找规律试题几道经典题目(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试题分类汇编——找规律

1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8

个小圆圈,第100个图中有__________个小圆圈.

(1) (2) (3)

2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有

3个菱形,第3幅图中有5个菱形,则第4

幅图中有 个菱形,第n 幅图中有

个菱形.

3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则

第n 个图形需棋子 枚(用含n 的代数式表示).

4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.

1 2 3 n … … 第1个图 第2个图 第3个图 …

5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形

图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其

中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共

有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.

6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子

枚(用含有n 的代数式表示,并写成最简形式).

○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ● ● ○ ○ ● ● ● ○

○ ● ○ ○ ● ● ○ ○ ● ● ● ○

○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○

○ ○ ○ ○ ○

7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形

根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)

表示实数9,则表示实数17的有序实数对是 .

9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是

10、观察图4的三角形数阵,则第50行的最后一个数是 ( )

1

-2 3

-4 5 -6

7 -8 9 -10

。。。。。。

11、 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第一排 第二排 第三排 第四排 6 ┅┅ 10 9 8

7 3

2 1

5 4

第n 个图案中白色正方形的个数为___________.

12、 观察下列各式:

3211= 332123+= 33221236++= 33332123410+++= ……

猜想:333312310++++=L L

答案解析:

1解析:n=1时,m=5.n 再每增加一个数时,m 就增加3个数.解答:根据所给的具体数据,发现:8=5+3,11=5+3×2,14=5+3×3,….以此类推,第n 个圈中,m=5+3(n-1)=3n+2.

2解析:分析可得:第1幅图中有1×2-1=1个,第2幅图中有2×2-1=3个,第3幅图中有3×2-1=5个,…,故第n 幅图中共有2n-1个 3解析:在4的基础上,依次多3个,得到第n 个图中共有的棋子数.

观察图形,发现:在4的基础上,依次多3个.即第n 个图中有4+3(n-1)

=3n+1.当n=6时,即原式=19.故第6个图形需棋子19枚

4解析:此题只要找出截取表一的那部分,并找出其规律即可解.

解答:解:表二截取的是其中的一列:上下两个数字的差相等,所以a=15+3=18.

表三截取的是两行两列的相邻的四个数字:右边一列数字的差应比左边一列数字的差大1,所b=24+25-20+1=30.

表四中截取的是两行三列中的6个数字:18是3的6倍,则c 应是4的7倍,即28.

故选D .

第一个 第二个 第三个 …… 第n 个

认真观察表格,熟知各个数字之间的关系:第一列是1,2,3,…;第二列是对应第一列的2倍;等三列是对应第一列的3倍

5解析:据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10×10的正方形图案,则其中完整的圆共有102+(10-1)2=181个.

解答:解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10×10的正方形图案中,完整的圆共有102+(10-1)2=181个.

点评:本题难度中等,考查探究图形的规律.本题也只可以直接根据给出的四个图形中计数出的圆的个数,找出数字之间的规律得出答案.

6解析:解:第1个正方形图案有棋子共32=9枚,其中黑色棋子有12=1枚,白色棋子有(32-12)枚;第2个正方形图案有棋子共42=16枚,其中黑色棋子有22=4枚,白色棋子有(42-22)枚;

…由此可推出想第n个图案的白色棋子数为(n+2)2-n2=4(n+1).

故第n个图案的白色棋子数为(n+2)2-n2=4(n+1).

点评:根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论

7解析:根据题意分析可得:

搭第1个图形需12根火柴;

搭第2个图形需12+6×1=18根;

搭第3个图形需12+6×2=24根;

搭第n个图形需12+6(n-1)=6n+6根.

解答:解:搭第334个图形需6×334+6=2010根火柴棒

8解析:寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.

解答:解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案填:(6,5).

对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.

9解析:根据题意分析可得:第n行有n个小圆圈.故f(n)和n的关系是(n)= (n2+n).

相关文档
最新文档