8-1多元函数的基本概念

合集下载

第1节多元函数的基本概念

第1节多元函数的基本概念

的示 . 意图
y
解 要使函数有意义须满足
1x2y20, 即 x2y21,
所以函数的定义域为
x
D {(x,y) x2y21}.有界闭区域
2.二元函数的定义域
例2 求 函 z数 lny(x) xy 的 定D 义 . 域 x2y21
解 要使函数有意义须满足
y
y x0

二. 多元函数的概念
注意 (1) 多元函数也有单值函数和多值函数,如
x2y2z2a2
在讨论过程中通常将其拆成几个单值函数后 再分别加以讨论.
(2) 多元函数也有分段函数,如
xy f(x,y)x2y2
0
x2y20 x2y20
(3) 点函数u=f(P)能表示所有的函数.
(4) 函数有加减乘除数乘及复合运算(略)
确定空间一点 M(x,y,z),当(x, y) 取遍
D上的一切点时, 得到空间点集
z
M(x, y,z)
{x ,(y ,z)zf(x ,y )(x ,,y ) D }
这个点集称为二元函数的图形.
该几何图形通常是一张曲面.
而定义域 D 正是这曲面在Oxy 平面上的投影.
D (x, y) y
x
3.二元函数的几何图形
xy

0

x
2

y2
1

0
函数的定义域为
D {(x ,y )y x 0 ,x 0 y ,x 2 y 2 1 }
yx
x
无界开区域
2.二元函数的定义域 例3 求 zarcxs2 in y2 x2y21的 定. 义
4
解 要使函数有意义,必须

x2 4

多元函数的基本概念

多元函数的基本概念

sin xy lim ( x , y )( 0 , 2 ) x 2 sin( x y) (2) lim ( x , y ) ( 0 , 0 ) x 2 y 2
(1)
1 (3) lim ( x y ) sin 2 ( x , y ) ( 0 , 0 ) x y2
二 多元函数的极限
(一)有关概念 (二)多元函数极限的定义
二元函数的图形 对于在z=f(x,y)的定义域内任意取定的点P(x,y),对应的
函数值为z=f(x,y). 当(x,y)遍取D上的一切点时,得到的空间点集
z
M
{( x, y, z ) | z f ( x, y ), ( x, y ) D}
称为二元函数的图形. 二元函数的图形通常是一张曲面. 二元函数的定义域
0
x2 y (2) f ( x , y ) 4 x y2
当 ( x , y ) (0,0) 时
多元函数的基本概念
一、多元函数的概念
二、多元函数的极限 三、多元函数的连续性
多元函数的基本概念
一、多元函数的概念
二、多元函数的极限 三、多元函数的连续性
三、 多元函数的连续性
(一)多元函数连续性的概念
空间点集
平面点集的有关概念 二维空间:
二元有序实数组(x,y)的全体, 即: {( x , y ) | x R, y R}
记作: R 2或 R R
注 (1) 二维空间的几何意义—坐标平面
(2) 二维空间的元素— P ( x, y ) 坐标平面内的点 平面点集: 二维空间的任一子集, 记作: E R2 注 平面点集E通常是具有某种性质的点的集合, 记作: E={(x,y)|(x,y)具有性质P}

高数多元函数微分学教案 第一讲 多元函数的基本概念

高数多元函数微分学教案  第一讲  多元函数的基本概念

第八章 多元函数微分法及其应用第一讲 多元函数的基本概念授课题目:§8.1多元函数的基本概念教学目的与要求:1、理解多元函数的概念.2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质.教学重点与难点:重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容:一、平面点集 n 维空间1、平面点集平面上一切点的集合称为二维空间, 记为R 2 即R 2=R ⨯R={(x , y ):x , y ∈R }坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作E ={(x , y ):(x , y )具有性质P }.例如,平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y ):x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成C ={P :|OP |<r }.回顾数轴上点的邻域。

邻域:设P 0(x 0, y 0)是xOy 平面上的一个点,δ是某一正数,与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体,称为点P 0的δ邻域,记为U (P 0, δ),即}||{),(00δδ<=PP P P U :或 })()(),{(),(20200 y y x x y x P U δδ<-+-=:. 点P 0的去心δ邻域, 记作) ,(0δP U ,即 }||0{),(00δδ<<=P P P P U :.如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U..点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点.(2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点.(3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E .(4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点.由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集E ={(x , y )|1<x 2+y 2≤2}.,则满足1<x 2+y 2<2的一切点(x , y )都是E 的内点;满足x 2+y 2=1的一切点(x , y )都是E 的边界点;它们都不属于E ;满足x 2+y 2=2的一切点(x , y )也是E 的边界点;它们都属于E ;点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集:如果点集E 的点都是内点, 则称E 为开集.闭集:如果点集的余集E c 为开集, 则称E 为闭集.例如,E ={(x , y )|1<x 2+y 2<2}是开集;E ={(x , y )|1≤x 2+y 2≤2}是闭集; 集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性:如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域):连通的开集称为区域或开区域.例如,E ={(x , y )|1<x 2+y 2<2}是区域.闭区域:开区域连同它的边界一起所构成的点集称为闭区域. 例如,E = {(x , y )|1≤x 2+y 2≤2}.有界集:对于平面点集E , 如果存在某一正数r ,使得E ⊂U (O , r ),其中O 是坐标原点, 则称E 为有界点集.无界集:一个集合如果不是有界集,就称这集合为无界集.例如,集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域;集合{(x , y )| x +y >1}是无界开区域;集合{(x , y )| x +y ≥1}是无界闭区域..2.n 维空间设n 为取定的一个自然数,我们用表示n 元有序数组(x 1, x 2, ⋅ ⋅ ⋅ , x n )的全体所构成的集合记为R n ,即R n =R ⨯R ⨯⋅ ⋅ ⋅⨯R ={(x 1, x 2, ⋅ ⋅ ⋅ , x n ):x i ∈R ,i =1, 2, ⋅ ⋅ ⋅, n }.这样定义了线性运算的集合R n 称为n 维空间.R n 中点x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与点y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )之间的距离,记作ρ(x , y ), 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ.R n 中元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中,通常将||x ||记作|x |), 即22221 ||||nx x x ⋅⋅⋅++=x . 采用这一记号,结合向量的线性运算, 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x .二、多元函数概念回顾一元函数的概念。

8-1多元函数的基本概念

8-1多元函数的基本概念

机动 目录 上页 下页 返回 结束
二元函数 z f ( x, y) 的图形
二元函数的图形通常是一张曲面.
机动 目录 上页 下页 返回 结束
例如 zsinxy 图形如右图.
例如 x2y2z2a2
z
右图球面.
D {x (,y)x2y2a2}.
o
y
单值分支: z a2x2y2
x

机动 目录 上页 下页 返回 结束
(开)区域
y
连通的开集称为区域或开区域.
o
x
例如 {x (,y)|1x 2y24 }.
闭区域
y
开区域连同它的边界一起
称为闭区域.
o
x
例如 {x (,y)|1x 2y24 }.
机动 目录 上页 下页 返回 结束
有界集和无界集
设E是一点,集 A是一定点。如果 数存在
r
V r2h , ( r, h) r 0, h 0
h
定量理想气体的压强
p RT V
( R为常数),
(V , T ) V 0, T T0
三角形面积的海伦公式 ( p a b c ) 2
b
a
S p( p a)( p b)( p c)
sin( x 2 y)
lim
x 0
x2 Байду номын сангаас2
y 0
x2 y

lim
x0
x2

y2
y0
limrcos2sin 0 r 0
利用极坐标变换,把 二元函数的极限,转化 成一元函数的极限!
机动 目录 上页 下页 返回 结束
证明极限不存在的方法:

多元函数微分法及其应用

多元函数微分法及其应用

第九章 多元函数微分法及其应用§8 1 多元函数的基本概念一、平面点集n 维空间1.平面点集二元的序实数组x y 的全体 即R 2RR {x y |x y R }就表示坐标平面坐标平面上具有某种性质P 的点的集合 称为平面点集 记作E {x y | x y 具有性质P } 例如 平面上以原点为中心、r 为半径的圆内所有点的集合是C {x y | x 2y 2r 2} 如果我们以点P 表示x y 以|OP |表示点P 到原点O 的距离 那么集合C 可表成C {P | |OP |r }邻域设P 0x 0 y 0是xOy 平面上的一个点 是某一正数 与点P 0x 0 y 0距离小于的点P x y 的全体 称为点P 0的邻域 记为U P 0 即}|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(20200δδ<-+-=y y x x y x P U 邻域的几何意义 U P 0 表示xOy 平面上以点P 0x 0 y 0为中心、 >0为半径的圆的内部的点P x y 的全体 点P 0的去心邻域 记作) ,(0δP U即}||0 |{) ,(00δδ<<=P P P P U注 如果不需要强调邻域的半径 则用U P 0表示点P 0的某个邻域 点P 0的去心邻域记作)(0P U点与点集之间的关系任意一点P R 2与任意一个点集E R 2之间必有以下三种关系中的一种1内点 如果存在点P 的某一邻域UP 使得UPE 则称P 为E 的内点2外点 如果存在点P 的某个邻域UP 使得UPE 则称P 为E 的外点3边界点 如果点P 的任一邻域内既有属于E 的点 也有不属于E 的点 则称P 点为E 的边点E 的边界点的全体 称为E 的边界 记作EE 的内点必属于E E 的外点必定不属于E 而E 的边界点可能属于E 也可能不属于E 聚点如果对于任意给定的0 点P 的去心邻域),( P U内总有E 中的点 则称P 是E 的聚点由聚点的定义可知 点集E 的聚点P 本身 可以属于E 也可能不属于E例如 设平面点集E {x y |1x 2y 22}满足1x 2y 22的一切点x y 都是E 的内点 满足x 2y 21的一切点x y 都是E 的边界点 它们都不属于E 满足x 2y 22的一切点x y 也是E 的边界点 它们都属于E 点集E 以及它的界边E 上的一切点都是E 的聚点开集 如果点集E 的点都是内点 则称E 为开集闭集 如果点集的余集E c为开集 则称E 为闭集开集的例子 E {x y |1<x 2y 2<2}闭集的例子 E {x y |1x 2y 22}集合{x y |1x 2y 22}既非开集 也非闭集连通性 如果点集E 内任何两点 都可用折线连结起来 且该折线上的点都属于E 则称E 为连通集区域或开区域 连通的开集称为区域或开区域 例如E {x y |1x 2y 22}闭区域 开区域连同它的边界一起所构成的点集称为闭区域 例如E {x y |1x 2y 22}有界集 对于平面点集E 如果存在某一正数r 使得 EUO r其中O 是坐标原点 则称E 为有界点集无界集 一个集合如果不是有界集 就称这集合为无界集例如 集合{x y |1x 2y 22}是有界闭区域 集合{x y | xy 1}是无界开区域集合{x y | xy 1}是无界闭区域 2 n 维空间设n 为取定的一个自然数 我们用R n表示n 元有序数组x 1 x 2 x n 的全体所构成的集合 即R nRRR {x 1 x 2 x n | x i R i 1 2 n } R n中的元素x 1 x 2 x n 有时也用单个字母x 来表示 即x x 1 x 2 x n 当所有的x i i 1 2 n 都为零时 称这样的元素为R n 中的零元 记为0或O 在解析几何中 通过直角坐标 R 2或R 3中的元素分别与平面或空间中的点或向量建立一一对应 因而R n中的元素x x 1 x 2 x n 也称为R n 中的一个点或一个n 维向量 x i称为点x 的第i 个坐标或n 维向量x 的第i 个分量 特别地 Rn中的零元0称为R n中的坐标原点或n 维零向量为了在集合R n 中的元素之间建立联系 在R n中定义线性运算如下 设x x 1 x 2 x n y y 1 y 2 y n 为R n 中任意两个元素 R 规定xy x 1 y 1 x 2 y 2 x n y n x x 1 x 2 x n这样定义了线性运算的集合R n称为n 维空间R n中点x x 1 x 2 x n 和点 y y 1 y 2 y n 间的距离 记作x y 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ显然 n 1 2 3时 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一至R n中元素x x 1 x 2 x n 与零元0之间的距离x 0记作||x ||在R 1、R 2、R 3中 通常将||x ||记作|x | 即22221 ||||n x x x ⋅⋅⋅++=x采用这一记号 结合向量的线性运算 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x 在n 维空间R n 中定义了距离以后 就可以定义R n中变元的极限设x x 1 x 2 x n a a 1 a 2 a n R n如果||xa ||0则称变元x 在R n中趋于固定元a 记作xa 显然xa x 1a 1 x 2a 2 x n a n在R n中线性运算和距离的引入 使得前面讨论过的有关平面点集的一系列概念 可以方便地引入到nn 3维空间中来 例如设a a 1 a 2 a n R n是某一正数 则n 维空间内的点集U a {x | x R nx a }就定义为R n中点a 的邻域 以邻域为基础 可以定义点集的内点、外点、边界点和聚点 以及开集、闭集、区域等一系列概念二 多元函数概念例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系V r 2h这里 当r 、h 在集合{r h | r >0 h >0}内取定一对值r h 时 V 对应的值就随之确定例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系V RTp =其中R 为常数 这里 当V 、T 在集合{V T | V >0 T >0}内取定一对值V T 时 p 的对应值就随之确定 例3 设R 是电阻R 1、R 2并联后的总电阻 由电学知道 它们之间具有关系2121R R R R R +=这里 当R 1、R 2在集合{ R 1 R 2 | R 1>0 R 2>0}内取定一对值 R 1 R 2时 R 的对应值就随之确定定义1 设D 是R 2的一个非空子集 称映射f D R 为定义在D上的二元函数通常记为zfx y x yD或zfP PD其中点集D称为该函数的定义域x y称为自变量z称为因变量上述定义中与自变量x、y的一对值x y相对应的因变量z的值也称为f在点x y处的函数值记作fx y即zfx y 值域fD{z| zfx y x yD}函数的其它符号zzx y zgx y等类似地可定义三元函数ufx y z x y zD以及三元以上的函数一般地把定义1中的平面点集D换成n维空间R n内的点集D映射f D R就称为定义在D上的n元函数通常记为ufx1x2x n x1x2x n D或简记为uf x x x1x2x n D也可记为ufP Px1x2x n D函数定义域的约定在一般地讨论用算式表达的多元函数uf x时就以使这个算式有意义的变元x的值所组成的点集为这个多元函数的自然定义域因而对这类函数它的定义域不再特别标出例如函数z ln xy的定义域为{x y|xy>0}无界开区域函数z arcsin x2y2的定义域为{x y|x2y21}有界闭区域二元函数的图形点集{x y z|zfx y x yD}称为二元函数zfx y的图形二元函数的图形是一张曲面例如zaxbyc是一张平面而函数z=x2+y2的图形是旋转抛物面三多元函数的极限与一元函数的极限概念类似如果在Px yP0x0y0的过程中对应的函数值fx y无限接近于一个确定的常数A则称A 是函数fx y当x yx0y0时的极限定义2设二元函数fPfx y 的定义域为D P 0x 0 y 0是D 的聚点 如果存在常数A 对于任意给定的正数总存在正数 使得当),(),(0δP U D y x P⋂∈时 都有|fPA ||fx yA |成立 则称常数A 为函数fx y 当x yx 0 y 0时的极限 记为 Ay x f y x y x =→),(lim ),(),(0或fx yA x yx 0 y 0也记作AP f P P =→)(lim 0或fPAPP 0上述定义的极限也称为二重极限例4. 设22221sin)(),(y x y x y x f ++= 求证0),(lim )0,0(),(=→y x f y x证 因为2222222222 |1sin ||| |01sin)(||0),(|y x y x y x y x y x y x f +≤+⋅+=-++=-可见 >0 取εδ=则当δ<-+-<22)0()0(0y x即),(),(δO U D y x P⋂∈时 总有|fx y 0|因此0),(lim )0,0(),(=→y x f y x 必须注意1二重极限存在 是指P 以任何方式趋于P 0时 函数都无限接近于A2如果当P 以两种不同方式趋于P 0时 函数趋于不同的值 则函数的极限不存在 讨论函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点0 0有无极限 提示 当点Px y 沿x 轴趋于点0 0时0lim )0 ,(lim ),(lim00)0,0(),(===→→→x x y x x f y x f 当点Px y 沿y 轴趋于点0 0时0lim ) ,0(lim ),(lim 0)0,0(),(===→→→y y y x y f y x f当点P x y 沿直线ykx 有22222022 )0,0(),(1lim lim kk x k x kx y x xy x kx y y x +=+=+→=→ 因此 函数fx y 在0 0处无极限极限概念的推广 多元函数的极限多元函数的极限运算法则 与一元函数的情况类似 例5 求x xy y x )sin(lim)2,0(),(→解 y xy xy xxy y x y x ⋅=→→)sin(lim )sin(lim)2,0(),()2,0(),(y xy xy y x y x )2,0(),()2,0(),(lim )sin(lim→→⋅=122 四 多元函数的连续性定义3 设二元函数fPf x y 的定义域为D P 0x 0 y 0为D的聚点 且P 0D 如果),(),(lim00),(),(00y x f y x f y x y x =→ 则称函数f x y 在点P 0x 0 y 0连续如果函数f x y 在D 的每一点都连续 那么就称函数f x y 在D 上连续 或者称f x y 是D 上的连续函数二元函数的连续性概念可相应地推广到n 元函数fP 上去例6设fx ,y sin x 证明fx y 是R 2上的连续函数证 设P 0x 0 y 0 R 20 由于sin x 在x 0处连续 故0 当|xx 0|时 有|sin x sin x 0|以上述作P 0的邻域UP 0 则当Px yUP 0 时 显然 |fx yfx 0 y 0||sin x sin x 0|即fx y sin x 在点P 0x 0 y 0 连续 由P 0的任意性知 sin x 作为x y 的二元函数在R 2上连续证 对于任意的P 0x 0 y 0R 2因为),(sin sin lim),(lim 000),(),(),(),(0000y x f x x y x f y x y x y x y x ===→→ 所以函数fx ,y sin x 在点P 0x 0 y 0连续 由P 0的任意性知 sin x作为x y 的二元函数在R 2上连续类似的讨论可知 一元基本初等函数看成二元函数或二元以上的多元函数时 它们在各自的定义域内都是连续的 定义4设函数fx y 的定义域为D P 0x 0 y 0是D 的聚点 如果函数fx y 在点P 0x 0 y 0不连续 则称P 0x 0 y 0为函数fx y 的间断点 例如 函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f其定义域D R 2O 0 0是D 的聚点 fx y 当x y 0 0时的极限不存在 所以点O 0 0是该函数的一个间断点又如 函数11sin22-+=y x z 其定义域为D {x y |x 2y 21} 圆周C {x y |x 2y 21}上的点都是D 的聚点 而fx y 在C 上没有定义 当然fx y 在C 上各点都不连续 所以圆周C 上各点都是该函数的间断点注 间断点可能是孤立点也可能是曲线上的点可以证明 多元连续函数的和、差、积仍为连续函数 连续函数的商在分母不为零处仍连续 多元连续函数的复合函数也是连续函数多元初等函数 与一元初等函数类似 多元初等函数是指可用一个式子所表示的多元函数 这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的例如2221y y x x +-+ sin xy 222z y xe ++都是多元初等函数一切多元初等函数在其定义区域内是连续的 所谓定义区域是指包含在定义域内的区域或闭区域由多元连续函数的连续性 如果要求多元连续函数fP 在点P 0处的极限 而该点又在此函数的定义区域内 则 )()(lim 00P f P f p p =→例7 求xy y x y x +→)2,1(),(lim解 函数xy yx y x f +=),(是初等函数 它的定义域为D {x y |x 0 y 0}P 01 2为D 的内点 故存在P 0的某一邻域UP 0D 而任何邻域都是区域 所以UP 0是fx y 的一个定义区域 因此23)2,1(),(lim)2,1(),(==→f y x f y x 一般地 求)(lim 0P f P P →时 如果fP 是初等函数 且P 0是fP 的定义域的内点 则fP 在点P 0处连续 于是)()(lim 00P f P f P P =→例8 求xy xy y x 11lim)0 ,0(),(-+→解)11()11)(11(lim11lim)0 ,0(),()0 ,0(),(++++-+=-+→→xy xy xy xy xy xy y x y x 21111lim )0 ,0(),(=++=→xy y x多元连续函数的性质性质1 有界性与最大值最小值定理在有界闭区域D 上的多元连续函数 必定在D 上有界 且能取得它的最大值和最小值性质1就是说 若fP 在有界闭区域D 上连续 则必定存在常数M 0 使得对一切PD 有|fP |M 且存在P 1、P 2D 使得 fP 1max{fP |PD } fP 2min{fP |PD }性质2 介值定理 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值§8 2 偏导数一、偏导数的定义及其计算法对于二元函数zfx y 如果只有自变量x 变化 而自变量y 固定 这时它就是x 的一元函数 这函数对x 的导数 就称为二元函数zfx y 对于x 的偏导数定义 设函数zfx y 在点x 0 y 0的某一邻域内有定义 当y 固定在y 0而x 在x 0处有增量x 时 相应地函数有增量fx 0x y 0fx 0 y 0如果极限x y x f y x x f x ∆-∆+→∆),(),(lim00000存在 则称此极限为函数zfx y 在点x 0 y 0处对x 的偏导数 记作0y y x x x z==∂∂ 00y y x x x f ==∂∂0y y x x xz == 或),(00y x f x例如x y x f y x x f y x f x x ∆-∆+=→∆),(),(lim),(0000000类似地 函数zfx y 在点x 0 y 0处对y 的偏导数定义为y y x f y y x f y ∆-∆+→∆),(),(lim00000记作y y x x y z==∂∂y y x x y f==∂∂y y x x yz == 或f y x 0 y 0偏导函数 如果函数zfx y 在区域D 内每一点x y 处对x 的偏导数都存在 那么这个偏导数就是x 、y 的函数 它就称为函数zfx y 对自变量x 的偏导函数 记作x z ∂∂ xf ∂∂ x z 或),(y x f x偏导函数的定义式x y x f y x x f y x f x x ∆-∆+=→∆),(),(lim),(0类似地 可定义函数zfx y 对y 的偏导函数 记为y z ∂∂ yf∂∂ z y 或),(y x f y偏导函数的定义式y y x f y y x f y x f y y ∆-∆+=→∆),(),(lim),(0求xf∂∂时 只要把y 暂时看作常量而对x求导数 求yf∂∂时只要把x 暂时看作常量而对y 求导数讨论 下列求偏导数的方法是否正确),(),(00y y x x x x y x f y x f ===),(),(00y y x x y y y x f y x f ===0]),([),(000x x x y x f dx d y x f == 0]),([),(000y y y y x f dy dy x f ==偏导数的概念还可推广到二元以上的函数例如三元函数ufx y z 在点x y z 处对x 的偏导数定义为x z y x f z y x x f z y x f x x ∆-∆+=→∆),,(),,(lim),,(0其中x y z 是函数ufx y z 的定义域的内点 它们的求法也仍旧是一元函数的微分法问题例1 求zx 23xyy 2在点1 2处的偏导数解 y x x z 32+=∂∂ yx y z 23+=∂∂ 8231221=⋅+⋅=∂∂==y x xz7221321=⋅+⋅=∂∂==y x yz例2 求zx 2sin 2y 的偏导数解 y x x z 2sin 2=∂∂ yx y z 2cos 22=∂∂例3 设)1,0(≠>=x x xz y求证zy z x x z y x 2ln 1=∂∂+∂∂证 1-=∂∂y yx x z xx y z y ln =∂∂zx x x x x yx y x y z x x z y x y y y y 2ln ln 1ln 11=+=+=∂∂+∂∂-例4 求222z y x r ++=的偏导数解 r x z y x x x r =++=∂∂222 r y z y x y y r =++=∂∂222例5 已知理想气体的状态方程为pV =RTR 为常数求证 1-=∂∂⋅∂∂⋅∂∂p T T V V p证 因为V RTp = 2V RT V p-=∂∂p RT V = p RT V =∂∂RpV T =R Vp T =∂∂所以12-=-=⋅⋅-=∂∂⋅∂∂⋅∂∂pV RT R V p R V RT p T T V V p例 5 说明的问题 偏导数的记号是一个整体记号 不能看作分子分母之商二元函数zfx y 在点x 0 y 0的偏导数的几何意义f x x 0 y 0fx y 0x 是截线zfx y 0在点M 0处切线T x 对x 轴的斜率f y x 0 y 0 fx 0 y y 是截线zfx 0 y 在点M 0处切线T y 对y 轴的斜率偏导数与连续性 对于多元函数来说 即使各偏导数在某点都存在 也不能保证函数在该点连续 例如⎪⎩⎪⎨⎧=+≠++=0 00),(222222y x y x y x xy y x f在点0 0有 f x 0 00 f y 0 00 但函数在点0 0并不连续提示0)0 ,(=x f 0) ,0(=y f0)]0 ,([)0 ,0(==x f dx d f x 0)] ,0([)0 ,0(==y f dy df y当点Px y 沿x 轴趋于点0 0时 有0lim )0 ,(lim ),(lim00)0,0(),(===→→→x x y x x f y x f当点Px y 沿直线ykx 趋于点0 0时 有22222022 )0,0(),(1lim lim kk x k x kx y x xy x kx y y x +=+=+→=→因此),(lim )0,0(),(y x f y x →不存在 故函数fx y 在0 0处不连续类似地 可定义函数zfx y 对y 的偏导函数 记为y z ∂∂ yf∂∂ z y 或),(y x f y偏导函数的定义式y y x f y y x f y x f y y ∆-∆+=→∆),(),(lim),(0二 高阶偏导数设函数zfx y 在区域D 内具有偏导数),(y x f x z x =∂∂ ),(y x f y z y=∂∂那么在D 内f x x y 、f y x y 都是x y 的函数 如果这两个函数的偏导数也存在 则称它们是函数zfx y 的二偏导数 按照对变量求导次序的为同有下列四个二阶偏导数如果函数zfx y 在区域D 内的偏导数f x x y 、f y x y 也具有偏导数则它们的偏导数称为函数zfx y 的二阶偏导数 按照对变量求导次序的不同有下列四个二阶偏导数),()(22y x f x z x z x xx =∂∂=∂∂∂∂ ),()(2y x f y x z x z y xy=∂∂∂=∂∂∂∂),()(2y x f x y z y z x yx =∂∂∂=∂∂∂∂ ),()(22y x f y z y z y yy =∂∂=∂∂∂∂其中),()(2y x f y x z x z y xy =∂∂∂=∂∂∂∂ ),()(2y x f x y z y z x yx=∂∂∂=∂∂∂∂称为混合偏导数22)(x z x z x ∂∂=∂∂∂∂ yx z x z y ∂∂∂=∂∂∂∂2)( x y z y z x ∂∂∂=∂∂∂∂2)( 22)(y zy z y ∂∂=∂∂∂∂同样可得三阶、四阶、以及n 阶偏导数二阶及二阶以上的偏导数统称为高阶偏导数例6 设zx 3y 23xy 3xy 1 求22x z ∂∂、33x z∂∂、x y z ∂∂∂2和y x z∂∂∂2解 y y y x x z --=∂∂32233 xxy y x y z --=∂∂23922226xy x z =∂∂ 2336y x z =∂∂196222--=∂∂∂y y x y x z 196222--=∂∂∂y y x x y z由例6观察到的问题 y x zx y z ∂∂∂=∂∂∂22定理 如果函数zfx y 的两个二阶混合偏导数x y z ∂∂∂2及yx z∂∂∂2在区域D 内连续 那么在该区域内这两个二阶混合偏导数必相等类似地可定义二元以上函数的高阶偏导数例7 验证函数22ln y x z +=满足方程02222=∂∂+∂∂y z x z证 因为)ln(21ln 2222y x y x z +=+= 所以22y x xx z +=∂∂22y x y y z +=∂∂222222222222)()(2)(y x x y y x x x y x xz +-=+⋅-+=∂∂222222222222)()(2)(y x y x y x y y y x yz +-=+⋅-+=∂∂因此 0)()(22222222222222=+-++-=∂∂+∂∂y x x y y x y x y z x z例8.证明函数r u 1=满足方程0222222=∂∂+∂∂+∂∂z u y u x u其中222z y x r ++=证 32211r xr x r x r r x u -=⋅-=∂∂⋅-=∂∂52343223131r x r x r r x r x u +-=∂∂⋅+-=∂∂同理5232231r y r y u +-=∂∂ 5232231r z r z u +-=∂∂因此)31()31()31(523523523222222r z r r y r r x r zu y u x u +-++-++-=∂∂+∂∂+∂∂33)(3352352223=+-=+++-=r r r r z y x r提示 6236333223)()(r x rr x r r r x x r rx x x u ∂∂⋅--=∂∂⋅--=-∂∂=∂∂§8 3全微分及其应用 一、全微分的定义根据一元函数微分学中增量与微分的关系有 偏增量与偏微分fxx yfx yf x x yxfxx yfx y 为函数对x 的偏增量 f x x yx 为函数对x 的偏微分fx yyfx yf y x yyfx yyfx y 为函数对y 的偏增量 f y x yy 为函数对y 的偏微分全增量 z fxx yyfx y计算全增量比较复杂 我们希望用x 、y 的线性函数来近似代替之定义 如果函数zfx y 在点x y 的全增量 z fxx yyfx y 可表示为) )()(( )(22y x o y B x A z ∆+∆=+∆+∆=∆ρρ 其中A 、B 不依赖于x 、y 而仅与x 、y 有关 则称函数zfx y 在点x y 可微分 而称AxBy 为函数zfx y 在点x y 的全微分 记作dz 即dzAxBy如果函数在区域D 内各点处都可微分 那么称这函数在D 内可微分可微与连续 可微必连续 但偏导数存在不一定连续 这是因为 如果zfx y 在点x y 可微则 z fxx yyfx yAxByo 于是 0lim 0=∆→z ρ从而),(]),([lim ),(lim)0,0(),(y x f z y x f y y x x f y x =∆+=∆+∆+→→∆∆ρ因此函数zfx y 在点x y 处连续 可微条件定理1必要条件如果函数zfx y 在点x y 可微分 则函数在该点的偏导数x z∂∂、y z ∂∂必定存在 且函数zfx y 在点x y 的全微分为yy z x xz dz ∆∂∂+∆∂∂= 证 设函数zfx y 在点Px y 可微分 于是 对于点P 的某个邻域内的任意一点P xx yy 有zAxByo 特别当y 0时有f xx yfx yAxo |x |上式两边各除以x 再令x 0而取极限 就得Ax y x f y x x f x =∆-∆+→∆),(),(lim从而偏导数x z ∂∂存在 且Ax z =∂∂同理可证偏导数y z ∂∂存在 且B y z =∂∂所以yy z x xz dz ∆∂∂+∆∂∂= 简要证明设函数zfx y 在点x y 可微分 于是有zAxByo 特别当y 0时有f xx yfx yAxo |x |上式两边各除以x 再令x 0而取极限 就得Ax x o A x y x f y x x f x x =∆∆+=∆-∆+→∆→∆]|)(|[lim ),(),(lim00从而x z ∂∂存在 且A x z =∂∂同理y z ∂∂存在 且B y z =∂∂ 所以yy z x xz dz ∆∂∂+∆∂∂= 偏导数x z∂∂、y z ∂∂存在是可微分的必要条件 但不是充分条件例如函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点00处虽然有f x 0 00及f y 0 00但函数在00不可微分即zf x 0 0xf y 0 0y 不是较高阶的无穷小这是因为当x y 沿直线yx 趋于0 0时ρ])0 ,0()0 ,0([y f x f z y x ∆⋅+∆⋅-∆021)()()()(2222≠=∆+∆∆⋅∆=∆+∆∆⋅∆=x x x x y x y x定理2充分条件 如果函数zfx y 的偏导数x z∂∂、y z ∂∂在点x y 连续 则函数在该点可微分定理1和定理2的结论可推广到三元及三元以上函数 按着习惯x 、y 分别记作dx 、dy 并分别称为自变量的微分则函数zfx y 的全微分可写作dyy z dx x z dz ∂∂+∂∂=二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理 叠加原理也适用于二元以上的函数 例如函数uf x y z 的全微分为dzz u dy y u dx x u du ∂∂+∂∂+∂∂= 例1 计算函数zx 2y y 2的全微分解 因为xy x z 2=∂∂ yx y z 22+=∂∂所以dz 2xydxx 22ydy例2 计算函数ze xy在点2 1处的全微分解 因为xy ye x z =∂∂ xyxe y z =∂∂ 212e x z y x =∂∂== 2122ey z y x =∂∂==所以 dze 2dx 2e 2dy 例3 计算函数yze yx u ++=2sin 的全微分解 因为1=∂∂x u yz ze y y u +=∂∂2cos 21 yzye z u =∂∂ 所以 dzye dy ze ydx du yz yz +++=)2cos 21(二、全微分在近似计算中的应用当二元函数zf x y 在点P x y 的两个偏导数f x x y fyx y 连续 并且|x | |y |都较小时 有近似等式z dz f x x yxf y x yy即 f xx yy fx yf x x yxf y x yy我们可以利用上述近似等式对二元函数作近似计算 例4 有一圆柱体 受压后发生形变 它的半径由20cm 增大到20 05cm 高度由100cu 减少到99cm 求此圆柱体体积变化的近似值解 设圆柱体的半径、高和体积依次为r 、h 和V 则有V r 2h已知r 20 h 100 r 0 05 h 1 根据近似公式 有VdVV r rV h h 2rhrr 2h2201000 052021200 cm 3即此圆柱体在受压后体积约减少了200 cm 3例5 计算1 04202的近似值解 设函数f x yx y显然 要计算的值就是函数在x 104y 202时的函数值f 104 202 取x 1 y 2 x 004 y 002 由于f xx yy fx yf x x yxf y x yyx y yx y 1xx yln x y所以10420212212100412ln1002108例6 利用单摆摆动测定重力加速度g 的公式是224T lg π=现测得单摆摆长l 与振动周期T 分别为l =100±、T =2±.问由于测定l 与T 的误差而引起g 的绝对误差和相对误差各为多少解 如果把测量l 与T 所产生的误差当作|Δl |与|ΔT |,则利用上述计算公式所产生的误差就是二元函数224T lg π=的全增量的绝对值|Δg |.由于|Δl ||ΔT |都很小因此我们可以用dg 来近似地代替Δg 这样就得到g 的误差为||||||T T g l l g dg g ∆∂∂+∆∂∂=≈∆T l T g l g δδ⋅∂∂+⋅∂∂≤||||)21(4322Tl T l T δδπ+=其中l 与T 为l 与T 的绝对误差 把l =100 T =2, l =, δT =代入上式 得g 的绝对误差约为)004.02100221.0(4322⨯⨯+=πδg)/(93.45.022s cm ==π.02225.0210045.0=⨯=ππδg g从上面的例子可以看到对于一般的二元函数z =fx, y , 如果自变量x 、y 的绝对误差分别为x 、y , 即|Δx |x , |Δy |y , 则z 的误差||||||y y z x x z dz z ∆∂∂+∆∂∂=≈∆ ||||||||y y z x x z ∆⋅∂∂+∆⋅∂∂≤ y x y z x z δδ⋅∂∂+⋅∂∂≤||||从而得到z 的绝对误差约为yx z yz xz δδδ⋅∂∂+⋅∂∂=||||z 的相对误差约为yx z z y z z x zz δδδ∂∂+∂∂=||§8 4 多元复合函数的求导法则 设zfu v 而ut vt 如何求dt dz设zfu v 而ux y vx y 如何求x z∂∂和y z ∂∂1 复合函数的中间变量均为一元函数的情形定理1 如果函数ut 及vt 都在点t 可导 函数zfu v 在对应点u v 具有连续偏导数 则复合函数zft t 在点t 可导 且有dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂=简要证明1 因为zfu v 具有连续的偏导数 所以它是可微的 即有dvv z du uz dz ∂∂+∂∂=又因为ut 及vt 都可导 因而可微 即有dt dt du du = dtdt dv dv = 代入上式得dt dtdv v z dt dt du u z dz ⋅∂∂+⋅∂∂=dtdt dv v z dt du u z )(⋅∂∂+⋅∂∂= 从而 dt dvv z dt du u z dt dz ⋅∂∂+⋅∂∂=简要证明2 当t 取得增量t 时 u 、v 及z 相应地也取得增量u 、v 及z 由zfu v 、ut 及vt 的可微性 有)(ρo v v z u u z z +∆∂∂+∆∂∂=∆)()]([)]([ρo t o t dt dv v z t o t dt du u z +∆+∆∂∂+∆+∆∂∂=)()()()(ρo t o v z u z t dt dv v z dt du u z +∆∂∂+∂∂+∆⋅∂∂+⋅∂∂= t o t t o v z u z dt dv v z dt du u z t z ∆+∆∆∂∂+∂∂+⋅∂∂+⋅∂∂=∆∆)()()(ρ令t 0 上式两边取极限 即得dt dvv z dt du u z dt dz ⋅∂∂+⋅∂∂=注0)()(0)()()(lim )(lim 222200=+⋅=∆∆+∆⋅=∆→∆→∆dt dv dt du t v u o t o t t ρρρ推广 设zf u v w u t vt wt 则zf t t t 对t 的导数为dt dww z dt dv v z dt du u z dt dz ∂∂+∂∂+∂∂=上述dt dz称为全导数2 复合函数的中间变量均为多元函数的情形定理2 如果函数ux y vx y 都在点x y 具有对x 及y 的偏导数 函数zfu v 在对应点u v 具有连续偏导数 则复合函数zf x y x y 在点x y 的两个偏导数存在 且有x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ y vv z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂推广 设zfu v w ux y vx y wx y 则x w w z x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ y ww z y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂讨论 1设zfu v ux y vy 则=∂∂x z =∂∂y z提示 x u u z x z ∂∂⋅∂∂=∂∂ dy dvv z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂2设zfu x y 且ux y 则=∂∂x z =∂∂y z提示 x f x u u f x z ∂∂+∂∂∂∂=∂∂ y fy u u f y z ∂∂+∂∂∂∂=∂∂ 这里x z∂∂与xf ∂∂是不同的 x z∂∂是把复合函数zfx y x y 中的y 看作不变而对x 的偏导数 xf∂∂是把fu x y 中的u 及y 看作不变而 对x 的偏导数 y z∂∂与yf ∂∂也有类似的区别3.复合函数的中间变量既有一元函数 又有多元函数的情形定理3 如果函数ux y 在点x y 具有对x 及对y 的偏导数 函数vy 在点y 可导 函数zfu v 在对应点u v 具有连续偏导数 则复合函数zfx y y 在点x y 的两个偏导数存在 且有x u u z x z ∂∂⋅∂∂=∂∂ dy dvv z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂例1 设ze u sin v uxy vxy 求x z∂∂和y z ∂∂解 x vv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂e u sin vye ucos v 1 e x yy sin xy cos xyy vv z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂e u sin vxe ucos v 1 e xyx sin xy cos xy 例2 设222),,(z y x ez y x f u ++== 而y x z sin 2= 求x u∂∂和y u ∂∂解 x zz f x f x u ∂∂⋅∂∂+∂∂=∂∂y x ze xez y xz y xsin 222222222⋅+=++++yx y xey x x 2422sin 22)sin 21(2++++=y zz f y f y u ∂∂⋅∂∂+∂∂=∂∂y x ze yez y xz y xcos 222222222⋅+=++++yx y xey y x y 2422sin 4)cos sin (2+++=例3 设zuv sin t 而uetv cos t 求全导数dt dz解 t zdt dv v z dt du u z dt dz ∂∂+⋅∂∂+⋅∂∂=ve tu sin t cos t e tcos te tsin t cos t e t cos t sin t cos t 例4 设wfxyz xyz f具有二阶连续偏导数 求x w∂∂及z x w ∂∂∂2解 令uxyz vxyz 则wfu v 引入记号u v u f f ∂∂='),(1 v u v u f f ∂∂∂='),(12同理有2f '11f ''22f ''等 21f yz f x v v f x u u f x w '+'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂z f yz f y z f f yz f z z x w ∂'∂+'+∂'∂='+'∂∂=∂∂∂221212)(2222121211f z xy f yz f y f xy f ''+''+'+''+''= 22221211)(f z xy f y f z x y f ''+'+''++''= 注 1211111f xy f z v v f z u u f z f ''+''=∂∂⋅∂'∂+∂∂⋅∂'∂=∂'∂ 2221222f xy f z v v f z u u f z f ''+''=∂∂⋅∂'∂+∂∂⋅∂'∂=∂'∂例5 设ufx y 的所有二阶偏导数连续 把下列表达式转换成极坐标系中的形式122)()(y u xu ∂∂+∂∂ 22222y u x u ∂∂+∂∂ 解 由直角坐标与极坐标间的关系式得 ufx yf cos θ sin θF θ 其中x cos θ y sin θ 22yx +=ρx yarctan=θ应用复合函数求导法则 得x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2ρθρρy u x u ∂∂-∂∂=ρθθθρsin cos y u u ∂∂-∂∂=y u y u y u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2ρθρρx u y u ∂∂+∂∂=ρθθθρcos sin ∂∂+∂∂=u u两式平方后相加 得22222)(1)()()(θρρ∂∂+∂∂=∂∂+∂∂u u yu x u 再求二阶偏导数 得x x u x x u x u ∂∂⋅∂∂∂∂+∂∂⋅∂∂∂∂=∂∂θθρρ)()(22θρθθθρρcos )sin cos (⋅∂∂-∂∂∂∂=u u ρθρθθθρθsin )sin cos (⋅∂∂-∂∂∂∂-u u 22222222sin cos sin 2cos ρθθρθθθρθρ∂∂+∂∂∂-∂∂=u u u ρθρρθθθ22sin cos sin 2∂∂+∂∂+u u同理可得2222222222cos cos sin 2sin ρθθρθθθρθρ∂∂+∂∂∂+∂∂=∂∂u u u y u ρθρρθθθ22cos cos sin 2∂∂+∂∂-u u两式相加 得22222222211θρρρρ∂∂++∂∂=∂∂+∂∂u u y u x u])([1222θρρρρρ∂∂+∂∂∂∂=u u全微分形式不变性 设zfu v 具有连续偏导数 则有全微分dvv z du uz dz ∂∂+∂∂= 如果zfu v 具有连续偏导数 而ux y vx y 也具有连续偏导数 则dyy z dx x z dz ∂∂+∂∂=dyy v v z y u u z dx x v v z x u u z )()(∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂=)()(dy y v dx x v v z dy y u dx x u u z ∂∂+∂∂∂∂+∂∂+∂∂∂∂= dv v z du uz ∂∂+∂∂= 由此可见 无论z 是自变量u 、v 的函数或中间变量u 、v 的函数 它的全微分形式是一样的 这个性质叫做全微分形式不变性例6 设ze usin v ux y vxy 利用全微分形式不变性求全微分解 dv v z du uz dz ∂∂+∂∂= e u sin vdu e ucos v dv e u sin vy dxx dy e u cos vdxdy ye u sin v e u cos vdxxe u sin v e ucos v dye xy y sin xy cos xydx e xyx sin xy cos xydy§8 5 隐函数的求导法则一、一个方程的情形 隐函数存在定理1设函数Fx y 在点Px 0 y 0的某一邻域内具有连续偏导数Fx 0 y 00 F y x 0 y 00 则方程Fx y 0在点x 0 y 0的某一邻域内恒能唯一确定一个连续且具有连续导数的函数yfx 它满足条件y 0fx 0 并有yx F F dx dy-= 求导公式证明 将yfx 代入Fx y 0 得恒等式 Fx fx 0 等式两边对x 求导得=⋅∂∂+∂∂dx dy y F x F由于F y 连续 且F y x 0 y 00 所以存在x 0 y 0的一个邻域 在这个邻域同F y 0 于是得yx F F dx dy-=例1 验证方程x 2y 210在点0 1的某一邻域内能唯一确定一个有连续导数、当x 0时y 1的隐函数yfx 并求这函数的一阶与二阶导数在x 0的值解 设Fx yx 2y 21 则F x 2x F y 2y F 0 10 F y 0 120 因此由定理1可知 方程x 2y 210在点0 1的某一邻域内能唯一确定一个有连续导数、当x 0时y 1的隐函数yfx yx F F dx dyy x -=-= 00==x dx dy332222221)(y y x y y y x x y y y x y dx y d -=+-=---='--=1022-==x dx yd隐函数存在定理还可以推广到多元函数 一个二元方程Fx y 0可以确定一个一元隐函数 一个三元方程Fx y z 0可以确定一个二元隐函数 隐函数存在定理2设函数Fx y z 在点Px 0 y 0 z 0的某一邻域内具有连续的偏导数 且Fx 0 y 0 z 00 F z x 0 y 0 z 00 则方程Fx y z 0在点x 0 y 0z 0的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数zfx y 它满足条件z 0fx 0 y 0 并有zxF F x z -=∂∂ zyF F y z -=∂∂公式的证明 将zfx y 代入Fx y z 0 得Fx y fx y 0 将上式两端分别对x 和y 求导 得0=∂∂⋅+x z F F z x 0=∂∂⋅+y zF F z y因为F z 连续且F z x 0 y 0 z 00 所以存在点x 0 y 0 z 0的一个邻域 使F z 0 于是得zx F F x z -=∂∂ zy F F y z -=∂∂例2. 设x 2y 2z 24z 0 求22x z∂∂解 设Fx y z x 2y 2z 24z 则F x 2x F y 2z 4 z x z x F F x z z x -=--=-=∂∂24223222222)2()2()2()2()2()2()2(z x x z z x x x z x z x x x z -+-=--+-=-∂∂+-=∂∂二、方程组的情形在一定条件下 由个方程组Fx y u v 0 Gx y u v 0可以确定一对二元函数uux y vvx y 例如方程xuyv 0和yuxv 1可以确定两个二元函数22y x y u +=22y x x v +=事实上 xuyv 0 u yx v =1=⋅+u y x x yu 22y x yu += 2222yx x y x yy x v +=+⋅=如何根据原方程组求u v 的偏导数 隐函数存在定理3 隐函数存在定理3设Fx y u v 、Gx y u v 在点Px 0 y 0 u 0 v 0的某一邻域内具有对各个变量的连续偏导数 又Fx 0 y 0 u 0 v 00 Gx 0 y 0 u 0 v 00 且偏导数所组成的函数行列式v G u Gv Fu Fv u G F J ∂∂∂∂∂∂∂∂=∂∂=),(),(在点Px 0 y 0 u 0 v 0不等于零 则方程组Fx y u v 0 Gx y u v 0在点Px 0 y 0 u 0 v 0的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数uux y vvx y 它们满足条件u 0ux 0 y 0 v 0vx 0y 0 并有v uv uv x v xG G F F G G F F v x G F J x u -=∂∂-=∂∂),(),(1vuv ux u x uG G F F G G F F x u G F J x v -=∂∂-=∂∂),(),(1vu vu vy v y G G F F G G F F v y G F J y u -=∂∂-=∂∂),(),(1vu vu yu y u G G F F G G F F y u G F J y v -=∂∂-=∂∂),(),(1隐函数的偏导数:设方程组Fx y u v 0 Gx y u v 0确定一对具有连续偏导数的二元函数uux y vvx y 则偏导数x u ∂∂ x v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0x v G x u G G x v F x u F F v u x v u x 确定偏导数y u ∂∂ y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y v G y u G G y v F y u F F v u y v u y 确定例3 设xuyv 0 yuxv 1 求x u ∂∂ x v ∂∂ y u∂∂和y v ∂∂解 两个方程两边分别对x 求偏导 得x u ∂∂和x v∂∂的方程组⎪⎩⎪⎨⎧=∂∂++∂∂=∂∂-∂∂+00x v x v x u y x v y x u x u当x 2y 2时 解之得22y x yv xu x u ++-=∂∂ 22y x xvyu x v +-=∂∂两个方程两边分别对x 求偏导 得y u∂∂和y v∂∂的方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂--∂∂00y v x y u y u y v y v y u x 当x 2y 2时 解之得22y x yu xv y u +-=∂∂ 22y x yvxu y v ++-=∂∂另解 将两个方程的两边微分得⎩⎨⎧=+++=--+00xdv vdx ydu udy ydv vdy xdu udx 即⎩⎨⎧--=+-=-vdx udy xdv ydu udxvdy ydv xdu解之得dy y x yuxv dx y x yv xu du 2222+-+++-=dy y x yvxu dx y x xv yu dv 2222++-+-=于是 22y x yv xu x u ++-=∂∂ 22yx yu xv y u +-=∂∂22y x xv yu x v +-=∂∂ 22y x yv xu y v ++-=∂∂例 设函数xxu v yyu v 在点u v 的某一领域内连续且有连续偏导数 又0),(),(≠∂∂v u y x1证明方程组⎩⎨⎧==),(),(v u y y v u x x在点x y u v 的某一领域内唯一确定一组单值连续且有连续偏导数的反函数uux y vvx y2求反函数uux y vvx y 对x y 的偏导数 解 1将方程组改写成下面的形式⎩⎨⎧=-≡=-≡0),(),,,(0),(),,,(v u y y v u y x G v u x x v u y x F则按假设.0),(),(),(),(≠∂∂=∂∂=v u y x v u G F J由隐函数存在定理3 即得所要证的结论2将方程组7所确定的反函数uux yvvx y 代入7 即得⎩⎨⎧≡≡)],(),,([)],(),,([y x v y x u y y y x v y x u x x将上述恒等式两边分别对x 求偏导数得⎪⎩⎪⎨⎧∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=x v v y x u u y x vv x x u u x 01由于J 0 故可解得v y J x u ∂∂=∂∂1 u yJ x v ∂∂-=∂∂1同理 可得v x J y u ∂∂-=∂∂1 u xJ y v ∂∂=∂∂1§8 6多元函数微分学的几何应用一 空间曲线的切线与法平面 设空间曲线的参数方程为 xt yt zt 这里假定t t t 都在 上可导在曲线上取对应于tt 0的一点M 0x 0 y 0 z 0及对应于tt 0t 的邻近一点Mx 0+x y 0+y z 0+z 作曲线的割线MM 0 其方程为z z z y y y x x x ∆-=∆-=∆-000当点M 沿着趋于点M 0时割线MM 0的极限位置就是曲线在点M 0处的切线 考虑t z z z ty y y t x x x ∆∆-=∆∆-=∆∆-000 当MM 0 即t 0时 得曲线在点M 0处的切线方程为)()()(000000t z z t y y t x x ωψϕ'-='-='- 曲线的切向量 切线的方向向量称为曲线的切向量 向量T t 0 t 0 t 0就是曲线在点M 0处的一个切向量法平面 通过点M 0而与切线垂直的平面称为曲线在点M 0 处的法平面 其法平面方程为 t 0xx 0t 0yy 0t 0zz 00例1 求曲线xt yt 2zt 3在点1 1 1处的切线及法平面方程解 因为x t 1 y t 2t z t 3t 2而点1 1 1所对应的参数t 1 所以T 1 2 3 于是 切线方程为 312111-=-=-z y x法平面方程为x 12y 13z 10 即x 2y 3z 6讨论1 若曲线的方程为 yx zx问其切线和法平面方程是什么形式提示 曲线方程可看作参数方程 xx yx zx 切向量为T 1 x x2 若曲线的方程为Fx y z 0 Gx y z 0 问其切线和法平面方程又是什么形式提示 两方程确定了两个隐函数 yx zx 曲线的参数方程为xx yx zx由方程组⎪⎩⎪⎨⎧=++=++00dx dz G dx dy G G dxdz F dx dy F F z y x z y x 可解得dx dy 和dx dz 切向量为) ,,1(dx dz dx dy =T例2 求曲线x 2y 2z 26 xyz 0在点1 2 1处的切线及法平面方程解 为求切向量 将所给方程的两边对x 求导数 得⎪⎩⎪⎨⎧=++=++010222dx dz dx dydxdz z dx dy y x解方程组得z y xz dx dy --= z y yx dx dz --=在点1 2 1处 0=dx dy 1-=dx dz从而T 1 0 1 所求切线方程为 110211--=+=-z y x法平面方程为x 10y 2z 10 即xz 0解 为求切向量 将所给方程的两边对x 求导数 得⎪⎩⎪⎨⎧=++=++010222dx dz dx dydx dz z dx dy y x方程组在点1 2 1处化为⎪⎩⎪⎨⎧-=+=-112dx dz dx dydx dz dx dy 解方程组得0=dx dy 1-=dx dz从而T 1 0 1 所求切线方程为 110211--=+=-z y x法平面方程为x 10y 2z 10 即xz 0。

微积分8-1

微积分8-1
所求定义域为 不要解出x,y只要给出 同 不要解出 只要给出x,y同 只要给出 时满足的一个关系式即可
D = {( x , y ) | 2 ≤ x 2 + y 2 ≤ 4, x > y 2 }.
(5)关于二元函数的一些题型: 关于二元函数的一些题型: y 例3 已知f x − y, = x 2 − y 2,求f ( x, y ) 及f (1, 0 ) x y u uv 解:令x − y =u; = v ⇒ x = ;y = x 1− v 1− v
第一节
多元函数的基本概念
一、多元函数的概念 二、二元函数的几何意义 三、多元函数的极限与连续性
一、多元函数的概念
所谓多元函数 所谓多元函数, 是指依赖于多个变量的一种函 多元函数 数关系。多个变量都是相互独立的互不影响 都是相互独立的互不影响, 数关系。多个变量都是相互独立的互不影响,它们 的取值都影响因变量的取值。 的取值都影响因变量的取值。二元及二元以上的函 数统称为多元函数 数统称为多元函数。 例如:影响需求的因素除了商品自身价格p外 例如:影响需求的因素除了商品自身价格 外,还 有相关商品价格p 消费者的收入水平I、 有相关商品价格 1 p2… pn 、消费者的收入水平 、 消费者对未来收入的预期R等 消费者对未来收入的预期 等。故需求函数可表示 元的函数, 为一个n+3元的函数,即Q= Q(p, p1, p2, …,pn,I,R) 元的函数 一元函数到二元函数发生质的变化, 一元函数到二元函数发生质的变化,而二元 到三元、四元……仅仅是量的变化.下面我们仅讨 ……仅仅是量的变化 到三元、四元……仅仅是量的变化 下面我们仅讨 论二元函数的概念和有关性质. 论二元函数的概念和有关性质
ቤተ መጻሕፍቲ ባይዱ

8-1 多元函数的基本概念

8-1 多元函数的基本概念

其中:D称为定义域 f ( D)称为值域 ,
w 类似地可定义三元函数. f ( x , y , z )
n元函数 y f ( x ) f ( x1 , x2 ,, xn )
多元函数两点说明:
(1)多元函数uf(x)定义域指自然定义域
arcsin( 3 x 2 y 2 ) f ( x, y) 例1 求定义域 x y2 的. 3 x2 y2 1 解 x y2 0 2 x 2 y 2 4 2 x y
n U n维空间邻域: ( P0 , ) P | PP0 | , P R


内点、边界点、区域、聚点等概念也可定义.
1.4 二元函数的定义
定义:设区域 R 2 D 映射f : D R称为二元函数 记为:z f ( P ) f ( x, y ) P ( x , y ) D
lim
x3 y4
xy 1 x y
2 2
2
闭区域上连续函数的性质
(1)最大值和最小值D
使得:f(P1) max{f(P )|PD }
f(P2) min{f(P )|PD } .
(2)介值定理
有界闭区域D上的多元连续函数,必取得介于最大值 和最小值之间的任何值
2 2
去心邻域:( P , ) { P | 0 | PP0 | } U
不需要考虑邻域半径时 简记为: (P ) U
0

P

1.2 区域
E
P
P
(1)设 E 是平面 点集,点 E P 如果存 在U ( P ) E , 则称 P 为 E 的内点 . ( 2)设 E 是平面点集,点 E P 如果存在U ( P ) E , 则称 P 为 E 的外点 . ( 3)如 果 U ( P ) E 且U ( P ) E E 称P 为 E 的 边 界 点 .

8-1 多元函数的基本概念

8-1 多元函数的基本概念
时,Biblioteka (x,y)有不同的极限值或无极限,则
lim f(x,y) 不存在
微积分八①
18/22-31
x y 例3 证明 lim 6 2 不存在. x 0 x y y 0

3
y kx3 , 令
3
x 3 kx3 3 k x y lim 当(x,y)沿任何曲线 y kx 趋于(0,0)时,有: , lim 6 2 2 x 0 x 6 k 2 x 6 1 k x 0 x y 3
微 积

电 子 教 案
Conception of functions of several variables
一、二元函数及其定义域 二、二元函数的几何意义
三、二元函数的极限与连续
3/22-31
1、平面区域: xy平面上几条曲线围成的平面一部 分或整个平面 围成区域的曲线称为区域边界. y 分为开区域、闭区域、半开区域。 或有界区域、无界区域。 o 2 2 例如 {( x, y ) | 1 x y 4}. y
25/22-31
1.1、二元函数的改变量
设z f ( x, y), ( x, y) D ( x0 , y0 ) D
x y (3) x由 x0改 变 到 0 x , y由 y0改 变 到 0 y, 则z f ( x0 x, y0 y ) f ( x0 , y0 ) 称为f ( x, y )在( x0 , y0 )处 的 全 增 量 .
13/22-31
二元函数 z f ( x, y )的几何意义即二元函数的图形.
二元函数的图形通常是三维空间的一张曲面.
微积分八①
14/22-31
例如, z sin xy 图形如右图.

[整理]8-1多元函数的基本概念

[整理]8-1多元函数的基本概念
例5讨论函数 在(0,0)处的连续性.
解取
当 时
故函数在(0,0)处连续.
例6讨论函数
在(0,0)的连续性
解取
其值随k的不同而变化,极限不存在
故函数在(0,0)处不连续.
闭区域上连续函数的性质
(1)最大值和最小值定理
在有界闭区域D上的多元连续函数,在D上至少取得它的最大值和最小值各一次.
(2)介值定理
利用点函数的形式有 元函数的极限
定义2设 元函数 的定义域为点集 是其聚点,如果对于任意给定的正数 ,总存在正数 ,使得对于适合不等式 的一切点 ,都有 成立,则称A为 元函数 当 时的极限,记为
.
三、多元函数的连续性
设 元函数 的定义域为点集 是其聚点且 ,如果 则称 元函数 在点 处连续.设 是函数 的定义域的聚点,如果 在点 处不连续,则称 是函数 的间断点.
(2)区域
例如, 即为开集.
连通的开集称为区域或开区域.
例如,
开区域连同它的边界一起称为闭区域.
例如,
例如, 有界闭区域;
无界开区域.
(3)聚点:设E是平面上的一个点集,P是平面上的一个点,如果点P的任何一个邻域内总有无限多个点属于点集E,则称P为E的聚点.
说明:
a.内点一定是聚点;
b.边界点可能是聚点;

(0,0)既是边界点也是聚点.
c.点集E的聚点可以属于E,也可以不属于E.
例如,
(0,0)是聚点但不属于集合.
例如,
边界上的点都是聚点也都属于集合.
(4)n维空间: 为取定的一个自然数,我们称 元数组 的全体为 维空间,而每个 元数组 称为 维空间中的一个点,数 称为该点的第 个坐标.

辽宁工业大学高数习题课8-1

辽宁工业大学高数习题课8-1
第八章 多元函数微分法及其 应用习题课( 应用习题课(一)
多元函数微分法
一,多元函数的基本概念
1.极 限: ( x , y )lim , y ) f ( x , y ) = A 极 →( x
0 0
2.连 续: 连 3.偏导数: 偏导数: 偏导数
z x
( x , y )→ ( x0 , y0 )
lim
= f y ( x0 , y0 ) = lim
y → 0
f (x0 , y0 + x ) f ( x0 , y0 ) y
ρ 4.全微分: 若 z = Ax + By + ο ( ρ ) , = ( x ) 2 + ( y ) 2 , 全微分: 全微分
可微分, 则称函数 z = f ( x , y ) 在点 P ( x , y ) 可微分, 函数 z = f ( x , y ) 在点 P ( x , y ) 全微分为
y→0
f ( x , y )在点 (0, 0) 处连续 处连续.
x f (0 + x , 0) f (0, 0) f (0, 0) = lim = lim x → f (0, 0 + y ) f (0, 0) f (0, 0) = lim = lim y → 0 y → 0 y y
z 时,只要把 y 暂时看作常量 x z 求导数; 而对 x 求导数; 类似地, 类似地,可求函数 z = f ( x, y) 的偏导数 .
y
2.高阶偏导数 .
2 z z ( ) = f xx ( x , y ) = 2 x x x
2z z ( ) = f yx ( x , y ) = yx x y
2
= lim
x →0 y →0

高等数学第六版下册课后习题答案-同济大学

高等数学第六版下册课后习题答案-同济大学

本答案由大学生必备网 免费提供下载第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。

习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-解二:(,)(0,0)(,)(0,0)(,)(0,0)1limlim lim 4x y x y x y →→→===-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可.2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂==∂z y ∂==∂(4))ln(222z y x u ++= 解:222222222222,,u x u y u zx x y z y x y z z x y z∂∂∂===∂++∂++∂++(5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z uu u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)zx y x y x y x ∂=-++=-+∂ 4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂(3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z ∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂ 由轮换对称性, 2222222323,r r y r r z y r z r ∂-∂-==∂∂222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。

大一微积分下册经典题目及解析

大一微积分下册经典题目及解析

微积分练习册[第八章]多元函数微分学习题8-1多元函数的基本概念1.填空题:(1)若yxxy y x y x f tan),(22-+=,则___________),(=ty tx f (2)若xy y x y x f 2),(22+=,则(2,3)________,(1,)________yf f x-==(3)若)0()(22 y yy x xyf +=,则__________)(=x f (4)若22),(y x xy y x f -=+,则____________),(=y x f(5)函数)1ln(4222y x y x z ---=的定义域是_______________(6)函数y x z -=的定义域是_______________(7)函数xyz arcsin=的定义域是________________ (8)函数xy xy z 2222-+=的间断点是_______________2。

求下列极限: (1)xy xy y x 42lim0+-→→(2)x xyy x sin lim0→→(3)22222200)()cos(1lim y x y x y x y x ++-→→3。

证明0lim22)0,0(),(=+→yx xy y x4.证明:极限0lim 242)0,0(),(=+→y x yx y x 不存在5。

函数⎪⎩⎪⎨⎧=≠+=(0,0)),( ,0)0,0(),(,1sin ),(22y x y x y x x y x f 在点(0,0)处是否连续?为什么习题8—2偏导数及其在经济分析中的应用1。

填空题 (1)设y x z tanln =,则__________________,=∂∂=∂∂yzx z ; (2)设)(y x e z xy+=,则__________________,=∂∂=∂∂yzx z ; (3)设zyxu =,则________,__________________,=∂∂=∂∂=∂∂z u y u x u ; (4)设x y axc z tan =,则_________________,_________,22222=∂∂∂=∂∂=∂∂y x zy z x z(5)设zyx u )(=,则________2=∂∂∂y x u ; (6)设),(y x f 在点),(b a 处的偏导数存在,则_________),(),(lim 0=--+→xb x a f b x a f x2.求下列函数的偏导数y xy z )1()1(+=z y x u )arcsin()2(-=3.设xy z =,求函数在(1,1)点的二阶偏导数4。

高等数学 多元函数的微分学 (8.1.1)--多元函数的基本概念

高等数学 多元函数的微分学  (8.1.1)--多元函数的基本概念

为E 的边界点
内点
·
·
外点
若集合 E 中每个点都是
·
边 界点
E 的内点,称 E 为开集;开集 E 的余集 R2-E 称为 闭集
若集合 E 中任意两点都能用完全属于 E 的折 连接线起来,则称 E 是连通的;连通的开集称为区 域 E 的所有的边界点组成的集合称为 E 的边 区域连界同其边 界称为 闭 区域
若存在 R ,集 E {(x, y) x2 y2 R2}, 称 E 有界 合例 下列集合是否开集、区域、连通、有界
D1 {(x, y) x2 y2 4}, D2 {(x, y) x2 y2 4},
D3 {(x, y) | xy 0}, D4 {x 0, y 0}
称为 P0 的 δ 邻域(不强调半径时为邻域U (P0 )


U (P0, P) {P(x, y) 0 d (P, P0 ) }
称为 P0 的去心 δ 邻域
二 . 开集与区域
E 是平面 R2 中的集合, P0 是平面中的点
若存在 δ>0 , U (P0, ) E, 称 P0 为 E 的内点 若使对任意 δ , U (P0, ) 内既;有属于 E 的点又有不 在属于 E 的点,称 P0
例 已知f (x y, xy) x3 y3, 求 f (x, y)
例 z y f ( x y), 且 z y1 x 1, 求函数 z 的表达式
例 求 z ln[x ln(y x)] 的定义域
二元函数图形 (图象 )
集合 {(x,y,z) z f (x,y),(x, y) D} 所对应
D5
{(x, y)
x2 4

8-多元函数的概念-连续

8-多元函数的概念-连续


例 3 设 f(x,y)sin x 证明 f(x y)是 R2 上的连续函数

证 设 P0(x0 y0) R2 0 由于 sin x 在 x0 处连续 故0 当|xx0|时 有

|sin xsin x0|
程 以上述作 P0 的邻域 U(P0 ) 则当 P(x y)U(P0 )时 显然

|f(x y)f(x0 y0)||sin xsin x0|
在点 P0(x0 y0)不连续 则称 P0(x0 y0)为函数 f(x y)的间断点
例如
函数
f
(x,
y)
xy x2 y
2
0
x2 y2 0
x2 y2 0
其定义域 DR2 O(0 0)是 D 的聚点 f(x y)当(0 0)是该函数的一个间断点
又如
函数
z
sin
x2
1 y2
1
其定义域为
D{(x
y)|x2y21}
圆周
C{(x
y)|x2y21}上的点都是 D 的聚点 而 f(x y)在 C 上没有定义 当然 f(x y)在 C 上各
教 点都不连续 所以圆周 C 上各点都是该函数的间断点

注 间断点可能是孤立点也可能是曲线上的点

可以证明 多元连续函数的和、差、积仍为连续函数 连续函数的商在分母不为
时间 安排 章节 名称
第 8 次课,
§8 1 多元函数的基本概念
教学 目的
2.了解二元函数连续性的概念,以及有界闭区域上的连续函数的性质。
教学 重点 与 难点
教学重点:有界闭区域上的连续函数的性质; 教学难点:二元函数的连续概念
四 二元函数的连续性

多元函数的基本概念

多元函数的基本概念

多 元 函 数 的 基 本 概 念
纯数学问题的函数: 定义域为使运算有意义的 定义域为使运算有意义 运算有意义的
自变量取值的全体. 自变量取值的全体
10
例 求下面函数的定义域
多 元 函 数 的 基 本 概 念
1. z =
xy
x ≥ 0 x ≤ 0 解 xy ≥ 0, 即定义域为 和 y ≥ 0 y ≤ 0
•M
多 元 函 数 的 基 本 概 念
y
O
y
P
x
x
D
二元函数的图形通常是一张曲面 曲面.
13
由空间解析几何知, 由空间解析几何知 函数 如,
多 元 函 数 的 基 本 概 念
z = R2 − x2 − y2
的图形是以原点为中心, 为半径的上半球面 的图形是以原点为中心 R为半径的上半球面 为半径的上半球面. 最后指出, 从一元函数到二元函数, 在内容 最后指出 从一元函数到二元函数 和方法上都会出现一些实质性的差别, 和方法上都会出现一些实质性的差别 而多元 函数之间差异不大. 因此研究多元函数时, 函数之间差异不大 因此研究多元函数时 将以 二元函数为主. 二元函数为主
25

同一元函数一样, 多元函数的和、 同一元函数一样 多元函数的和、差、 积、商(分母不为零)及复合仍是连续的. 分母不为零)及复合仍是连续的 每个自变量的基本初等函数经有限次四则 运算和有限次复合, 运算和有限次复合, 由一个式子表达的函数 称为多元初等函数, 在它们的定义域的内点 称为多元初等函数 处均连续. 处均连续
P → P0
0 , y0 )
f ( x , y ) = A 或 lim f ( x, y )
x → x0 y → y0

多元函数

多元函数
首页 上页 返回 下页 结束 铃
.
外点
. .
边界点
内点
聚点
如果对于 任意给定的δ>0, 点 P 的去心邻域U(P,δ ) 内总 有E中的点, 则称P是E的聚点.
点集E的聚点P本身, 可以属于E, 也可能不属于E. 例如, 设平面点集 E={(x, y)|1<x2+y2≤2}. 满足1<x2+y2<2的一切点(x, y)都是E的内点; 满足x2+y2=1的一切点(x, y)都是E的边界点, 它们都不属于E; 满足x2+y2=2的一切点(x, y)也是E的边界点, 它们都属于E; 点集E以及它的界边∂E上的一切点都是E的聚点.
o
U(P , δ ) ={P| 0<| P P|<δ}. 0 0
o
注:如果不需要强调邻域的半径δ, 则用U(P0)表示点P0的某个 o 邻域, 点P0的某个去心邻域记作U(P ) 0
首页 上页 返回 下页 结束 铃
点与点集之间的关系 任意一点P∈R2与任意一个点集E⊂R2之间必有以下三种 关系中的一种: •内点: 如果存在点P的某一邻域U(P), 使得U(P)⊂E, 则称P为E的内点; •外点: 如果存在点P的某个邻域U(P), 使得U(P)∩E=∅, 则称P为E的外点; •边界点: 如果点P的任一邻域内既有属 于E的点, 也有不属于E的点, 则称P点为 E的边点. E的边界点的全体, 称为E的边界, 记作∂E. 提问: E的内点、外点、边界点是否都必属于E?
首页
上页
返回
下页
结束

•两点间的距离 Rn中点x=(x1, x2, ⋅ ⋅ ⋅ , xn)和点y=(y1, y2, ⋅ ⋅ ⋅ , yn)间的距离, 记作ρ(x, y), 规定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用点函数的形式有 元函数的极限
定义2设 元函数 的定义域为点集 是其聚点,如果对于任意给定的正数 ,总存在正数 ,使得对于适合不等式 的一切点 ,都有 成立,则称A为 元函数 当 时的极限,记为
.
三、多元函数的连续性
设 元函数 的定义域为点集 是其聚点且 ,如果 则称 元函数 在点 处连续.设 是函数 的定义域的聚点,如果 在点 处不连续,则称 是函数 的间断点.
一切多元初等函数在其定义区域内是连续的.
定义区域是指包含在定义域内的区域或闭区域.
例7

四、小结
多元函数的定义
多元函数极限的概念
(注意趋近方式的任意性)
多元函数连续的概念
闭区域上连续函数的性质
思考题
若点 沿着无数多条平面曲线趋向于点 时,函数 都趋向于A,能否断定 ?
思考题解答
不能.


但是 不存在.
b.n维空间中两点间距离公式
设两点为
特殊地当n=1,2,3时,便为数轴、平面、空间两点间的距离.
c.n维空间中邻域、区域等概念
邻域:
内点、边界点、区域、聚点等概念也可定义.
(5)二元函数的定义:设 是平面上的一个点集,如果对于每个点 ,变量 按照一定的法则总有确定的值和它对应,则称 是变量 的二元函数,记为 (或记为 ).
类似地可定义三元及三元以上函数.
当 时, 元函数统称为多元函数.
多元函数中同样有定义域、值域、自变量、因变量等概念.
例1求 的定义域.

所求定义域为
(6)二元函数 的图形:设函数 的定义域为 ,对于任意取定的 ,对应的函数值为 ,这样,以 为横坐标、 为纵坐标、 为竖坐标在空间就确定一点 ,当 取遍 上一切点时,得一个空间点集 ,这个点集称为二元函数的图形.
章节题目
第一节多元函数的基本概念
内容提要
多元函数的概念
多元函数极限的概念
多元函数连续的概念
闭区间上连续函数的性质
重点分析
多元函数的概念、极限、连续及连续的性质
难点分析
二重极限的计算
二重极限不存在的5(单)、6、8
备注
教 学 内 容
一、多元函数的概念
(1)邻域
设 是 平面上的一个点, 是某一正数,与点 距离小于 的点 的全体,称为点 的 邻域,记为 ,
原因为若取
(3)二元函数的极限运算法则与一元函数类似.
例2求证

当 时,
原结论成立
例3求极限

其中
例4证明 不存在.


其值随k的不同而变化,故极限不存在.
确定极限不存在的方法:
(1)令 沿 趋向于 ,若极限值与 有关,则可断言极限不存在;
(2)找两种不同趋近方式,使 存在,但两者不相等,此时也可断言 在点 处极限不存在.

(0,0)既是边界点也是聚点.
c.点集E的聚点可以属于E,也可以不属于E.
例如,
(0,0)是聚点但不属于集合.
例如,
边界上的点都是聚点也都属于集合.
(4)n维空间: 为取定的一个自然数,我们称 元数组 的全体为 维空间,而每个 元数组 称为 维空间中的一个点,数 称为该点的第 个坐标.
说明:
a.n维空间的记号为
例5讨论函数 在(0,0)处的连续性.
解取
当 时
故函数在(0,0)处连续.
例6讨论函数
在(0,0)的连续性
解取
其值随k的不同而变化,极限不存在
故函数在(0,0)处不连续.
闭区域上连续函数的性质
(1)最大值和最小值定理
在有界闭区域D上的多元连续函数,在D上至少取得它的最大值和最小值各一次.
(2)介值定理
(2)区域
例如, 即为开集.
连通的开集称为区域或开区域.
例如,
开区域连同它的边界一起称为闭区域.
例如,
例如, 有界闭区域;
无界开区域.
(3)聚点:设E是平面上的一个点集,P是平面上的一个点,如果点P的任何一个邻域内总有无限多个点属于点集E,则称P为E的聚点.
说明:
a.内点一定是聚点;
b.边界点可能是聚点;
二元函数的图形通常是一张曲面.
例如,
例如,
单值分支:
二、多元函数的极限
定义1设函数 的定义域为 是其聚点,如果对于任意给定的正数 ,总存在正数 ,使得对于适合不等式 的一切点,都有 成立,则称A为函数 当 , 时的极限,
记为
(或 这里 ).
说明:
(1)定义中 的方式是任意的;
(2)二元函数的极限也叫二重极限
在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两值之间的任何值至少一次.
(3)一致连续性定理
在有界闭区域D上的多元连续函数必定在D上一致连续.
多元初等函数:由多元多项式及基本初等函数经过有限次的四则运算和复合步骤所构成的可用一个式子所表示的多元函数叫多元初等函数
相关文档
最新文档