第十章双样本假设检验及区间估计
区间估计和假设检验
在回归分析中,区间估计可以用来估计未知参数的取值范围,从 而更好地理解参数对结果的影响。
假设检验的应用场景
检验假设是否成立
在科学研究或实际应用中,我们经常需要通过假设检验来检验某个 假设是否成立,以做出决策或得出结论。
诊断准确性评估
在医学诊断中,假设检验常用于评估诊断方法的准确性,例如比较 新方法与金标准之间的差异。
非参数检验的优点是不受总体分布限制,适用于更广泛的情况。常见的非参数检验包括秩和检验、符 号检验等。
假设检验的步骤
选择合适的统计方法
根据假设和数据类型选择合适 的统计方法进行检验。
确定临界值
根据统计量的分布情况,确定 临界值。
提出假设
根据研究问题和数据情况,提 出一个或多个假设。
计算统计量
根据选择的统计方法计算相应 的统计量。
区间估计和假设检验
目录
• 区间估计 • 假设检验 • 区间估计与假设检验的联系 • 应用场景 • 案例分析
01
区间估计
定义
区间估计
基于样本数据,对未知参数或总体分布特征 给出可能的取值范围。
参数估计
基于样本数据,对总体参数进行估计,如均 值、方差等。
非参数估计
基于样本数据,对总体分布特征进行估计, 如分位数、中位数等。
结果具有互补性
03
区间估计和假设检验的结果可以相互补充,帮助我们更全面地
了解总体的情况。
区别
1 2 3
目的不同
区间估计的目的是估计一个参数的取值范围,而 假设检验的目的是检验一个关于总体参数的假设 是否成立。
侧重点不同
区间估计更侧重于估计总体参数的可能取值范围 ,而假设检验更侧重于对总体参数的假设进行接 受或拒绝的决策。
区间估计和假设检验精品PPT资料
proc print data=tval2;var lchi uchi;
run;
本章目录 21
区间估计和假设检验
1 正态总体的均值、方差的区间估计
输出结果如下:
LCHI
UCHI
70687.19 406071.51
即方差的置信区间为:[70687.19, 406071.51]
本章目录 22
区间估计和假设检验
本章目录 2
区间估计和假设检验
1 正态总体的均值、方差的区间估计
区间估计是通过构造两个统计量 , ,能以
100(1)%的置信度使总体的参数落入 [ , ]
区间中,即 P{}1。其中 称为显著性
水平或检验水平,通常取0.05或 0.01;
, 分别称为置信下限和置信上限
本章目录 3
区间估计和假设检验
;
proc means data=var22 t prt clm;
var y;
freq fx;
CLM表示要输出
run;
95%置信区间
本章目录 12
区间估计和假设检验
1 正态总体的均值、方差的区间估计
输出结果:
分析变量 : Y
T- 统计量 Prob>|T| 95.0% 置信下界 95.0% 置信上界 --------------------------------------------------------------------
注:采用PROC CHART过程对独立组样本画直方图
直方图有两种形态:垂直条形图和水平条形图,下面对例3画水
平条形图,SAS程序为:
data bodyfat;
input sex $ fatpct @;
第十部分双样本假设检验及区间估计
练习二:为了了解职工的企业认同感,根据 男性1000人的抽样调查,其中有52人希望调换工 作单位;而女性1000人的调查有23人希望调换工 作,能否说明男性比女性更期望职业流动? ( 取α=0.05)
2024/5/13
21
1.单一实验组的假设检验 对于单一实验组这种“前—后”对比型配对样
本的假设检验,我们的做法是,不用均值差检验, 而是求出每一对观察数据的差,直接进行一对一的
比较。如果采用“前测”“后测”两个总体无差异 的零
假设,也就是等于假定实验刺激无效。于是,问题
就转化为每对观察数据差的均值μd =0的单样本假 设检验了。求每一对观察值的差,直接进行一对一
H0:μ1―μ2=D0=0 H1:μ1―μ2≠0 计算检验统计量
确定否定域 因α=0.05,因而有t 0.025 (36)=2.028>1.24
故不能否定H0,即可认为男女儿童平均体重无显著性差异。
2024/5/13
13
(3)
和 未知,但不能假定它们相等
如果不能假定σ1=σ2 ,那么就不能引进共同的σ简
2024/5/13
30
[解] 零 假 设H0:μd=0 , 即“实验无效”
2024/5/13
28
在一实验组与一控制组的实验设计之中,对前测后 测之间的变化,消除额外变量影响的基本做法如下:
(1)前测:对实验组与控制组分别度量; (2)实验刺激:只对实验组实行实验刺激; (3)后测:对实验组与控制组分别度量; (4)求算消除了额外变量影响之后的 d i
后测实验组―前测实验组=前测后测差实验组 后测控制组―前测控制组=前测后测差控制组
双样本置信区间和假设检验概述
打开新的工作表:
> File > New . . . > Minitab Worksheet > OK 生成10行数据。保存在c1-c8栏中。
Denom 1
2
3
4
5
6
7
8
9 10
1 161.40 199.50 215.70 224.60 230.20 234.00 236.80 238.90 240.50 241.90
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
比较固定架7和固定架8的方差
s7 = .00149 固定架7的标准方差 s8 = .00110 固定架8的标准方差 每个样本的容量为10。
分子的自由度是多少? 分母的自由度是多少? F表格的临界值是多少?
哪个方差值更大,而应置于分子?
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
4
7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
5
6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74
为什么使用假设检验和 置信区间?
4. 请注意,样本平均值和方差存在着差异,即使所有 8组数据都取自同一总体也不例外。
比较方差
何时应该比较方差?
如果您对改变了工序,并想确定输出结 果中的方差是否改变,您可以将工序改变
双样本假设检验
组别 测 查 成 果
1
78
2
80
1
71
2
76
1
75
2
85
1
85
组别 测 查 成 果
1
78
1
71
2
80
2
76
1
75
1
85
2
85
组别 测 查 成 果
1
78
1
75
1
86
1
71
1
85
1
90
1
78
经过分 组变量旳设 定决定数据 在统计过程 中旳所属。
事物前后变化情况有四种
变化前
— +
变化后
— A B
A:前后不具有某种属性或不产生某种行为 + B:前具有某种属性或有某种行为但变化后没有 C C:前无某属性或无某种行为但变化后有 D D:前后都具有某种属性或者产生某种行为
结论:假如A与D旳情况诸多,阐明事前事后没有变化,所施加旳促变条件不起作用。 假如C旳情况诸多,阐明变化原因产生了明显旳增进作用。 假如B旳情况诸多,阐明变化原因产生了明显旳克制作用。
等级差 +1 +2 -2 +6 +1 -3 +2 +2 -4 -3
Frequencies
AFTER - FIRST
Negative Differencesa Positive Differencesb Tiesc
Total
a. AFTER < FIRST
b. AFTER > FIRST
c. FIRST = AFTER
区间估计和假设检验
说明这个区间估计的可靠性为95%.
对于同一总体和同一抽样规模来说
①所给区间的大小与做出这种估计所具有的把握性形
成正比.
② 区间大小所体现的是估计的精确性,区间越大,精确
性程度越低,区间越小精确性越高,二者成反比.
精选可编辑ppt
3
③ 从精确性出发,要求所估计的区间越 小越好,从把握性出发,要求所估计的区间越大 越好,因此人们总是需要在这二者之间进行平 衡和选择.
Z(0.05/2)=1.96
精选可编辑ppt
16
然后根据样本数计算统计值:
公式为:
Z= X—μ = 220—210 = 6.67
S/√n
15/√100
由于Z=6.67>Z (0.05/2) =1.96 所以.拒绝虚无假设,接受研究假设,即
从总体上说,该单位职工月平均奖金与上月 相比有变化.
精选可编辑ppt
P≤
0 .1 0 0 .0 5 0 .0 2 0 .0 1
│ Z│ ≥
一端
二端
1 .2 9
1 .6 5
1 .6 5
1 .9 6
2 .0 6
2 .3 3
2 .3 3
2 .5 8
精选可编辑ppt
7
3.总体百分数的区间估计
总体百分数的区间估计公式为:
P±Z(1-α)
P(1—p) n
这里,P为样本的百分比 。 例题:
为了验证这一假设是否可靠,我们抽取100 人作调查,结果得出月平均收入为220元,标准 差位15元.
显然,样本的结果与总体 结果之间出现了 误差,这个误差是由于我们假设错误引起的,还 是由于抽样误差引起的呢?
如果是抽样误差引起的,我们就应该承认
区间估计及假设检验算法实现方法详解
区间估计及假设检验算法实现方法详解随着数学、统计学等学科的发展,计算机技术在数学、统计学中扮演着越来越重要的角色。
在实际应用中,人们往往需要对各种数据进行分析处理以满足不同的需求,如何快速准确地进行数据分析,是一个非常重要的问题。
其中,区间估计和假设检验是数据分析中常用的两种方法。
本文将详细介绍这两种方法的实现方式。
一、区间估计区间估计是以样本统计量为基础,通过分析样本的信息来推断总体参数的取值范围,同时限定一定程度的误差。
通常,我们通过样本估计总体的平均数、标准差等参数,并对其进行区间估计。
常见的区间估计有置信区间、预测区间等。
1. 置信区间置信区间是指在给定的置信水平下,估计总体参数的取值范围。
在实际中,一个置信水平通常取95%或99%,即我们希望在95%或99%的数据中,总体参数的真实值可以被估计出来。
例如我们要估计一个总体的均值,使用样本均值计算出来一个估计值,并使用标准误和置信系数得到置信区间,那么这个置信区间的含义就是,我们认为有95%的置信度,总体均值在这个置信区间之内。
2. 预测区间预测区间是指在给定的置信水平下,预测一个新的数据值的取值范围。
通常,我们需要根据给定的样本数据来估计总体参数,并通过置信水平和误差限制得到一个预测区间。
例如,我们要预测未来一家公司的利润,使用以前几年公司利润值的样本数据,得到一组样本均值、标准误和置信系数等参数,根据置信系数和置信区间计算得到预测区间,那么这个预测区间的含义就是,在一定置信水平下,公司未来的利润值会在这个预测区间之内。
在实际进行区间估计的过程中,通常会使用计算机进行计算。
例如,在R语言中,我们可以使用以下代码实现置信区间的计算:```# 假设有一个样本数据data# 想要计算一个均值的置信区间result <- t.test(data, conf.level = 0.95)# 得到result$conf.int即为置信区间```我们可以看到,R语言中的t.test函数就可以方便地实现置信区间的计算,而不需要手动进行计算。
统计中的区间估计与假设检验
统计中的区间估计与假设检验统计学是一门应用广泛的学科,其中的区间估计与假设检验是统计学中常用的两种方法。
这两种方法在研究和实践中被广泛应用,用于推断总体参数、比较样本之间的差异以及验证科学假设的有效性。
本文将介绍统计中的区间估计与假设检验的概念、原理以及应用。
一、区间估计区间估计是基于样本数据推断总体参数的取值范围。
在统计学中,常常无法获得整个总体的完整数据,而只能通过抽取部分样本数据,利用样本数据来推断总体的特征。
区间估计给出了参数估计的下限和上限,以一定的置信水平表示。
一般而言,置信水平常用的有95%和99%。
在区间估计中,经常使用的方法有点估计法和区间估计法。
点估计法基于样本数据对总体参数进行点估计,即使用样本数据作为总体参数的估计值。
而区间估计法则给出一个区间范围,以包含总体参数真实值的可能性,而不仅仅是一个点估计的值。
区间估计的步骤可以总结为以下几个:1. 选择合适的抽样方法,获取样本数据;2. 根据样本数据计算参数的点估计值;3. 根据样本数据计算置信水平和抽样误差等;4. 根据置信水平和抽样误差计算置信区间。
二、假设检验假设检验是一种用于验证科学假设的统计方法。
在假设检验中,我们根据样本数据对总体参数或者总体分布是否满足某种假设进行判断。
假设检验通常包括原假设(H0)和备择假设(H1)两个假设。
原假设通常是关于总体参数的一个陈述,而备择假设则是关于总体参数的一个替代陈述。
我们根据样本数据的表现来判断原假设是否应该被拒绝,从而接受备择假设。
通常使用统计量和p值来进行假设检验。
假设检验的步骤可以总结为以下几个:1. 建立原假设和备择假设;2. 选择适当的假设检验方法;3. 设置显著性水平,通常为0.05或0.01;4. 根据样本数据计算统计量的值;5. 根据统计量的值和显著性水平,判断原假设是否应该被拒绝。
三、区间估计与假设检验的应用区间估计与假设检验在实际应用中有着广泛的领域。
比如,在医学研究中,我们可以利用区间估计来估计某种治疗方法的疗效范围;在市场调研中,我们可以利用假设检验来判断广告的效果是否显著。
区间估计与假设检验的分类总结
区间估计与假设检验的分类总结区间估计和假设检验是统计推断的两个主要方法。
它们都是根据样本数据对总体参数进行推断,但是它们的目的和原理不同。
下面我将对区间估计和假设检验进行分类总结。
一、区间估计分类总结:区间估计是根据样本数据对总体参数进行估计,并给出估计结果的一个范围。
根据不同的参数和样本情况,区间估计可以分为以下几种类型:1.均值的区间估计:a.单个总体均值的区间估计:当总体标准差已知时,使用正态分布进行估计;当总体标准差未知时,使用t分布进行估计。
b.两个总体均值之差的区间估计:根据两个总体样本的样本均值和样本方差的差异,使用正态分布或t分布进行估计。
c.大样本均值的区间估计:对于大样本,总体均值的估计可以使用正态分布进行估计。
2.方差的区间估计:a.单个总体方差的区间估计:对于正态总体,使用卡方分布进行估计。
b.两个总体方差之比的区间估计:根据两个总体样本方差的比值,使用F分布进行估计。
c.大样本方差的区间估计:对于大样本,总体方差的估计可以使用卡方分布进行估计。
3.比例的区间估计:b.两个总体比例之差的区间估计:根据两个总体样本比例的差异,使用正态分布进行估计。
二、假设检验分类总结:假设检验是根据样本数据对总体参数的一些假设进行检验,并得出是否拒绝假设的结论。
根据不同的参数和样本情况,假设检验可以分为以下几种类型:1.均值的假设检验:a.单个总体均值的假设检验:当总体标准差已知时,使用正态分布进行检验;当总体标准差未知时,使用t分布进行检验。
b.两个总体均值之差的假设检验:根据两个总体样本的样本均值和样本方差的差异,使用正态分布或t分布进行检验。
c.大样本均值的假设检验:对于大样本,总体均值的检验可以使用正态分布进行检验。
2.方差的假设检验:a.单个总体方差的假设检验:对于正态总体,使用卡方分布进行检验。
b.两个总体方差之比的假设检验:根据两个总体样本方差的比值,使用F分布进行检验。
c.大样本方差的假设检验:对于大样本,总体方差的检验可以使用卡方分布进行检验。
十章 双样本假设检验及区间估计
第十章 双样本假设检验及区间估计双样本统计,除了有大样本、小样本之分外,根据抽样之不同,还可分为独立样本与配对样本。
所谓独立样本,指双样本是在两个总体中相互独立地抽取的。
所谓配对样本,指只有一个总体,双样本是由于样本中的个体两两匹配成对而产生的。
配对样本就不是相互独立的了。
第一节 两总体大样本假设检验1. 大样本均值差检验为了把单样本检验推广到能够比较两个样本的均值的检验,必须再一次运用中心极限定理。
下面是一条由中心极限定理推广而来的重要定理:如果从N (μ1,σ12)和N (μ2,σ22)两个总体中分别抽取容量为n 1和n 2的独立随机样本,那么两个样本的均值差(1X ―2X )的抽样分布就是N (μ1―μ2,121n σ+232n σ)。
与单样本的情况相同,在大样本的情况下(两个样本的容量都超过50),这个定理可以推广应用于任何具有均值μ1和μ2 以及方差σ12和σ22的两个总体。
当n 1和n 2逐渐变大时,(1X ―2X )的抽样分布像前面那样将接近正态分布。
大样本均值差检验的步骤有:(1) 零 假 设H 0:μ1―μ2=D 0备择假设H 1:单侧 双侧H 1:μ1―μ2>D 0 H 1:μ1―μ2≠D 0 或 H 1:μ1―μ2<D 0(2)否定域:单侧Z α,双侧Z α/2。
(3)检验统计量 Z =)()(21021X X D X X ---σ=222121021n n D X X σσ+--)(如果σ12和σ22未知,可用S 12和S 22代替。
(4)判定2. 大样本成数差检验与单样本成数检验中的情况一样,两个成数的差可以被看作两个均值差的特例来处理(但它适用各种量度层次)。
于是,大样本成数检验的步骤有:(1) 零 假 设H 0:p 1―p 2=D 0备择假设H 1:单侧 双侧 H 1:p 1―p 2>D 0 H 1:p 1―p 2≠D 0 或 H 1:p 1―p 2<D 0(2)否定域:单侧Z α,双侧Z α/2。
《双样本假设检验》课件
总结词
独立双样本t检验用于比较两个独立样本的 均值是否存在显著差异。
详细描述
独立双样本t检验的前提假设是两个样本相 互独立,且总体正态分布。通过计算t统计 量和自由度,可以判断两个样本均值是否存 在显著差异。
实例二:配对样本t检验
总结词
配对样本t检验用于比较同一观察对象在不同条件下的观测值是否存在显著差异 。
它通常包括以下步骤:提出假设、选择合适的统计量、确定显著性水平、进行统计推断、得出结论。
02
双样本假设检验的步骤
确定检验假设和备择假设
检验假设(H0)
用于确定两组样本均值是否相等的假设。
备择假设(H1)
与检验假设相对立的假设,即两组样本均值存在显著差异。
确定检验统计量
• 检验统计量是用于评估样本数据 与假设之间差异的统计量,常用 的有t检验、Z检验等。
双样本假设检验的重要性
在科学实验、医学研究、社会科学调 查等领域,双样本假设检验是一种非 常重要的统计工具。
VS
它可以帮助我们判断两组数据之间的 差异是否具有实际意义,从而为我们 的决策提供依据。
双样本假设检验的基本原理
双样本假设检验基于大数定律和中心极限定理,通过比较两组数据的差异来推断总体参数。
社会科学研究
调查研究
比较不同群体在某项调查指标上的差异,如性 别、年龄、教育程度等。
政策效果评估
比较政策实施前后的效果,评估政策的有效性 。
行为研究
分析不同情境下个体行为的差异,解释行为背后的原因。
质量控制和生产过程控制
质量控制
检测产品或服务的质量是否符合标准或客户 要求。
过程能力分析
评估生产过程的能力水平,识别过程改进的 潜力。
双样本置信区间和假设检验概述
目标:
• 比较方差,采用 F-检验法、Bartlett检验法和Levene 检验法。
• 比较平均值,采用双样本置信区间和假设检验。 • 理解统计重要性和实际重要性之间的区别。
What is 城市轨道交通 urban rail transport
精品ppt模板
举例...
位于洗衣机上的传动装置的总高度将影响制动性能。我们所关心的 CTQ是总高度,目标值=5.394英寸。有8个不同的固定架用于固定该 部件以便加工。
采用什么工具确定差异是确实存在,还 是偶然发生?
1. 比较方差 • F检验法 (2个方差) • Bartlett检验法 (用于正态数据) • Levene检验法 (用于非正态数据)
2. 比较平均值 • 双样本 t • 成对t
What is 城市轨道交通 urban rail transport
精品ppt模板
存在差异的结论。我们在图形中观察到的差异可 能是由于偶然因素而发生的。
实际结论:不应该将所有固定架都制造成象设备2 那样来减少方差。
我们现在转向平均值
目标值 5.394
您希望知道什么?
精品• p统pt计模问板题 -- 固定架之间方差的明显差异是实际存在还是 Whatis 城市轨道交通 urban rail transport 偶然出现的? • 实际问题 -- 是否应该努力制造3号那样的固定架,以使其 均值接近目标值?
(至少一对) p < 时接受Ha
一般为 .05。
比较所有8个固定架的方差
假设是什么? Ho: Ha:
Stat>ANOVA>Homogeneity of Variance
What is 城市轨道交通 urban rail transport
区间估计与假设检验
区间估计与假设检验在统计学中,区间估计和假设检验是两个常用的推断方法,用于对总体参数进行估计和推断。
本文将对区间估计和假设检验进行介绍,并讨论它们的应用和差异。
一、区间估计区间估计是用样本数据来推断总体参数的取值范围。
它通过计算估计值以及与之相关的置信水平,给出一个参数的范围估计。
这个范围被称为置信区间。
置信区间常用于描述一个参数的不确定性。
例如,我们要估计某种药物的平均效果。
通过对随机抽取的样本进行实验,我们可以得到样本均值和标准差。
然后,结合样本容量和置信水平,可以计算出药物平均效果的置信区间。
例如,我们可以得出一个95%置信区间为(0.2, 0.6),表示我们有95%的置信水平相信真实的平均效果在这个区间内。
二、假设检验假设检验是用于判断总体参数是否符合某种假设的统计方法。
假设检验通常分为两类:单样本假设检验和双样本假设检验。
1. 单样本假设检验单样本假设检验用于推断一个总体参数与某个特定值之间是否存在显著差异。
它包括以下步骤:(1)建立原假设(H0)和备择假设(H1),其中原假设是要进行检验的假设,备择假设是对原假设的补充或对立的假设。
(2)选择合适的显著性水平(α),表示我们接受原假设的程度。
(3)计算样本数据的检验统计量,例如t值或z值。
(4)根据显著性水平和检验统计量,判断是否拒绝原假设。
2. 双样本假设检验双样本假设检验用于比较两个总体参数之间是否存在显著差异。
常见的双样本假设检验包括独立样本t检验和配对样本t检验。
独立样本t检验用于比较两个独立样本的均值是否有差异,而配对样本t检验用于比较同一样本的两个相关变量的均值是否有差异。
三、区间估计与假设检验的差异区间估计和假设检验都是推断总体参数的方法,但它们的应用和目的略有不同。
区间估计主要关注参数的范围估计,给出了参数估计值的不确定性范围。
它强调了估计的稳定性和精确度,但不直接涉及参数的显著性判断。
因此,区间估计对于参数的精确度提供了一个相对准确的度量。
双样本假设检验及区间估计
第十章 双样本假设检验及区间估计第一节 两总体大样本假设检验两总体大样本均值差的检验·两总体大样本成数差的检验 第二节 两总体小样本假设检验两总体小样本均值差的检验·两总体小样本方差比的检验 第三节 配对样本的假设检验单一试验组的假设检验·一试验组与一控制组的假设检验·对实验设计与相关检验的评论第四节 双样本区间估计 σ12和σ22已知,对双样本均数差的区间估计·σ12和σ22未知,对对双样本均值差的区间估计·大样本成数差的区间估计·配对样本均值差的区间信计一、填空1.所谓独立样本,是指双样本是在两个总体中相互( )地抽取的。
2.如果从N (μ1,σ12)和N (μ2,σ22)两个总体中分别抽取容量为n 1和n 2的独立随机样本,那么两个样本的均值差(1X ―2X )的抽样分布就是N ( )。
3.两个成数的差可以被看作两个( )差的特例来处理。
4.配对样本,是两个样本的单位两两匹配成对,它实际上只能算作( )样本,也称关联样本。
5.配对样本均值差的区间估计实质上是( )的单样本区间估计6.当n 1和n 2逐渐变大时,(1X ―2X )的抽样分布将接近( )分布。
7.使用配对样本相当于减小了( )的样本容量。
8. 在配对过程中,最好用( )的方式决定“对”中的哪一个归入实验组,哪一个归入控制组。
9. 单一实验组实验的逻辑,是把实验对象前测后测之间的变化全部归因于( )。
10. 方差比检验,无论是单侧检验还是双侧检验,F 的临界值都只在( )侧。
二、单项选择1.抽自两个独立正态总体样本均值差(1―2)的抽样分布是( )。
A N (μ1―μ2,121n σ―222n σ) B N (μ1―μ2,121n σ+222n σ)C N (μ1+μ2,121n σ―222n σ) D N (μ1+μ2,121n σ+222n σ)2.两个大样本成数之差的分布是( )。
两样本区间估计和检验
当σ2未知时,用σ2的某个估计,如S2 来代替, 得到
S S X n z 2,X n z 2 . (2)
只要n很大,(2)式所提供的置信区间在应用 上是令人满意的。 那么,n 究竟多大才算很 大呢? 显然,对于相同的n, (2)式所给出的置 信区间的近似程度随总体分布与正态分布的 接近程度而变化,因此,理论上很难给出 n 很大的一个界限。
于是,评价新技术的效果问题,就归结 为研究两个正态总体均值之差 1-2 的问题。
定理1:设X1, X2, ·, Xm是抽自正态总体 · · X的简单样本,X~N(1, 12),样本均值与样 本方差为
1 m 1 m 2 2 X X i, S1 (Xi X ) ; m i 1 m 1 i 1
例4:公共汽车站在一单位时间内 (如半小时, 或1小时, 或一天等) 到达的乘客数服从泊松分 布 P(λ), 对不同的车站, 所不同的仅仅是参数 λ 的取值不同。现对一城市某一公共汽车站进 行了100个单位时间的调查。这里单位时间是 20 分钟。计算得到每20分钟内来到该车站的 乘客数平均值为15.2人。试求参数λ的置信系 数为 95%的置信区间。 解: n=100, α =0.05, zα/2=1.96, X 15.2, 将这 些结果代入到 (5) 式, 得 λ 的置信系数为0.95 的近似置信区间为 [14.44, 15.96]。
X 和 S12 分别为 X 1 , X 2 ,, X m 的均值和方差;
2 Y 和 S2 分别为Y1 , Y2 ,, Yn 的均值和方差。
(4)式就是二项分布参数p的置信系数约 为1-α 的置信区间。 例2:商品检验部门随机抽查了某公司生产的 产品100件,发现其中合格产品为84件,试求 该产品合格率的置信系数为0.95的置信区间。 解:n=100, Yn=84, α =0.05, zα/2=1.96, 将这 些结果代入到(4)式,得 p 的置信系数为0.95 的近似置信区间为 [0.77, 0.91]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个总体中分别独立地各抽取一个随机样本,并具有容量n1,n2和方差
, 别有
。根据第八章(8.22)式,对两总体样本方差的抽样分布分
16
根据本书第八章第四节F分布中的(8.25)式有
由于 所以简化后,检验方差比所 用统计量为
,
当零假设H0: σ1=σ2时, 上式中的统计量又简化为
17
这样一来,小样本正态总体方差比检验的步骤有 (1) 零 假 设H0 : 备择假设H1 : 单侧 双侧 H1 : H1 : H1 : (2) 检验统计量
11
(2)
和 的算式。
未知,但假定它们相等时, 关键是要解决
现又因为σ未知,所以要用它的 无偏估计量 替代它。由于两个样 本的方差基于不同的样本容量,因而
可以用加权的方法求出σ的无偏估计
量,得 注意,上式的分母上减2,是因为
根据
和
计算S1和S2时,分别损
失了一个自由度,一共损失了两个自由 度,所以全部自由度的数目就成为
(
单 ( 侧 ) (
) 双 侧
)
18
(3)否定域(参见下图) 单侧 Fα (n1―1,n2―1),双侧Fα /2(n1―1,n2―1)
方差比检验,比起前面所介绍的检验有一个不同点,那就是无 论是单侧检验还是双侧检验,F 的临界值都只在右侧。其原因是我 们总是把和中的较大者放在分子上,以便使用者掌握。因此有 ≥1 或者 ≥1
19
[ 例]
为了研究男性青年和女性青年两身高总 =30.8(厘米2);对
体的方差是否相等,分别作了独立随机抽样。对
男性青年样本有n1=10,
女性青年样本有
n2=8,
=27.8(厘米2),试
问在0.05水平上,男性青年身高的方差和女性青 年身高的方差有无显著性差异?
20
[解]
据题意,
=30.8(厘米2) =27.8(厘米2)
n1和n2 的独立随机样本,那么两个样本的均值差
情况下(两个样本的容量都超过50),这个定理可以推广应用于任何具
有均值μ 1和μ 2以及方差 和
3 n2逐渐变 的两个总体。当n1和
1.大样本均值差检验
(1)零假设:
(2)备择假设: 单侧 或 双侧
(3)否定域:单侧
(4)检验统计量
双侧
(5)比较判定
(n1+ n2―2)。 于是有
12
这样,对小样本正态总体, 其均值差的检验步骤如下: (1)零假设: (2)备择假设: 单侧 或 (3)否定域:单侧 (4)检验统计量
和
未知,但σ1=σ2 ,
双侧
双侧
(5)比较判定
13
[例]为研究某地民族间家庭规模是否 有所不同,各做如下独立随机抽样: 民族A:12户,平均人口6.8人,标 准差1.5人 民族B:12户,平均人口5.3人,标 准差0.9人 问:能否认为A民族的家庭平均人口 高于B民族的家庭平均人口( α =0.05)? (假定家庭平均人口服从正态分布,且 方差相等)t=2.97
7
2.大样本成数差检验
(1)零假设: (2)备择假设: 单侧 或 (3)否定域:单侧 (4)检验统计量 双侧
其中:
为总体1的 样本成数 为总体2的 样本成数。
8
双侧
当p1和p2未知,须用样本成数 种情况讨论:
和
进行估算时,分以下两 ,这时两总体可看作成
① 若零假设中两总体成数的关系为 数
P 相同的总体,它
14
(3)
和
未知,但不能假定它们相等 ,也 。现在简单的做法是用 估计 ,于是有
如果不能假定σ 1=σ 2 ,那么就不能引进共同的σ 简化 不能计算σ 的无偏估计量 估计 ,用
[例] 用上式重新求解前例题。
[解] 用上式,检验统计量的计算为
可以看出,求算用(10.8)式和(10.10)式,得出的结果差别不大。
们的点估计值为 此时上式中检验 统计量 Z 可简化为
② 若零假设中两总体成数
,那么它们的点估计值有
此时上式中
检验统计量Z为
(5)判定
9
[解] 据题意 新生组的抽样结果为: 四年级学生组的抽样结果为: =0.73, =0.58, =0.27,n1=171 =0.42,n2=117
H0:p1―p2=D0=0 H1:p1―p2=D0≠0
第十章 双样本假设检验及区间估计
第一节 两总体大样本假设检验 第二节 两总体小样本假设检验 第三节 配对样本的假设检验 第四节 双样本区间估计
1
我们在掌握了单样本检验与估计的有关方法与原理 之后,把视野投向双样本检验与估计是很自然的。双样 本统计,除了有大样本、小样本之分外,根据抽样之不 同,还可分为独立样本与配对样本。
后测控制组―前测控制组=前测后测差控制组 实验效应di
=前测后测差实验组―前测后测差控制组
30
[例] 假定实施一种新教学法有助于提高儿童的学习成绩, 现将20名儿童两两匹配成对,分成一实验组与一控制组,然 后对实验组实施新教学法两年,下表列示了控制组与实验组前 测后测的所有10组数据,试在0.05显著性水平上检验实验无效 的零假设。
29
在一实验组与一控制组的实验设计之中,对前测后 测之间的变化,消除额外变量影响的基本做法如下: (1)前测:对实验组与控制组分别度量; (2)实验刺激:只对实验组实行实验刺激; (3)后测:对实验组与控制组分别度量; (4)求算消除了额外变量影响之后的 d i 后测实验组―前测实验组=前测后测差实验组
计算检验统计量
确定否定域 因为α =0.01,因而有 Zα /2=Z0.005=2.58<2.66
因而否定零假设,即可以认为在0.01显著性水平上,两类学生在
性格上是有差异的。
10
第二节 两总体小样本假设检验
与对单总体小样本假设检验一样,我们对两 总体小样本假设检只讨论总体满足正态分布的情 况。 1. 小样本均值差假设检验 (1) 当 和 已知时,小样本均值 差 检验,与上一节所述大样本总体均值差检验完全 相同,这里不再赘述。
31
[解] 零 假 设H0:μd=0 , 即“实验无效”
备择假设H1:μ1>μ0 根据前三式,并参照上表有
计算检验统计量
确定否定域,因为α=0.05,并为单侧检验,因而 有 t 0.05(9)=1.833<2.13 所以否定零假设,即说明该教学法有效。
32
3.对实验设计与相关检验的评论
有了独立样本和非独立样本的认识,读者
22
1.单一实验组的假设检验 对于单一实验组这种“前—后”对比型配对 样 本的假设检验,我们的做法是,不用均值差检验, 而是求出每一对观察数据的差,直接进行一对一的 比较。如果采用“前测”“后测”两个总体无差异 的零 假设,也就是等于假定实验刺激无效。于是,问题 就转化为每对观察数据差的均值μ d =0的单样本假 设检验了。求每一对观察值的差,直接进行一对一 的比较。
对男性青年样本有n1 =10, 对女性青年样本有n2 =8,
H0 :
H1 :
计算检验统计量
确定否定域,因为α =0.05, Fα /2(n1―1,n2―1)=F0.025(9,7)=4.82>1.08
因而不能否定零假设,即在0.05水平上,我们不能说男性青年身
高的方差和女性青年身高的方差有显著性差异。
15
2.小样本方差比检验
在实际研究中,除了要比较两总体的均值外,有时还需要比较两 总体的方差。例如对农村家庭和城镇家庭进行比较,除了平均收入的 比较外,还要用方差比较收入的不平均情况。此外,刚刚在小样本均 值差的检验中曾谈到,当方差未知时,往往还假设两总体方差相等。 因此,在总体方差未知的情况下,先进行方差比检验,对于均值差检 检验也是具有一定意义的。 设两总体分别满足正态分布 这两 和 。现从
23
设配对样本的样本单位前测与后测的观察数据分别 是X 0i与X 1i,其差记作di
d i= X 1i―X 0i
如果假设两总体前测与后测无显著性差别,即μ 1 =μ 0 或者 两 个总体的配对大样本有 。那么对取自这
24
对于大样本,当二总体的方差未知时,可以用样本标 准差来近似。
若为小样本则需用 t 分布,即对配对(小)样本而言, 其 均值差的抽样分布将服从于自由度为(n—1)的 t 分布。所 以 对单一实验组实验的假设检验,其检验统计量为
33
第四节 双样本区间估计
双样本区间估计和双样本假设检验的联系是很紧密的。 双样本区间估计,即是为均值差或成数差设置置信区间的方 法,这需要我们汇合单样本区间估计和双样本假设检验两方 面的知识 1. 和 已知,对均数差的区间估计 根据本章第一节中心极限定理的推论,既然两样本的均 值差 的抽样分布就是 ,那么对 统计量Z 自然有
自 然会提出什么时候使用配对样本以及什么时候不 使用配对样本的问题。很显然,匹配样本损失了 自由度,使用配对样本相当于减小了一半样本容 量。这样做是不是得不偿失呢?答案是要看我们 能否恰当地配对。 在配对过程中,最好用掷硬币的方式决定 “对”中的哪一个归入实验组,哪一个归入控制 组。从而使“对”内随机化。
21
第三节 配对样本的假设检验
配对样本,是两个样本的单位两两匹配成
对,它实际上只能算作一个样本,也称关联样
本。因此对它的检验,用均值差检验显然是不行
的。因为2 n个样本单位(每个样本n个)不是全部 独立抽取的。而如果把每一配对当作一个单位, 在符合其他必要的假定条件下,统计检验与单样 本检验相差无几。
25
[例] 随机地选择13个单位,放映一部描述吸烟有害于身体 健康的影片,下表中的数字是各单位认为吸烟有害身体健康的 职工的百分比,试在0.05显著性水平上检检验实验无效的零假 设。
26
[解] 零 假 设H0:μd=0 备择假设H1:μ1>μ0 根据前三式,并参照上表有