,,,,1,1,0,1,11);(7.21的最大似然估计量的矩估计量求的简单随机样本为来自总体其中未知参数的分布函数为设总体βββββX X X X x x x x F X n >⎪⎩⎪⎨⎧≤>−=数一考研题04数一考研题03^^^8.设总体X 的概率密度为⎪⎩⎪⎨⎧<≤−<<=其它,021,110,),(x x x f θθθ其中θ是未知参数)10(<<θ,n x x x ,,21…为来自总体的随机样本,,记N 样本值n x x x ,,21…中小于1的个数, 求θ,的最大似然估计.为数一考研题06。
海南大学概率统计复习题
1.设A ,B 是两个相互独立的事件,()0,()0P A P B >>,则一定有()P A B ⋃= [ B ](A )()()P A P B + (B )1()()P A P B - (C )1()()P A P B + (D )1()P AB -2.对于任意两个事件A 和B [ B ] (A )若AB φ≠,则A ,B 一定独立 (B )若AB φ≠,则A ,B 有可能独立 (C )若AB φ=,则A ,B 一定独立 (D )若AB φ=,则A ,B 一定不独立3.设~(0,1)X N,22()0)x x x edt x --∞Φ=≥(,则下列等式不成立的是 [ C ](A )()1()x x Φ=-Φ- (B )(0)0.5Φ= (C )()()x x Φ-=Φ (D )(||)2()1P x a a <=Φ- 4.X 服从参数19λ=的指数分布,则(39)P X <<= [ C ] (A )1(1)()3F F - (B)11)9e (C1e- (D )993x e dx -⎰5.对任意两个随机变量X 和Y ,若EY EX XY E ⋅=)(,则 [B ](A )()()()D XY D X D Y = (B )()()()D X Y D X D Y +=+ (C )X 与Y 相互独立 (D )X 与Y 不相互独立6.设112,,,n X X X 与212,,,n Y Y Y 分别来自正态总体211(,)N μσ,222(,)N μσ,其中1212,,,μμσσ已知,且两正态总体相互独立,则不服从标准正态分布的统计量是 [ D ](A1(B )111n X μσ- (C )122Y μσ- (DX Y 7.设~(,)X B n p ,则有 [ D ] (A )(21)2E X np -= (B )(21)4(1)1D X np p -=-+(C )(21)41E X np +=+ (D )(21)4(1)D X np p -=-8、不相关与独立的关系是: A 。
2011A卷答案
海南大学2010-2011学年度第2学期试卷 科目:《线性代数与概率论》试题(A 卷)参考答一.选择题(每题3分,共24分)1、若三阶行列式M a a a a a a a a a =333231232221131211,则111213212223313233333333333a a a a a a a a a ---------=( D )。
(A) -9M (B) 9M (C) 27M (D) -27M2、设矩阵A 和C 分别是m n ⨯和s t ⨯,若要使ABC 有意义,则矩阵B 应是( B )。
(A) m t ⨯阵 (B) n s ⨯阵 (C) m s ⨯阵 (D) n t ⨯阵3、齐次线性方程120n x x x +++= 的基础解系中解向量的个数为( C )。
(A) 0 (B) 1 (C) 1n - (D) n4、在线性方程组Ax b =中,A 是86´阵,如果系数矩阵A 与增广矩阵(,)A b 的秩均为6,则Ax b =有( A ) .(A) 有唯一解 (B) 有无穷解 (C) 无解 (D) 无法确定是否有解5、一名射手连续向某目标射击三次,事件i A 表示第i 次射击时击中目标(1,2,3)i =,则三次射击至少有一次击中目标表示为:( B ) (A ) 121323A A A A A A ++ (B ) 123A A A ++(C ) 123A A A ++ (D )123A A A 6、已知离散型随机变量X 的概率分布为:X -1 0 1 2 4P101 51 101 51 52则下列概率计算结果中( D )正确.(A )1}4{=<X P (B )0}0{==X P (C )1}1{=->X P (D )103}21{=<<-X P 7、设离散型随机变量),,(~p n B X 若数学期望,2.1)(=X E 方差,08.1)(=X D 则参 数,n p 的值为( A ).(A ) 16,0.1n p == (B ) 4,0.4n p == (C ) 8,0.2n p == (D ) 2,0.8n p ==8、设随机变量X 的概率密度为()X f x ,则23Y X =-+的概率密度为 ( B )(A )13()22X y f --- (B ) 13()22X y f --(C )13()22X y f +-- (D ) 13()22X y f +-二、填空题:(每题3分,共24分)1、已知171201,423132201A B 骣-÷ç骣÷-ç÷÷çç÷=?çç÷÷ç÷ç÷桫ç÷÷ç桫,则()T AB =_____0171413310骣÷ç÷ç÷ç÷ç÷ç÷ç÷÷ç-桫________. 2、设行列式1428211012341021D -=,则1113142A A A ++=________0______. 3、n 维向量组12(1,1,,1),(2,2,,2),,(,,,)m m m m a a a === 的秩为____1______.4、已知矩阵111121231A l 骣÷ç÷ç÷ç÷=ç÷ç÷ç÷÷ç+桫的秩为()2,R A =则l =____1______. 5、设随机变量X 和Y 相互独立,且()()1E X E Y ==,()2D X =,()3D Y =,则()D XY =____11______.()()()D XY E X Y E XY =-222[]()()()()E X E Y E X E Y =? 222()()()()E X E Y E X E Y =? 2222(()())(()())D X E X D Y E Y =+?-221()()=++-21311=11.6、设事件,,,A B C A B È发生的概率分别为0.4,0.3,0.6,则()P AB =____0.3_______.7、设随机变量123,,X X X 相互独立,其中1X 在[0,6]上服从均匀分布,2X 服从正态分布2(0,2)N ,3X 服从参数为3l =的泊松分布,记12323Y X X X =-+,则()D Y =______46_________.依题意21()()12b a D X -=,22()4D X s ==,3()3D X l ==,123123()(23)()4()9()46D Y D X X X D X D X D X =-+=++=.8、已知二维随机变量(,)X Y 的密度函数为4,01,01(,)0,xy x y f x y <<<<⎧=⎨⎩,其它.则{}P X Y ≤=___12_________. 111{}(,)42xx yP X Y f x y dxdy xdx ydy ≤≤===⎰⎰⎰⎰ 三、计算题(每题6分,共42分)1、计算行列式 3111131111311113D =. 解:3111131111311113D ==6666131111311113……………(3分) =61111131111311113=611110200002002=48. ……………(6分)2、解矩阵方程AX B X +=,其中01011111,2010153A B -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭.解:由AX B X +=得()I A X B -=。
(完整版)概率论与数理统计课后习题答案
·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。
解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。
(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。
(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。
概率论与数理统计(海南大学)第四章习题详解
P ( X = 1) =
P ( X = 2) =
所以 E ( X ) = 0´
1 3 3 6+6 + 1´ + 2´ = = 1.2 . 10 5 10 10
2.一批产品中有 9 个合格品和 3 个废品.装配仪器时,从这批零件中任取一个,如果取 出的是废品,则扔掉后重新任取一个.求在取到合格品钱已经扔掉的废品数的数学期望.
4.已知投资某一项目的收益率 X 是一随机变量,其分布律为
X
1%
2%
3%
4%
5%
6%
p
0.1
0.1
0.2
0.3
0.2
0.1
一位投资者在该项目上投资了 10 万元,求他预期获得多少收益?
解:依题意,投资 10 万元的收益为 10 X (万元) ,其期望
E (10 X ) = 10 E ( X ) = 10´[0.1´ 0.01 + 0.1´ 0.02 + 0.2´ 0.03 + 0.3´ 0.04 + 0.2´ 0.05 + 0.1´ 0.06]
1, 若X 0, 7.设随机变量 X 在区间 [ 1, 2] 上服从均匀分布,令随机变量 Y 0, 若X 0, 1, 若X 0,
求 E( X ) .
解:由于 X U (-1, 2) ,故易知:
1 2 1 1 P ( X > 0) = ´2 = , P( X = 0) = 0 , P ( X < 0) = ´1 = . 3 3 3 3
+¥ 1 = 2´ - 3´ ò y 2 ⋅ e- y dy 0 2
= 1 + 3ò
+¥
0
y 2 de- y
海南大学概率与数理统计答案(潘伟)
即 X , Y 不独立. (3)由(1)知 Cov( X , Y ) = 19、解:由 f ( x, y) 可得 (1) X 的密度 f1 ( x) =
1 ( x + y )dy 0 8 1 1 2 2 = ( xy + y )0 8 16 x 1 = + 4 4 x+ 1 = ,0< x< 2 . 4 2 y+ 1 dy \ E ( X ) = E (Y ) = ò y ? 0 4
Y 1 1 E ( ) = 0? P(Y 0) + 1? P( X 1, Y = 1) + ? P( X 2, Y = 1) + ? P( X 3, Y = 1) X 2 3
= 0.125 + 0.25? 1 1 1 + + 8 8 24 6+ 1 = 24 7 = . 24 = 1 2 1 ? 0.125 3
1 3 + 1= . 2 2
1 0
ò
x 2 dx ?E (Y )
1 ?1 3
1 . 3
(3) E(2 X - 3Y 2 ) = 2E( X ) - 3E(Y 2 )
= 2? 1 2 3醋ò
+? 0
+? 0
y 2 e- y dy
y
= 1 + 3ò
y2 de+? 0
轾2 - y = 1+ 3 犏 (y e ) 犏 臌
=
=
ò
ò
1
0
1
( x3
y 2 x2 3 2 + y ) 0 dx 2 9
8 2 x )dx 9
1 0
0
(2 x 3 +
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题八
1,在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)X N σ 。
一日测得5炉铁水含碳量如下:
4.48,4.40,4.42,4.45,4.47
在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化。
2,根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm 。
该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x 。
经计算得知
15148i i x
==∑, 15
21156.26i i x ==∑。
在显著性水平0.05α=下,试判断该厂是否符合环保法的规定。
(该有毒化学物质含量X 服从正态分布)
3,某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率不应低于65。
已知该指标服从正态分布2(,)N μσ, 5.5σ=。
从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸?
4,某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根。
现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)?
5, 某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布N (100,2σ)。
某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9。
问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(α=0.05)
6,某自动机床加工套筒的直径X 服从正态分布。
现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到
51124i i x ==∑, 5
213139i i x ==∑。
试问这批套筒直径的方差与规定的27σ=有无显著差别?(0.01α=)
7,甲、乙两台机床同时独立地加工某种轴,轴的直径分别服从正态分布
211(,)N μσ、222(,)N μσ(12,μμ未知)。
今从甲机床加工的轴中随机地任取6根,
测量它们的直径为16,,x x ,从乙机床加工的轴中随机地任取9根,测量它们的
直径为19,,y y ,经计算得知:
61
204.6i i x ==∑, 6216978.9i i x ==∑
91370.8i i y ==∑ 9
2115280.2i i y ==∑
问在显著水平0.05α=下,两台机床加工的轴的直径方差是否有显著差异?
8,某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的标准差为0.048。
某日随机抽取5根纤维,测得其纤度为1.32,
1.55,1.36,1.40,1.44。
问该日所生产得维尼龙纤度的方差是否有显著变化(显著水平α=0.1)?
9,某项考试要求成绩的标准为12,先从考试成绩单中任意抽出15份,计算样本标准差为16,设成绩服从正态分布,问此次考试的标准差是否符合要求(α=0.05)?
10,某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,获得样本观察值为:
甲:25,28,23,26,29,22;
乙:28,23,30,25,21,27。
假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著水平α=0.05,)?对这两种香烟的尼古丁含量,检验它们的方差有无显著差异(显著水平α=0.1)?
答案:
1,检验统计量T
的观测值7.445x t ==-满足()0.0257.4454 2.7760t -≥=;拒绝0H ;有显著变化。
2,检验统计量T
的观测值 1.7705x t =
=满足()0.051.770514 2.7760t ≥=;拒绝0H ; 不符合。
3,检验统计量U 的观测值为
0.0518.07 1.645x u u =
=-<-=-;不接受。
4,检验统计量U 的观测值为
1.4142
x
u==;
0.025
1.4142 1.96
u
<=;没有受到显著影响。
5,检验统计量T
的观测值7.445
x
t==-满足()
0.025
0.542339 2.2620
t
-<=;无显著差异。
6,检验统计量2χ观测值29.116
χ=;22
0.9950.005
(4)9.116(4)
χχ
<<:无显著差异。
7,检验统计量的观测值为
2
1
2
2
1.007
s
F
s
==;
0.025
0.025
1
1.007(5,8)
(8,5)
F
F
<<;无显著差异。
8,检验统计量2χ观测值213.52
χ=;2
0.05
13.52(4)9.488
χ
>=;有显著差异。
9,检验统计量2χ观测值224.89
χ=;2
0.05
13.52(11)19.675
χ
>=;不符合要求。
10,
统计量
X Y
U=的观测值为0.0966;()
0.025
0.096610 2.228
t<=
无显著差异:
检验统计量的观测值为
2
1
2
2
0.6777
s
F
s
==;
0.05
0.05
1
1.007(5,5)
(5,5)
F
F
<<
无显著差异。
(B)
1、设
12
,,
n
X X X
是来自总体2
~(,)
X Nμσ的样本,2
,μσ均未知,1
1n
i
i
X X
n=
=∑,22
1
()
n
i
i
Q X X
=
=-
∑,问假设0:0
Hμ=的t检验的统计量是什
2、设学生某次考试的成绩X服从正态分布,随机抽取36名学生的成绩,算得样本平均为66.5
x=分,样本标准差为15
s=分.就显著性水平0.05
α=,讨论是否可以认为这次考试的平均成绩为70分?(答
案:21.4 2.0301(35)t t α==<=,可以认为平均成绩为70分.)。