第二节平面简谐波的波动方程

合集下载

5-2平面简谐波的波动方程详解

5-2平面简谐波的波动方程详解

u 沿 x 轴正向 u 沿 x 轴负向
第5章 机械波
5–2 平面简谐波的波动方程 平面简谐波波函数的其它形式
大学物理学 (第3版)
t y A cos[2 π( T
y A cos[2 t
y A cos[ 2
2 x
x ) 0 ] λ

0 ]

(ut x) 0 ] A cos[k (ut x) 0 ]
x y A cos (t ) (沿x轴负向传播) u
第5章 机械波
5–2 平面简谐波的波动方程 如果原点的
大学物理学 (第3版)
A
O
y
u

初相位不为零
x
x 0, 0 0 A
点 O 振动方程
y0 A cos(t 0 )
波 函 数
x y A cos[ (t ) 0 ] u x y A cos[ (t ) 0 ] u
2 y G 2 y 2 t x2 2 y E 2 y 2 t x 2
G为切变模量
固体内弹性平面纵波
E为杨氏模量
张紧柔软线绳上传播横波
2 y T 2 y 2 t x 2
T为线绳所受张力,为线密度:单位长度线绳的质量
第5章 机械波
5–2 平面简谐波的波动方程 2、波速 固体中弹性横波 固体中弹性纵波 张紧软绳中横波
x0 x0 2 π u λ
y ( x, t ) y ( x, t T ) (波具有时间的周期性)
第5章 机械波
5–2 平面简谐波的波动方程
大学物理学 (第3版)
波线上各点的简谐运动图
第5章 机械波
5–2 平面简谐波的波动方程

波动方程_精品文档

波动方程_精品文档
u
l
=
=
12
50
600
s
=
1
(
)
υ
例题:有一列向x 轴正方向传播的平面简谐波,
它在t = 0 时刻的波形如图所示其波速为:
u = 600m/s 。试写出波动方程。
=
5m
A
24m
l
=
从波形图中可知:
ω
=
π
2
=
π
50
(
)
rad.
s
1
υ
原点处质点的振动方程为:
波动方程为:
y
0
2
π
由旋转矢量法:
u
l
=
=
=
t
+
cos
(
)
y
A
ω
0
1.时间推迟方法
x
x
u
y
o
P
·
A
已知振源(波源)的振动方程为:
振源的振动状态从0点以传播速度u传送到P 点,显然时间要落后:
´
u
x

t
u
x
j
=
t
+
cos
(
)
A
ω

j
=
t
+
cos
(
)
y
A
ω
0
´
t
j
=
t
+
cos
(
)
y
A
ω

P
介质中任一质点(坐标为 x)相对其平衡位
置的位移(坐标为 y)随时间t 的变化关系。

0

14-2平面简谐波的波动方程

14-2平面简谐波的波动方程

u
振动曲线 图形
A O
波形曲线
t A O t 0 P

t0 P
T

v
v
u x
研究 某质点位移随时间 对象 变化规律
由振动曲线可知
某时刻,波线上各质点 位移随位置变化规律
由波形曲线可知 该时刻各质点位移 波长 , 振幅A 只有t=0时刻波形才能提供初相
物理 周期 T 振幅 A 初相 0 意义
14-2 平面简谐波的波动方程
一、波函数的建立
波函数(wave function): 描述波传播媒质中不同质点的 运动规律,又称波动表达式(或波动方程).
y f x, t
依据:各质点沿波传播方 向相位依次落后. 平面波在传播过程中,波 线上的各质点都作同频率 同振幅的简谐运动—叫做 平面简谐行波(traveling wave). 波面为平面 传播中的波(相对于“驻波”而言)
x y A cos t u
(1)
P为任意点,波动表达式为
u O P( x )
x
方法2 波线上沿传播方向每走一个,相位落后2
P点相位比O落后
y P A cos(t

x


x
y A cos(t

P在 t=0 时刻过平衡位置向负向运动 ——波向左移
y(m)
0.2 O 1
t=0 P
2
yP(m) x(m)
0.2 O 0.1 0.2
t (s)
3 yO 0.2 cos(10πt π) 2 x 3 波向-x方向传播 y 0.2 cos[10 π(t ) π] 10 2 π π b) 以 P 为参考点 P yP 0 2cos( 10π t ) 2 2 波向-x方向传播 x 1 π 0 2 cos[10 π(t x ) π ] y 0 2 cos[10 π(t ) ] 10 2 10 2

第二节平面简谐波的波动方程

第二节平面简谐波的波动方程

上页 下页 返回 退出
解:由题意 波长 周期

T
u
1

0.40 m

8 105 s
(1)原点处质点的振动表达式
y0 A cos t 0.1103 cos(25 103 t )m
(2)波函数
x y A cos (t ) u
3
x 3 0.110 cos 25 10 (t ) m 3 5 10
(6)3T/4时的波形如下图中实线所示,波峰M1和M2已 分别右移 3 4 而到达 M 1 '和 M 2 '处。
y /cm
M1
0.5 0.4 0.2 0 0.2 0.4 0.5
M1'
M2
M2'
a
10 20
b
30 40 50 60 70
x /cm t=3T/4
上页 下页 返回 退出
例3 :如图是一平面余弦横波在时刻t=0的波形。此波形以 v=0.08m/s 的速度沿ox轴正向传播。 求:(1) a、b两点振动方向; (2) O点振动方程; (3) 波动表式 解:⑴ 由于波沿x正向传播,因 此任意时刻任意点都将重复其前 的点(图中左侧点)的振动,由 此可知: a点将向下振动; b点将向上振动。
上页 下页 返回 退出
P处质点在时刻t 的位移为:
yP (t ) = Acos ω x t - + 0 u
波 函 数
因此,波线上任一点在任一时刻的位移都能 由上式给出。此即所求的沿x 轴正方向前进 的平面简谐波的波函数。 沿x轴负方向传播的平面简谐波的波函数:
T

上页 下页 返回 退出

2020年高中物理竞赛名校冲刺讲义设计—机械波:第二节 平面简谐波波动方程

2020年高中物理竞赛名校冲刺讲义设计—机械波:第二节 平面简谐波波动方程

2020高中物理竞赛江苏省苏州高级中学竞赛班上课讲义第九章 机械振动§ 9.2 平面简谐波的波动方程一、平面简谐波波动方程简谐波:如果波源和介质中的各质点都持续地作简谐振动,这种波称为简谐波。

平面简谐波:波面为平面的简谐波。

平面简谐波也称为一维简谐波,其表达式也称波函数(wave function)沿+x 方向传播的一维简谐波 (波速u ,振动角频率为ω),假设媒质无吸收(质元振幅均为A )介质中任一质点(坐标为 x )相对其平衡位置的位移(坐标为 y )随时间的变化关系,即 称为波动方程。

设O 点处质点的振动方程为波线上坐标为x 的任意点P 处质点的振动方程振动从O 点传到P 点所需的时间为t 时刻点 P 的振动与 t-x/u 时刻点O 的振动状态相同,只是落后了Δt 点P 振动方程(,)y x t cos O y A tω=(,)P y f x t ==?x t u∆=cos ()P xy A t uω=-xo任一点p参考点a波速u式中称上式为沿x 轴正向传播的平面简谐波的波动方程波方程的其它表示式讨论:(1)如果原点的初相位不为零设:点 O 振动方程则:波动方程为(2) 如果平面简谐波沿x 轴负方向传播 则 P 点处质点相位比O 点处质点的相位超前波动方程为二、波动方程的物理意义由 从几方面讨论1 当 x 一定时(设x =x 0,即考察波线上某一点x 0) 给出x =x 0处质点的振动方程即x 0处质元的振动表达式,表示x 处的质点在各个不同的时刻位移随时间的变化情况,由它画出的曲线是x 0处质元的振动曲线。

cos 2π()xy A t νλ=-2πων=u λν=[]0cos O y A t ωϕ=+cos[2π()]xy A t νϕλ=-+cos[2π()]xy A t νϕλ=++0cos[2π()]x y A t νϕλ=-+()y y t =2cos()y A t x πωλ=-0cos ()x y A t u ωϕ⎡⎤=-+⎢⎥⎣⎦0cos ()x y A t u ωϕ⎡⎤=++⎢⎥⎣⎦0cos ()x y A t u ωϕ⎡⎤=-+⎢⎥⎣⎦2 当t 一定时(设t = t 0,即在某一时刻t 0),给出t = t 0时刻各质点的位移y 分布情况反映t 0时刻各不同x 处质元的位移状况,即同一时刻x 轴上各个质点离开它们平 衡位置的位移分布,由它画出的曲线即t 0时刻的波形曲线。

平面简谐波的波动方程

平面简谐波的波动方程

m
0.5 10
yc 3102 c os(4 π t 13 π)
m
5
将点 D 坐标:x=9m代入波动方程
y 3102 cos2π( t x )
m
0.5 10
yD 3102 c os(4πo 9 π)
m
5
4)分别求出 BC ,CD 两点间的相位差
y 3102 cos2π( t x ) 0.5 10
幅 A 1.0m ,T 2.0s , 2.0m . 在 t 0 时坐标
原点处的质点位于平衡位置沿 O y 轴正方向运动 . 求
1)波动方程
解 设原点处振动方程为
y Acos(t )
O
y

t 0
y 0, v 0
y cos(t )
π
2
所以波动方程为
2
y Acos[(t x ) ] Acos[2 ( t x ) ]
T

C
u B 2π d dC
TC
思考:t=T/4时, a,b,c各质点运动方向如何?
3 ) 如图简谐波 以余弦函数表示,
t =0
y t =T/4
A+∆t
u
求 O、a、b、c 各
b
点振动初相位(t=0).
Oa
c
(π ~ π )
A
A
O
A
O
y o π
y
a
π 2
A
O
y
O
y
A
t=T/4
m (以A为 坐标原点)
u
10m
8m 5m 9m
C
B oA
Dx
B点落后C点 :B
C
2 π

16-2平面简谐波的波动方程

16-2平面简谐波的波动方程

x y ( x, t ) A cos[ (t ) 0 ] u
——细棒中平面纵波的波动方程。 解
16.2 平面简谐波和波动方程
概念检测 已知一平面简谐波的表达式为y = A cos ( a tb x ), ( a , b为正值),则 A. 波的频率为a B. 波的传播速度为b / a C. 波长为π/ b D. 波的周期为2π/ a
0 π / 2
x y A cos[ (t ) 0 ] u π π 0.1cos( t πx ) 2 2
16.2 平面简谐波和波动方程
例题2 一列平面波以波速u沿x轴正向传播,波 长为,已知在x0= /4处的质点的振动表达式 为y0=Acos t,试写出波动方程。
16.2 平面简谐波和波动方程
填空题3. 一个余弦横波以速度u沿x轴正向传播,t 时刻 波形曲线如图所示。试分别指出图中A,B,C各点处 介质质元在该时刻的运动方向
y
A B
u
C
o
x
16.2 平面简谐波和波动方程
概念检测 下图(a)表示沿x轴正向传播的平面简谐波在t=0 时刻的波形图,则图(b)表示的是
解 “振动状态以波速传播”方法 x/4 t 时刻x处的振动状态,就是 (t ) u 时刻x0处的振动状态,因此
x/4 y A cos[( t )] u 2π π / 4 x ) A cos( t x ) A cos( t 2 u u
根据x0处的振动方程,写出波动方程
16.2 平面简谐波和波动方程
16.2 平面简谐波和波动方程
16.2.1 平面简谐波的波动方程
16.2.2 波动方程的物理意义
16.2.3 波动的微分方程

平面简谐波的波动方程

平面简谐波的波动方程
方向的运动情况.
y
u
t 时刻
tt时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
xu t (行波)
例1 已知波动方程如下,求波长、周期和波速.
y ( 5 c) c m π [ o 2 (s - .) 1 t5 ( 0 .0 0 c- 1 s ) m 1 x ].
t
u
a 2 t2 y 2 A co (t su x )[ ]
严格区分两种速度(波速和振动速度)
波速(相速)
u
T
v y A si (n t x [ ) ]
t
u
二 波动方程的物理意义
y A co ( t x ) s ] [A c2 o π ( t s x ) [ ]
y co ( t x s ) u [ ] c2 o ( t s T x ) [] m
u2
222
2)求t1 .0 s波形图.
y 1 .0 co 2π (st[x)π ] m 2 .02 .0 2
t 1 .0 s
波形方程
y1.0coπsπ (x) m 2
1.0siπ nx)( m
波形图为 y / m
pO

x
p 2 π x 2 π T x u u x ypA co ts (p)
点 P 振动方程
ypAcos(tu x)
如果原点的 初相位不为零
y A
u
x0,0 O A
x
点 O 振动方程 y O A co t s)(
波 yAco(st [x)]u沿x轴正向
动 方
yAco(st [u x)]u沿 x轴负向
u
T

16-2平面简谐波 波动方程

16-2平面简谐波  波动方程

2π x1 即 y = Acosω t λ 上式代表x1 处质点在其平衡位置附近以角频率ω 上式代表 作简谐运动。 作简谐运动。 y
A
O
t
t 一定。令t=t1,则质点位移y 仅是 的函数。 一定。 仅是x 的函数。
平面简谐波的波动表式
2π x 即 y = Acosω t1 λ
y /cm
0.5 0.4 0.2 0 0.2 0.4 0.5
M1
M2
a
10 20
b
30 40 50 60 70
x /cm
t=0
波动方程的推导
y /cm
由波形曲线图可看出: 解 由波形曲线图可看出: 0.5 0.4 (1) A=0.5cm; (2) λ=40cm; (3)由波速公式计算出 (3)由波速公式计算出
3 3
波动方程的推导
可见此点的振动相位比原点落后, 可见此点的振动相位比原点落后,相位差为 π 2,或 落后 T 4,即2×10-5s。 。 (4)该两点间的距离 (4)该两点间的距离 x = 10 cm = 0.10 m = λ 4 ,相应 的相位差为
25 × 103π t π m y = 0.1 × 10 cos 2

棒中的波速
u=
Y
1.9 × 1011 N m 2 = = 5.0 × 103 m/s 3 3 ρ 7.6 × 10 kg m
u 5.0 × 103 m s 1 波长 λ = = = 0.40 m 3 1 v 12.5 × 10 s
波动方程的推导
周期 T = 1 v = 8 × 10 s (1)原点处质点的振动表式 (1)原点处质点的振动表式 y0=Acosω t=0.1×10-3cos(2π×12.5×103t)m =0.1×10-3cos25×103πt m (2)波动表式

7-2平面简谐波的波动方程

7-2平面简谐波的波动方程

时间推 点O 的振动状态
迟方法 yO A cost
t-x/u时刻点O 的运动状态
t x
点P
u
t 时刻点 P 的运动状态
点P 振动方程
yP
A cos (t
x) u
➢ 波动方程
A y u
y Acos (t x)
u
相位落后法
Ox
P
*
x 点 O 振动方程
设x 0 , 0 0
A
yo A cost
各质点都作简谐运动时,在介质中所形成的波.
➢ 平面简谐波:波面为平面的简谐波. 其特点
是在均匀的、无吸收的介质中各质点振幅相同
任何复杂的波都可以看成若干个简谐波叠加而成。
波动方程的推导
设有一以速度u 沿 x 轴正向传播的平面 简谐波 . 令原点O 的初相为零,其振
动方程
设x 0, 0 0
yO Acost
12
1 2

x2 x1

x21
波程差 x21 x2 x1
波程差与位相差
2π x
3 若 x, t 均变化,波动方程表示波形沿传播
方向的运动情况.
yu
t 时刻 t t 时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
x ut (行波)
例1 已知波动方程如下,求波长、周期和波速.
点 P 比点 O 落后的相位
p
O
2π x
p

x
2π x Tu
x u
yp Acos(t p )
点 P 振动方程
yp
A cos (t
x) u

波动方程

波动方程

轴正向传播,波速为u,已知原点的振动 y(0, t ) A cos(t 0 ) 求波线上任意位置x处质点的振动方程 y ( x, t ) 。
解: X处的振 动规律y(x,t) 与原点的振动 规律的关系:
i)时间法 点O 的振动状态 t 时刻点 P 的运动
x y( x, t ) y[0,(t t )] A cos[ (t ) 0 ] u
(1.0m) sin( π m ) x
1
y/m
1.0
o
-1.0
2.0
x/m
t 1.0 s 时刻波形图
x 0.5m 处质点的振动规律并做图 . t x π y (1.0m) cos[ 2 π( ) ] 2.0s 2.0m 2 x 0.5m 处质点的振动方程
3)பைடு நூலகம்
y (1.0m) cos[(π s )t π] y/m y
2、从无穷远处来到无穷远处去
y( x0 , t ) A cos(t 0 ) 已知 x x0 的振 动 求波线上任意位置x处质点的振动方程: y( x, t )
(2)后退波
y( x, t ) y( x0 , t t )
· · · · · · o· · · · · · · · x x ·· · x
xB xC
平面简谐波后退波的波函数(表达式、波函数、波动 方程、运动学方程):
点 P 振动方程:
x 2π
A

x
t x x y ( x, t ) A cos[ (t ) 0 ] A cos[2 ( ) 0 ] T ux A cos(t 2 0 ) A cos(t kx 0 )
y(0, t ) A cos(t 0 )

大学物理第十六章机械波第二节平面简谐波 波动方程

大学物理第十六章机械波第二节平面简谐波  波动方程

0.4
0.5
t=3T/4
波动方程的推导
(5)质点的最大速率
vm

A

A 2
T
0.5 102
2 m/s
1 30
0.94 m/s
(6)a、b两点相隔半个波长,b点处质点比a点处质点
的相位落后 。
(7)3T/4时的波形如下图中实线所示,波峰M1和M2已
分别右移3 4而到达
高等教育大学教学课件 大学物理
§16-2 平面简谐波 波动方程
平面简谐波传播时,介质中各质点都作同一频 率的简谐波动,在任一时刻,各点的振动相位一般 不同,它们的位移也不相同。据波阵面的定义可知, 任一时刻在同一波阵面上的各点有相同的相位,它 们离开各自的平衡位置有相同的位移。
波动方程:描述介质中各质点的位移随时间的变 化关系。
y /cm
M 1 和'
M 2处' 。
0.5 M1
M1' M2
M2'
0.4
0.2
a
0
b
0.2 10 20 30 40 50 60 70 x /cm
0.4
0.5
t=3T/4
谢谢欣赏!
Hale Waihona Puke A cos2

t

x



0

y(x,t) Acos( t k x 0) 其中 k 2
平面简谐波的波动表式
波动表式的意义:
x 一定。令x=x1,则质点位移y 仅是时间t 的函数。

y

A c os
t

2
x1

0

平面简谐波

平面简谐波

解 根据题意设波源的振动方程为
y
0.01cos
200
t
x 400
0
vy00
0 0
即0.021csoins00
0 0
0
2

y
0.01cos
200
t
x 400
2
(1)B 和A 两点之间的振动相位差为
200
t
2 400
2
200
t
1 400
2
2
(2)以B 为坐标原点时有
t x
T
(t, x) (t t, x x)
x ut
讨论:如图简谐 波以余弦函数表示,
求 O、a、b、c 各点
振动初相位.
(π ~ π )
t =0 A y
Oa
A
A
O
y o π
O
A
O
y
a
π 2
O A
u
b c
A
y
y
t=T/4
x
b 0
c
π 2
讨论
1.同一波线上两个不同点的振动相位差
x 2 x
程、2)波函数。
2 y(102 m)
22
o
2
yo
t(s)
2 102 cos(2π t )m
4
A
oA2 y
π
3
t 0,x 0 y A 2 v 0
波函数
y 2 102 cos[2π( t x ) π ]m 44 3
x 0.5m 处质点的振动方程
y 1.0cos(π t π)m
y
y/m
3
1.0
3*
2
4

物理学14-平面简谐波的波函数与波动方程

物理学14-平面简谐波的波函数与波动方程

若波源(原点)振动初位相不为零 y0 A cos( t 0 )
x y A cos[ (t ) 0 ] u

t x y A cos[ 2 ( ) 0 ] T 2x y A cos[ 2t ) 0 ] 2 y A cos[ (ut x) 0 ] A cos[ k (ut x) 0 ]
y
O
u
x
x
p
x O点振动状态传到p点需用 t u t 时刻p处质点的振动状态重复
y
O
u
x
x
p
x t 时刻O处质点的振动状态 u
x p点的振动方程: y A cos ( t ) u 沿x轴正向传播的平面简谐波的波动方程
沿着波传播方向,各质点的振动依次落后于波源振动 x 为p点的振动落后与原点振动的时间 u x 沿x轴负向传播的 y A cos ( t ) 平面简谐波的波动方程 u
在时间t内整个波形沿波的 传播方向平移了一段距离x
y
O
u
t
t t
x x
x
可见,波函数y(x,t)反映了波形的传播。 它描述的是在跑动的波,这种波被称为 行波(travelling wave)
三、平面波的波动微分方程
x y A cos[ ( t ) 0 ] u
求t 的二阶导数
2x0

若x0= 则 x0处质点落后于原点的位相为2
为x0处质点落后于原点的位相
是波在空间上的周期性的标志
同一波线上任意两点的振动位相差 x2 x1 x 2 1 2 2


பைடு நூலகம்
2、如果给定t,即t=t0 则y=y(x) Y x y A cos[ ( t 0 ) 0 ] u 表示给定时刻波线上各质 O 点在同一时刻的位移分布 ,即给定了t0 时刻的波形

(大学物理 课件)波动方程

(大学物理 课件)波动方程

表示 x1 处质点的振动方程
结束
返回
2. t = t 1 (常数) y
o y = A cos ω ( t 1 x )+j u x
表示在 t 1 时刻的波形
结束
返回
3. t 与 x 都发生变化 x t = t1 y 1 = A cos ω ( t 1 u ) + j x t = t 1+Δ t y ´= A cos ω ( t 1+Δ t u ) + j y
波 动 方 程
返回16章 结束
波动方程 一、平面简谐波的波动方程 y u x
§16-2平面简谐波
o
B
x
参考点O点的振动方程为: y = A cos ( t + j ) ω
任意点(B点)的振动方程,即波动方程为: y = A cos ω ( t x ) + j u 结束 返回
平面简谐波的波动方程为: x j y = A cos ω ( t u ) + t x j y = A cos 2π ( T l ) +
A cos 2π (x +120 t ) = 60
π
3
例2. 有一列向 x 轴正方向传播的平面简 谐波,它在t = 0时刻的波形如图所示,其波 速为u =600m/s。试写出波动方程。 y(m)
u 5 x (m)
o
12
.
结束
返回
解: o 由图可知, 在t = 0时刻
y(m)
u 5 x (m)
12
.
y1 y´ ut
.
O
x

t
令 y 1= y ´
得: ´= x +uΔ t x 这表示相应于位移y1的相位,向前传播了 uΔ t的距离。 结束 返回

6-2 平面简谐波的波动方程

6-2 平面简谐波的波动方程

y Acos[(t x) ] Acos[2 π( t x ) ]
u
T
y(x,t) y(x ,t)(波具有空间的周期性)
1

(t

x1 ) u



(t T

x1 )


波程差
2

(t

x2 u
)



(t T

x2

)

x21 x2 x1
2
y cos[2π( t x ) π ] (m) 2.0 2.0 2
O
y

A
返回
第 6 章 机械波
15
南通大学
Nantong University
6-2 平面简谐波的波动方程
(2)求 t 1.0s 波形图
y 1.0 cos[2π( t x ) π ]
2.0 2.0 2
第 6 章 机械波
4
南通大学
Nantong University
6-2 平面简谐波的波动方程
波动方程 y Acos[(t x) ]
u
质点的振动速度,加速度
v y Asin[(t x) ]
t
u
a

2 y t 2


2
A cos[ (t

x) u
返回 ]
6-2 平面简谐波的波动方程
例1 一平面简谐波沿 Ox 轴正方向传播,
已知振幅A 1.0 m,T 2.0 s,λ 2.0 m. 在 t 0
时坐标原点处的质点在平衡位置沿 Oy 轴正向
运动. 求:(1)波动方程;(2)t 1.0 s波形图;

大学物理平面简谐波波动方程

大学物理平面简谐波波动方程

§4-2平面简谐波的波动方程振动与波动最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。

任何复杂的波都可看成是若干个简谐波的叠加。

对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。

需要定量地描述出每个质点的振动状态。

波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。

一、平面简谐波的波动方程设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点参考点原点的振动方程为()00cos y A t ωϕ=+任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢?沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相位比 O 点落后 22x x ππλλ=P 点的振动方程为区别联系振动研究一个质点的运动。

波动研究大量有联系的质点振动的集体表现。

振动是波动的根源。

波动是振动的传播。

xyOPxu02cos P y A t x πωϕλ⎛⎫=+-⎪⎝⎭由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉02cos y A t x πωϕλ⎛⎫=+-⎪⎝⎭就是沿 x 轴正向传播的平面简谐波的波动方程。

如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x πλ沿 x 轴负向传播的波动方程为02cos y A t x πωϕλ⎛⎫=++ ⎪⎝⎭利用 2ωπν=, u λν=沿 x 轴正向传播的平面简谐波的波动方程又可写为02cos y A t x πωϕλ⎛⎫=-+ ⎪⎝⎭ 02cos A t x u πνωϕ⎛⎫=-+ ⎪⎝⎭0cos x A t u ωϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦即 0cos x y A t u ωϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦原点的振动状态传到 P 点所需要的时间 xt u∆=P 点在 t 时刻重复原点在 x t u ⎛⎫- ⎪⎝⎭时刻的振动状态波动方程也常写为xyOPxu02cos y A t x πωϕλ⎛⎫=-+ ⎪⎝⎭()0cos A t kx ωϕ=-+ 其中 2k πλ=波数,物理意义为 2π 长度内所具有完整波的数目。

波动方程.ppt

波动方程.ppt

x
u
)+
j
介质中任一质点(坐标为 x)相对其平衡位
置的位移(坐标为 y)随时间t 的变化关系。
波波
函 数
动 方 程
y
=
A
cos ω
(t -
x
u
)+ j
波向x 轴正方向 传播也称右行波
波向x 轴负方向 传播也称左行波
y
=
A
cos
ω
(t

x
u
)+ j
物理意义:波线上任一点(距原点为 x)处 的质点任一瞬间相对其平衡位置的位移。
x u
+j
2.相位比较方法
y = A cos(ω t +j )
P
P
P点的相位比
0点的相位落后:
△j
=
j P
-j
y
u
j P
-j
=
-

l
x
o
· A P
x
j P
=
-

l
x
+
j
x
j P
=
-
2π uT
x+j
= -ω
x u
+j
l = uT
ω
=
2π T
y = A cos(ω t + j )
P
P
= A cos (ω t -ω
0
t
(b)
质点的振动曲线图
(b)是振动图 ,t =0处 质点振动是过平衡位置, 向y 轴正方向运动的。
由此画出旋转矢量图:
解题体会:做此类
.
0
π-

平面简谐波的波动方程三种形式

平面简谐波的波动方程三种形式

一、平面简谐波的概念平面简谐波是一种特殊的波动现象,它具有特定的波动方程和波动特性。

简谐波的振幅随时间以正弦或余弦函数变化,具有周期性和频率性,是物理学中常见的一种波动形式。

二、平面简谐波的波动方程1. 时间域的波动方程在时间域内,平面简谐波的波动方程可以表示为:\[y(x,t) = A\sin(kx - \omega t + \phi)\]其中,y表示波动的位移,A表示振幅,k表示波数,ω表示角频率,φ表示初相位。

2. 空间域的波动方程在空间域内,平面简谐波的波动方程可以表示为:\[y(x,t) = A\sin(kx - \omega t + \phi)\]其中,y表示波动的位移,A表示振幅,k表示波数,ω表示角频率,φ表示初相位。

3. 复数形式的波动方程在复数形式下,平面简谐波的波动方程可以表示为:\[y(x,t) = A\cos(kx - \omega t + \phi) = \Re(Ae^{i(kx - \omega t + \phi)})\]其中,y表示波动的位移,A表示振幅,k表示波数,ω表示角频率,φ表示初相位。

三、不同形式的波动方程之间的关系1. 时间域的波动方程和空间域的波动方程时间域的波动方程和空间域的波动方程在形式上是相似的,都可以表示为简谐波的位移随时间和空间的变化而发生正弦或余弦函数的周期性振荡。

它们之间通过变量的不同而具有不同的物理意义,但是描述的是同一种波动现象。

2. 复数形式的波动方程和实数形式的波动方程在复数形式下,简谐波的波动方程可以更加简洁地描述,通过复数的指数函数形式可以很方便地进行波动的运算和分析。

复数形式的波动方程和实数形式的波动方程是等价的,可以相互转化,但在不同的数学和物理背景下有着不同的应用优势。

四、平面简谐波的应用领域平面简谐波作为一种特殊的波动形式,广泛应用于物理学、工程学、生物学等领域。

它在声学、光学、电磁学、机械振动、信号传输等方面有着重要的应用价值,可以用来描述和分析各种复杂的波动现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑵ 由已知图可得: A 0.2m, 0.4m
T 0.4 5(s) 2 2 / s
V 0.08
T5
由图有:初始时
{ y0 0 V0 0
O点有
2
y0(t )
0.2cos( 2 t
5
)
2
m
⑶ 至此可写出波动方程为:
y( x,t) 0.2cos[2 (t x ) ] m
机械波
振动在空间的传播过程叫做波动
上页 下页 返回 退出
波动的形式是多种多样的,一般可分为: 机械波: 机械振动在弹性介质中的传播。
电磁波: 电磁振动在空间的传播。
物质波: 运动物体伴随的波动。
各种类型的波有其特殊性,例如:声波需要介质才 能传播,电磁波却可在真空中传播,至于光波有时可 以直接把它看作粒子—光子的运动,但各种类型的波 也有普遍的共性 。
y
O
P
x
沿x轴负方向传播 u
y
O
P
x
P点落后o点
x u
时间
P点超前o点x
u
时间
t = t - x
t = t + x
u
波函数为: y(x,t) Acos[(t
x u
)
u
0
]
上页 下页 返回 退出
上述过程给出了一个写出简谐波方程的步骤: ⑴ 已知某点的振动方程(不一定是波源)
⑵ 根据波的传播方向,判断各点振动的先后次序,
5 0.08 2
上页 下页 返回 退出
例4:一列沿ox正向传播的简谐波,在时刻t1=0,t2=0.25s的两个 波形如图所示。求:(1)P的振动表达式,(2)此波的波动表
式,(3)画出O点的振动曲线。
解:⑴ 由已知图分析可得:
T 1s 2 rad / s
及:A 0.2m, 0.6m
波速 V 0.6 0.6m / s
t
-
x u
+
0
上页 下页 返回 退出
P处质点在时刻t 的位移为:
yP (t) =
Acos ω
t
-
x u
+
0
波 函 数
因此,波线上任一点在任一时刻的位移都能 由上式给出。此即所求的沿x 轴正方向前进 的平面简谐波的波函数。
沿x轴负方向传播的平面简谐波的波函数:
上页 下页 返回 退出
沿x轴正 方向传播 u
上页 下页 返回 退出
y
A cos
2
(t T
x
)
0
y Acos 2 ( t
x
)
0
y Acos(t
kx 0 )
k 2
y Aco:表示
单位长 度上波 的相位 变化
上页 下页 返回 退出
波动表式的意义:
x 一定:令x=x1,则质点位移y 仅是时间t 的函数。

y
Acos t
2 x1
上式代表x1处质点在其平衡位置附近以角频率
上页 下页 返回 退出
弹性介质和波源——(机械波产生的条件)
纵波和横波:
(1) 质元并未“随波逐流” 波的传播不是媒 质质元的传播
(2) “上游”的质元依次带动“下游”的质元振动
(3) 某时刻某质元的振动状态将在较晚时刻 于“下游”某处出现---波是振动状态的传播
波长、频率、和波速之间的关系
u
2
1
2
x2 x1
2
x
x、t 都变化:
实线:t1 时刻波形;虚线:t2 时刻波形
y
u
o
x
x1 x
上页 下页 返回 退出
y
u
当t=t1时,y
A
cos
t1
x u
0
o x1 x
x
当t2=
t1+Δt时,y
A
cos
t1
t
x u
0
在t1和t1+Δt时刻,对应的质点平衡位置用x1和x2表示,

y(t1)
A cos
t1
x1 u
0
y(t1
t)
A cos
t1
t
x2 u
0
上页 下页 返回 退出
令 x2 x1 t ,得
y(t1
y(tt1))AAcocsost1t1t xu1xu200
y(t1 t) Acos
Acos
t1
x1
u
y
t1
t x1 ut u
0 u y(t1)
0
o
x
x1 x
在Δt 时间内,整个波形向波的传播方向移动
了 x x2 x1 ut ,波速u 是整个波形向前传
播的速度。
上页 下页 返回 退出
例1 频率为 12.5kHz 的平面余弦波沿细长的
金属棒传播,波速为 5.0103 m / s. 如以棒上某点取为
坐标原点,已知原点处质点振动的振幅为 A 0.1mm, 试求:(1)原点处质点的振动表达式;
分别右移3
4 而到达
y /cm
M1'和 M 2 '处。
0.5 M1
M1' M2
M2'
0.4
0.2
a
0
b
0.2 10 20 30 40 50 60 70 x /cm
0.4
0.5
t=3T/4
上页 下页 返回 退出
例3 :如图是一平面余弦横波在时刻t=0的波形。此波形以 v=0.08m/s 的速度沿ox轴正向传播。
求:(1) a、b两点振动方向; (2) O点振动方程; (3) 波动表式
解:⑴ 由于波沿x正向传播,因 此任意时刻任意点都将重复其前 的点(图中左侧点)的振动,由 此可知:
a点将向下振动; b点将向上振动。
此外:
这个问题也可以由下一时 刻的波形曲线得到,如左图黄 线示,而且比较直观。
上页 下页 返回 退出
作简谐运动。
y
A
O
t
上页 下页 返回 退出
t 一定:令t=t1,则质点位移y 仅是x 的函数。

y
A
cos
t1
2 x
以y为纵坐标、x 为横坐标,得到一条余弦曲线,
它是t1时刻波线上各个质点偏离各自平衡位置的位移
所构成的波形曲线(波形图)。
y
u
A
x
上页 下页 返回 退出
沿波线方向,任意两点x1、x2的简谐运动相位差为:
xo
1
3
40 m 3
上页 下页 返回 退出
三、波动方程的微分形式

y
A
cos
t
x u
0

x、t
的二阶偏导数,得到
2 y t 2
A2
cos
t
x u
0
2 y x2
A
2
u2
cos
t
x u
0
2 y x2
1 u2
2 y t 2
平面波的波 动微分方程
上页 下页 返回 退出
家庭作业:5.8、5.11、5.12、5.14
找出时间差 ( > 0)
⑶ 将时间差 代入已知振动方程,即可得波动方程:
y(x,t) Acos[(t x) ]
u y(x,t) Acos[(t x) ]
u
(P后振) (P先振)
上页 下页 返回 退出
利用关系式
y(x,t) Acos[(t
2 2 和 uT ,得
x u
)
0
]
波函数其它形式 T
x 10cm 0.10m
4
相位差
2
上页 下页 返回 退出
y
(5)t
00.1.0100231coss时25的1波03形 (t
5
x 103
)
m
y
0.1103
cos
25
103
(0.0021
5
x 103
)
m
0.1103 sin 5 x m
y
0.1103
O
x
0.4
上页 下页 返回 退出
例2一横波沿一弦线传播。设已知t =0时的波形 曲线如下图中的虚线所示。波速u为12m/s,求(1)振 幅;(2)波长;(3)波的周期;(4)弦上任一质点的最大 速率;(5)图中a、b两点的相位差;(6)3T/4时的波形 曲线.(a、b两点的对应的横坐标分别为15和35cm)
0.6 2
⑶ 当t=0时,O点有: yo 0 Vo 0
o
2
(或不判断初相而直接由原图分析)
则有O点振动曲线如下:
上页 下页 返回 退出
例5:平面简谐波某时刻波形如图。求:OP点距离。设此波向右传

解:由图易得: 2 20 40m
波向右传播,则得图示时刻 有(见下图):
O: yo 3m Vo 0
(2)波函数
y Acos(t x)
u
0.1103
cos
25
103
(t
5
x 103
)
m
上页 下页 返回 退出
y
0.1103
cos
25
103
(t
5
x 103
)
m
(3)原点10cm处质点的振动表达式
y
0.1103
cos
25
103
(t
1 5 104
)
m
0.1103
cos
25
103
t
2
m
(4)两点间距离
T1
当t=0时,对P点有: y p0 0 Vp0 > 0
相关文档
最新文档