二次函数与最大利润问题(作业及答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 二次函数与最大利润问题
1.烟花厂为扬州“烟花三月”国际经贸旅游节特别设计制作一种新型礼炮,这种礼炮的
升空高度h (m)与飞行时间t (s)的关系式是h =-52
t 2+20t +1,若这种礼炮在最高点处引爆,则从点火升空到引爆需要的时间为( )
A .3 s
B .4 s
C .5 s
D .6 s
2.某旅行社有100张床位,每床每晚收费20元时,客床可全部租出,若每床每晚每次收费提高4元时,则减少10张床位租出;以每次提高4元的这种方法变化下去,为了投资少而获利大,每床每晚应提高( )
A .8元或12元
B .8元
C .12元
D .10元
3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =___元时,一天出售该种手工艺品的总利润y 最大.
4.将进货单价为70元的某种商品按零售单价100元售出时,每天能卖出20个,若这种商品零售价在一定范围内每降价1元,其日销售量就增加1个,为获得最大利润,应降价__ 元.
5.某化工材料经销公司购进了一种化工原料共7 000千克,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于每千克30元,市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不是一天时,按整天计算).设销售单价为x 元,日均获利为y 元,那么:
(1)y 关于x 的二次函数关系式为_ _;
(2)当销售单价定为____元时,日均获利最大,日均获利最大为___元.
6.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖出10件(每件售价不能高于72元),设每件商品的售价上
涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?
7.在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.
(1)求y与x满足的函数关系式(不要求写出x的取值范围);
(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?
8.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元时,未租出的车将增加1辆;公司平均每日的各项支出共4 800元.设公司每日租出x辆车,日收益为y元(日收益=日租金收入-平均每日各项支出).
(1)公司每日租出x辆车时,每辆车的日租金为________元(用含x的代数式表示);
(2)当每日租出多少辆车时,租赁公司日收益最大?最大是多少元?
(3)当每日租出多少辆车时,租赁公司的日收益不盈也不亏?
9.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图22-3-6所示的关系:
图22-3-6
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
10.水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.
(1)现在实际购进这种水果每千克多少元?
(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图22-3-7所示的一次函数关系.
图22-3-7
①求y与x之间的函数关系式;
②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)
第2课时 二次函数与最大利润问题(答案)
1.烟花厂为扬州“烟花三月”国际经贸旅游节特别设计制作一种新型礼炮,这种礼炮的
升空高度h (m)与飞行时间t (s)的关系式是h =-52
t 2+20t +1,若这种礼炮在最高点处引爆,则从点火升空到引爆需要的时间为( B )
A .3 s
B .4 s
C .5 s
D .6 s
【解析】 当t =-b 2a 时,即t =-20
2×⎝⎛⎭⎫-52=4(s)时,礼炮升到最高点,故选B. 3.某旅行社有100张床位,每床每晚收费20元时,客床可全部租出,若每床每晚每次收费提高4元时,则减少10张床位租出;以每次提高4元的这种方法变化下去,为了投资少而获利大,每床每晚应提高( C )
A .8元或12元
B .8元
C .12元
D .10元
【解析】 设每床每晚应提高x 元,则减少出租床x 4
·10张,所获利润y =(20+x )⎝⎛⎭⎫100-x 4·10,即y =-52x 2+50x +2 000=-52
(x -10)2+2 250. 由x 是4的正整数倍和抛物线y =-52
(x -10)2+2 250关于x =10对称可知,当x =8或x =12时,获利最大,又因为出租床位较少时,投资费用少,故选C.
3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =__4__元时,一天出售该种手工艺品的总利润y 最大.
【解析】 依题意得y =x (8-x )=-(x -4)2+16,当x =4时,y 取得最大值.
4.将进货单价为70元的某种商品按零售单价100元售出时,每天能卖出20个,若这种商品零售价在一定范围内每降价1元,其日销售量就增加1个,为获得最大利润,应降价__5元__.
【解析】 设降价x 元,所获利润为y 元,则有y =(100-70-x )(20+x )=-x 2+10x +600=-(x -5)2+625.当x =5时,y 值最大,故应降价5元.