人教版初一数学下册3.3解一元一次方程-去括号
《3.3解一元一次方程(二)——去括号与去分母》作业设计方案-初中数学人教版12七年级上册
《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对一元一次方程中“去括号”和“去分母”的掌握,通过实际操作练习,加深对一元一次方程解法的理解,并能够熟练运用这些方法解决实际问题。
二、作业内容1. 基础知识练习:(1)通过例题讲解,让学生熟悉去括号和去分母的步骤和方法,理解其原理。
(2)布置基础练习题,包括去括号和去分母的混合练习,旨在让学生熟练掌握两种方法。
2. 实践应用题:(1)设计一系列实际问题,如购物找零、速度与时间的关系等,通过这些问题让学生运用去括号和去分母的方法解决实际问题。
(2)设置开放性问题,鼓励学生自主探索,培养其创新思维和解决问题的能力。
三、作业要求1. 学生在完成作业时,应先复习课堂所学知识,确保理解去括号和去分母的原理及步骤。
2. 学生在做题时,应按照先易后难的原则,逐步提高难度,从基础练习开始,再到实践应用题。
3. 学生在解题过程中,应注重步骤的完整性,每一步都应清晰明了,确保解题思路的连贯性。
4. 学生在完成实践应用题时,应尽量用所学知识去解决问题,尝试不同的解题方法,培养创新思维。
5. 学生在解题过程中遇到问题时,应积极思考、查阅资料或向老师请教,不轻易放弃。
四、作业评价1. 老师应根据学生完成作业的情况,给予相应的评价和指导。
2. 评价内容应包括学生对知识的掌握程度、解题思路的连贯性、解题方法的多样性等方面。
3. 对于表现优秀的学生,老师应给予表扬和鼓励,激发其学习积极性。
4. 对于表现欠佳的学生,老师应给予指导和帮助,找出问题所在,并帮助其改正。
五、作业反馈1. 老师应根据学生的作业情况,及时调整教学计划和方法,以更好地满足学生的学习需求。
2. 对于普遍存在的问题,老师应在课堂上进行讲解和指导,帮助学生解决疑惑。
3. 老师应及时将学生的作业情况反馈给学生和家长,以便家长了解孩子的学习情况并给予支持。
公开课《解一元一次方程——去括号》说课稿[修改版]
第一篇:公开课《解一元一次方程——去括号》说课稿解一元一次方程——去括号的说课稿我说课的内容是人教版九年义务教育七年级教科书数学第一册第三章第三节“解一元一次方程——去括号”的第一课时内容。
本次讲课从四大方面讲解:一、教材分析地位与作用:本节内容在全书及章节的地位:《解一元一次方程——去括号》是初中七年级数学人教版上册第三章第三节。
前面几节我们学习了《解一元一次方程——移项及合并同类项》,这节是解一元一次方程的延伸及应用。
通过这节我们对解一元一次方程有了更新的步骤。
它在教材中起着承前启后的作用,一方面加深对一元一次方程的解法认识,另一方面为接下来讲解去分母做了铺垫。
所以说这节课内容非常重要。
二、教学目标根据上述教材结构内容简析,考虑到学生的认识结构心理特征,教学目标确定如下:①知识与能力:形成并掌握解一元一次方程的规范步骤,理解去括号的法则,并通过对比加深对带系数的去括号方法。
②过程与方法:逐步培养学生观察、归纳、类比、联想等发现规律的一般方法③情感态度与价值观:通过分析解有括号的一元一次方程的过程,让学生体会整洁的内涵,发展有条理地清晰的思维能力,提高人的一般素质。
三、教学重难点确定弄清列方程解应用题的思想方法;用去括号解一元一次方程是这节课的重点。
弄清题意,寻找等量关系是这节课的难点四、学情分析(1)知识掌握上,七年级学生刚刚学习一元一次方程,解一元一次方程的步骤和实际问题的找等量关系掌握不一定很深刻,尤其是应用题的等量关系的寻找不容易,所以应全面系统的去讲述。
(2)学生学习本节课的知识障碍。
学生在知识的结合上不是很顺手,所以教学中教师应予以简单明白、深入浅出的分析。
(3)由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
3.3 解一元一次方程(二)-去括号与去分母(第2课时)(七年级数学上册同步备课系列(人教版)
x x x
6 x.
2 4 7
解得
x=56.
答:这个班有56个学生.
课堂练习
3 x 7 x 17
1.把方程 2
去分母,正确的是(
4
5
A.2-(3x-7)=4(x+17)
B.40-15x-35=4x+68
C.40-5(3x-7)=4(x+17)
2. 去分母的依据是等式性质2 ,去分母时不能漏乘
3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.
;
去分母的方法:
方程的两边都乘以“公分母”,使方程中的系数不出现分数,这
样的变形通常称为“去分母”.
注意事项:“去分母”是解一元一次方程的重要一步,此步的依据是方
程的变形法则2,即方程的两边都乘以或除以同一个不为0的数,方程的
(这里是都乘以6),去掉方程中的分母.
解 : 两边都乘以6, 得
x3
2x 1
6
6 1 6
2
3
3( x 3) 2(2 x 1) 6
3x 9 4x 2 6
3x 4x 6 9 2
x 17.
2 x 1 10 x 1 2 x 1
移项,得8x-12x-6x=3+4.
移项,得3x+2x-2x=2+4.
合并同类项,得-10x=7.
合并同类项,得3x=6.
7
系数化为1,得x=- .
10
系数化为1,得x=2.
x
4.已知方程 的解比关于
y的方程2(y-3)+m=11的解小4,
2
3.3解一元一次方程(2)——去括号+讲练课件+2023-2024学年人教版数学七年级上册
根据题意,得t(y+3)=2t(y-3).
因为t≠0,所以y+3=2(y-3).解得y=9.
由(1),得甲、乙两码头之间的距离为2×(27+3)=60(km).所以
小艇从甲码头到乙码头所用时间为60÷(9+3)=5(h).
答:小艇从甲码头到乙码头所用的时间为5 h.
合并同类项,得-6x=-7.
系数化为1,得x= .
解一元一次方程的步骤
①去括号(括号前的系数要乘以括号里的
项;④系数化为1.
各项
);②移项;③合并同类
列方程解决问题
例3 已知A=x+3,B=2-x.当x取何值时,A比B的2倍大5?
解:由题意,得x+3-2(2-x)=5.
去括号,得x+3-4+2x=5.
数学(RJ版)
七年级上册
第三章 一元一次方程
解一元一次方程(2)——去括号
新课学习
去括号
例1 去括号:
;
(1)+(5x-7)=
5x-7
(2)-(3x-2)=
-3x+2
(3)2(x+8)=
2x+16
(4)-3(3x+4)=
;
;
-9x-12
.
1.对于方程1-(2x+3)=6,去括号的结果是(
A.1+2x-3=6
速度和两城市之间的距离.
解:设无风时飞机的平均飞行速度为x km/h.
根据题意,得2.8(x+25)=3(x-25).
解得x=725.
所以3×(725-25)=2 100(km).
答:无风时飞机的平均飞行速度为725 km/h,两城市之间的距离为2
100 km.
8.新定义(2022·扬州市期末)定义一种新运算“⊕”:a⊕b=2a-
一元一次方程的概念与解法(复习)
3.3解一元一次方程(去括号)【目标导航】1.掌握有括号的一元一次方程的解法;2.通过列方程解决实际问题,感受到数学的应用价值;3.培养分析问题、解决问题的能力.【预习引领】1. 化简:⑴()()=+-+--33121y y ⑵()()=-+--a a 24523 2.问题 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度? 3.你会用方程解这道题吗?设上半年每月平均用电x 度,则下半年每月平均用电 度;上半年共用电 度,下半年共用电 度. 列方程为 . 4.这个方程与上一课所解方程有何不同点?怎样使这个方程向a x =的形式转化呢?【要点梳理】知识点: 有括号的一元一次方程的解法引例:解方程()15000200066=-+x x 解:注:1.根据 ,先去掉等式两边的小括号,然后再移项、合并、系数化为12.本题用 的思想,将有括号的方程转化为已学的无括号的方程.例1 解方程()()323173+-=--x x x注:运算过程中,特别防止符号的错误. 练习1:解下列方程()()()41232341+-=-+x x x()⎪⎭⎫ ⎝⎛--=+⎪⎭⎫ ⎝⎛-1317242162x x x例2 解方程,并说明每步的依据:()[]{}()1082721324321--=+---x x注:⑴有多重括号,通用方法是由里向外依次去括号.⑵在去括号的过程中,可以同时作合并变形.练习2:解下列方程(1)()[]()21453123+-=---x x(2)()[]()51315.04210+-=----x x例3 已知关于x 方程()542+=-ax x ⑴当a 时,方程有唯一解; ⑵当a 时,方程无解;【课堂操练】 1. 将多项式()()24322+--+x x 去括号得 ,合并得 . 2.方程()()()x x x -=---1914322去括号得 ,这种变形的根据是 . 3.解方程: ⑴()62338=+-y y ⑵()33322+-=+-x x x⑶()()63734--=+x x⑷()()()36411223125+=+-+x x x⑸()()()121212345--=+--x x x⑹()[]()2321432-=+--x x x⑺()[]{}1720815432=----x4.已知关于x 的方程()ax x =-+324无解,求a 的值.【课后盘点】1.若关于x 的方程b x x a 3746-=+的解是1=x ,则a 和b 满足的关系式是 . 2.当=x 时,式子()23-x 和()434-+x 的值相等.3.比方程()472=+x 的解的3倍小5的数是 . 4.已知公式()h b a S +=21中,60=S ,6=a ,6=h ,则=b .5.化简下列各式⑴()()223248y xy y xy +-+---⑵()[]a b a b a +----22⑶()[]()y x y x +----25⑷()[]152322+---x x x x6.方程()113=--x x 的根是( ) A .2=x B .1=x C .0=x D .1-=x 7.下列去括号正确的是( )A .()1123=--x x 得4123=--x xB .()x x =++-314得x x =++-344C .()59172+-=-+x x x 得59772+-=--x x x D .()[]21423=+--x x 得24423=++-x x8.解下列方程 ⑴()212-=--t⑵()()32523-=+x x⑶()()23341+=+-x x⑷()()x x x 3234248--+=+⑸()()()x x x -=---1914322 ⑹()x x 415126556=-⎥⎦⎤⎢⎣⎡++9.已知关于x 的方程()3245-=-x ax 无解,求a 的值.10.若x A 34-=,x B 45+=,且B A 3202+=.求x 的值.【课外拓展】1.已知关于x 的方程()251-=-x x m 有唯一解,求m 的值.2.已知关于x 的方程()()b x a x a 3512+-=-有无数多个解,求a 、b 的值.3.三年前父亲的年龄是儿子年龄的4倍,三年后父亲的年龄是儿子年龄的3倍,求父子两人现在的年龄各是多少岁?(设计人:江云桂)No .4一元一次方程的概念与解法(复习)【目标导航】1.复习一元一次方程的概念、等式的性质、一元一次方程的解法;2.能根据题意列一元一次方程解决实际问题;【预习引领】1. 方程,一元一次方程,方程的解; 2. 等式性质;3. 解一元一次方程的步骤及每一步的依据。
人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计
人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计一. 教材分析《人教版数学七年级上册3.3解一元一次方程(二)——去括号与去分母》这一节主要是让学生掌握解一元一次方程中的一种方法——去括号与去分母。
在学习了解一元一次方程的基础知识之后,本节内容是对学生解题能力的进一步提升。
通过本节内容的学习,学生能够熟练掌握去括号与去分母的步骤和技巧,为后续的学习打下坚实的基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于解一元一次方程的基本步骤和方法已经有了一定的了解。
但是,学生在实际操作中可能会遇到去括号和去分母的困惑。
因此,在教学过程中,教师需要引导学生理解去括号和去分母的原理,并通过大量的练习让学生熟练掌握操作步骤。
三. 教学目标1.让学生掌握去括号与去分母的步骤和技巧。
2.培养学生解决实际问题的能力,提高学生的数学素养。
3.通过对本节内容的学习,使学生能够灵活运用所学的知识,解决更复杂的问题。
四. 教学重难点1.去括号与去分母的步骤和技巧。
2.在实际问题中,如何正确运用去括号与去分母的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题引导学生思考,提供典型案例让学生分析,小组讨论使学生相互学习,共同提高。
六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,让学生思考如何解决这类问题。
2.呈现(10分钟)呈现去括号与去分母的步骤和技巧,引导学生理解并掌握。
3.操练(10分钟)学生分组进行练习,教师巡回指导,及时解答学生的疑问。
4.巩固(10分钟)针对学生练习中出现的问题,进行讲解和总结,使学生加深对去括号与去分母方法的理解。
5.拓展(5分钟)提供一些拓展问题,让学生思考如何在实际问题中运用去括号与去分母的方法。
6.小结(5分钟)对本节内容进行总结,强调重点和难点,提醒学生注意事项。
7.家庭作业(5分钟)布置一些练习题,让学生巩固所学知识。
七年级数学第三章一元一次方程3.3解一元一次方程二去括号与去分母第1课时去括号导学案
3。
3 解一元一次方程(二)——去括号与去分母第1课时去括号一、新课导入1。
课题导入:前面我们已经学习了运用移项、合并同类项的方法解一元一次方程.对于像2(x-3)+3(x-1)=5这样的方程,又该怎么办呢?今天我们来学习含有括号的一元一次方程的解法(板书课题).2.三维目标:(1)知识与技能①通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简捷明了,省时省力。
②掌握去括号解方程的方法.(2)过程与方法培养学生分析问题、解决问题的能力。
(3)情感态度通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心.3.学习重、难点:重点:用去括号的方法解一元一次方程。
难点:确定实际问题中的相等关系,设未知数列出一元一次方程。
二、分层学习1.自学指导:(1)自学内容:教材第93页的内容。
(2)自学时间:8分钟.(3)自学方法:认真阅读课本内容,体会课本中是如何设未知数、找相等关系列方程的,解方程有哪些步骤。
体会每步变形中的化归思想.(4)自学参考提纲:①回顾在“整式加减”中学过的去括号的法则,注意符号和系数的变化.②从课本框图中可知用去括号法解一元一次方程有哪些步骤?与上节学过的用移项法解一元一次方程相比较有何异同?先去括号,再移项,合并同类项,系数化为1;多了一个去括号的步骤,其他一致.③本题还有其他列方程的方法吗?你能解出你所列的方程吗?解:设去年上半年月平均用电x kW·h,则下半年共用电(150000—6x) kW·h.可列方程为x=15000066x+2000.④按框图中的具体步骤解下列方程。
a.2x—(x+10)=5x+2(x—1)b。
3x-7(x-1)=3-2(x+3)解:a.x=—43b。
x=52.自学:学生可结合自学指导进行自学。
3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况和存在的问题.②差异指导:根据学情有针对性地给予点拨和指导.(2)生助生:小组内同学间交流研讨,互助解疑难。
3.3解一元一次方程——去括号
中学数学网(群英 学科)
Байду номын сангаас
例题
一艘船从甲码头到乙码头顺流行驶,用2小 时,从乙码头返回甲码头逆流行驶,用 2.5小时。已知水流的速度是3千米/时, 求船在静水中的平均速度。
中学数学网(群英 学科)
例题 七年级170名学生参加植树活动,如果每个男生平 均一天能挖树坑3个,每个女生平均一天能种树7棵,正 好能使每个树坑种上一棵树,则该年级的男生,女生各 有多少人?
去括号得: 移项得:
6x+ 6(x-2000)=150000 6x+6x-12000=150000
方程中有 6x+6x=150000+12000 括号怎么 解呀?
合并同类项得: 系数化为1得:
12x=162000 x=13500
答:这个工厂去年上半年每月平均用电13500度。
中学数学网(群英 学科)
1 1 6( x 4) 2 x 7 ( x 1) 2 3
解下列方程:
(1)4x + 3(2x – 3)=12 - (x +4) (2)2(10-0.5x)= -(1.5x+2) ( 3) 3x-2[3(x - 1) -2(x+2)]=3(18-x)
中学数学网(群英 学科)
解:设该年级男生有x人,则女生有(170-x)人,由题 意,得 3x=7(170-x) 去括号 3x=1190-7x
移项及合并同类项 10x=1190 系数化为1 x=119 则女生为:170-119=51 (人) 答:男生有119人,女生有51人。
中学数学网(群英 学科)
某车间22名工人生产螺钉和螺母,每人
3.3解一元一次方程(三) ----去括号
七年级数学3.3解一元一次方程(二)去括号000
3x=7(170-x)
去括号得:3x=1190-7x
移项及合并同类项得: 10x=1190
系数化为1得:
x=119
则女生为:170-119=51 (人)
答:男生有119人,女生有51人。
去括号
移项
合并同类项
系数化为1
学习目标
1、会应用去括号、移项、合并同类 项、系数化为1的方法解一元一次方 程。
2、经历探索用去括号的方法解方程 的过程,进一步熟悉方程的变形, 弄清楚每一步的依据。
小组讨论
• 内容:合作探究问题中所列方程及例1. • 方式:1.由组长组织先一对一讨论,再
组内互相交流,并说明方法,疑问用红 笔标出。 2. 注意总结题目的解题规律、方法和易 错点 ,提前讨论完的小组坐下改错 。
则上半年每月平均用电(x+2000)度
下半年共用电 6x
度,
上半年共用电 6(x+2000) 度
因为全年共用了15万度电,
所以,可列方程 6(x+2000) + 6x =15000。0
6x+ 6(x-2000)=150000
问题:这个方程有什么特点,和以前 我们学过的方程有什么不同?怎样 使这个方程向x=a转化?
1
内容
地点
展示
问题方程
1号黑板 黄野
例1
2号黑板 赵海超
基础巩固(2) 3号黑板 张丽颖
基础巩固(4) 5号黑板 宋晓研
基础巩固(9) 6号黑板 刘胜岩
基础巩固(10) 7号黑板 周颖
基础巩固(13) 8号黑板 王丹丹
基础巩固(14) 9号黑板 曲莹
七年级数学上册人教版3.3解一元一次方程去括号与去分母优秀教学案例
3.利用多媒体手段:播放与课题相关的动画或视频,形象地展示一元一次方程的应用场景,增强学生的直观感受。
4.创设互动情境:让学生分组讨论,分享各自在生活中遇到的一元一次方程问题,相互交流解题心得。
2.同伴评价:学生相互评价对方在小组合作中的表现,指出对方的优点和需要改进的地方。
3.教师总结:教师对学生的学习过程和成果进行总结性评价,给予肯定和鼓励,并提出改进建议。
(五)作业小结
1.布置作业:布置一些有关去括号与去分母的练习题,让学生课后巩固所学知识。
2.作业反馈:教师及时批改学生的作业,给予反馈,指出不足之处,引导学生正确思考。
为了巩固所学知识,我设计了丰富的练习题,让学生在实践中不断运用去括号与去分母的方法,逐步提高解题能力。在练习过程中,我引导学生相互讨论、交流心得,分享解题技巧,从而达到共同提高的目的。
本案例充分体现了“以人为本”的教育理念,关注学生的学习兴趣和需求,注重培养学生的数学素养和实际应用能力。通过案例的实施,学生对解一元一次方程的去括号与去分母方法有了更深入的理解,提高了他们在解决实际问题中的数学运用能力。
(二)过程与方法
1.通过生活实例引入课题,让学生在实际问题中发现数学规律,自然过渡到解一元一次方程的去括号与去分母步骤。
2.引导学生运用口诀记忆去括号与去分母的规则,提高他们的记忆能力。
3.设计丰富多样的练习题,让学生在实践中不断运用去括号与去分母的方法,提高解题能力。
4.鼓励学生相互讨论、交流心得,分享解题技巧,培养团队合作精神。
七年级数学上册人教版3.3解一元一次方程去括号与去分母优秀教学案例
人教版七年级下册第三章第二节3.3解一元一次方程(二)——去括号与去分母(第1课时)PPT(29张)
3.3解一元一次方程(二) ——去括号与去分母 第1课时
学习目标
1.会用去括号解含括号的一元一次方程. 2.掌握解一元一次方程的具体步骤 3.掌握用一元一次方程解决实际问题的方法
复习导入
解方程:6x-7=4x-1 1、一元一次方程的解法我们学了哪几步?
移项
6x-4x=-1+7
解: 去括号,得: 2x-x-10=5x+2x-2
移项,得: 2x-x-5x-2x=-2+10
合并同类项,得: -6x = 8
系数化为1,得: x 4 3
解对了吗?
(2) 3x-7(x-1)=3-2(x+3) 解: 去括号,得: 3x-7x+7=3-2x-6
移项,得: 3x-7x+2x=3-6-7 合并同类项,得:-2x = -10 系数化为1,得: X=5
合并同类项,得 12x = 162000 系数化为1,得 x = 13500
自学指导2 自学课本94页例1,完成以下问题,(用时5分钟) 问题 1:解一元一次方程的一般步骤? 问题 2:每一步需要注意什么? 问题 3:每一步的依据是什么?
例1 解下列方程
(1) 2x -(x+10)= 5x+2(x-1)
X=0
(3)6(1 x 4) 2x 7 (1 x 1) X=6
2
3
2.解方程:3(5x-1)- 2(3x+2)=6(x-1)+2 解:去括号,得 15x-3-6x-4 =6x-6+2
移项得 15x-6x-6x =-6+2+3+4 合并同类项得 3x =3 系数化为1,得 x =1
七年级数学(河北)人教版习题:3.3 解一元一次方程(二)——去括号与去分母
3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程基础题知识点 利用去括号解一元一次方程1.将方程3-5(x +2)=x 去括号正确的是(B)A .3-x +2=xB .3-5x -10=xC .3-5x +10=xD .3-x -2=x2.解方程4(x -2)=2(x +3),去括号,得4x -8=2x +6.移项,得4x -2x =6+8.合并同类项,得2x =14.系数化为1,得x =7.3.(厦门中考)方程x +5=12(x +3)的解是x =-7. 4.解下列方程:(1)3(x -4)=12;解:去括号,得3x -12=12.移项,得3x =12+12.合并同类项,得3x =24.系数化为1,得x =8.(2)2(3x -2)-5x =0;解:去括号,得6x -4-5x =0.移项,得6x -5x =4.合并同类项,得x =4.(3)5-(2x -1)=x.解:去括号,得5-2x +1=x.移项,得-2x -x =-5-1.合并同类项,得-3x =-6.系数化为1,得x =2.易错点 去括号时漏乘某些项或弄错符号导致错解5.解方程:2(3-4x)=1-3(2x -1).解:去括号,得6-4x =1-6x -1.(第一步)移项,得-4x +6x =1-1-6.(第二步)合并同类项,得2x =-6.(第三步)系数化为1,得x =-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程. 解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.中档题6.(唐山滦南县期末)方程2x -(x +10)=5x +2(x +1)的解是(D)A .x =43B .x =-43C .x =2D .x =-27.(唐山路北区期末)若5m +4与-(m -2)的值互为相反数,则m 的值为(D)A .-1B .1C .-12D .-328.如果关于x 的方程3x +2a +1=x -6(3a +2)的解是x =0,那么a 等于-1320. 9.解下列方程:(1)3(2y +1)=2(1+y)+3(y +3);解:去括号,得6y +3=2+2y +3y +9.移项,得6y -2y -3y =-3+2+9.合并同类项,得y =8.(2)1-8(14+0.5x)=3(1-2x); 解:去括号,得1-2-4x =3-6x.移项,得-4x +6x =3+2-1.合并同类项,得2x =4.系数化为1,得x =2.(3)43[34(15x -2)-6]=1. 解:去括号,得15x -2-8=1. 移项,得15x =2+8+1. 合并同类项,得15x =11. 系数化为1,得x =55.10.已知y 1=3x +8,y 2=6-2x.(1)x 取何值时,y 1=y 2?(2)x 取何值时,y 1比y 2小5?解:(1)根据题意,得3x +8=6-2x.解得x =-25. 即当x =-25时,y 1=y 2. (2)根据题意,得(6-2x)-(3x +8)=5.解得x =-75. 即当x =-75时,y 1比y 2小5. 第2课时 利用去括号解一元一次方程的实际问题基础题知识点 去括号解方程的应用1.某场足球赛即将举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5 800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?解:设小李预定了小组赛球票x 张,淘汰赛球票(10-x)张.根据题意,得550x +700(10-x)=5 800.解得x =8.则10-x =10-8=2.答:小李预定了小组赛球票8张,淘汰赛球票2张.2.(黄冈中考)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇.解:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x)篇.依题意,得 x =12(118-x)-2解得x =38. 答:七年级收到的征文有38篇.3.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”牌惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?解:设装运香菇的汽车需x 辆.根据题意,得1.5x +2(6-x)=10.解得x =4.则6-x =2.答:装运香菇、茶叶的汽车各需4辆和2辆.中档题4.(武汉中考改编)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元.问甲、乙两种奖品各购买了多少件?解:根据题意,得40x +30(20-x)=650.解得x =5.则20-x =15.答:购买甲种奖品5件,乙种奖品15件.5.(教材P94例2变式)一架飞机在两城市之间飞行,风速为24 km/h ,顺风飞行需要2 h 50 min ,逆风飞行需要3 h .求无风时飞机的飞行速度和两城之间的航程.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h ,两城之间的航程为2 448 km.6.(邯郸期末)某工厂第一车间人数比第二车间人数的45少30人,如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的34,求原来每个车间的人数. 解:设原来第二车间有x 人.由题意,得45x -30+10=34(x -10).解得x =250. 则45x -30=45×250-30=170. 答:原来第一车间的人数为170人,第二车间的人数为250人.第3课时 利用去分母解一元一次方程基础题知识点1 利用去分母解一元一次方程1.解方程3y -14-1=2y +76,去分母时,方程两边都乘(B) A .10 B .12 C .4 D .62.(济南中考)若式子4x -5与2x -12的值相等,则x 的值是(B) A .1 B.32 C.23 D .23.(滨州中考)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的性质2)去括号,得9x +15=4x -2.(去括号法则或乘法分配律)(移项),得9x -4x =-15-2.(等式的性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2) 4.解下列方程:(1)2x -13=x 4; 解:去分母,得8x -4=3x.移项,得8x -3x =4.合并同类项,得5x =4.系数化为1,得x =45. (2)2x -12=x +24-1; 解:去分母,得4x -2=x +2-4.移项,得4x -x =2+2-4.合并同类项,得3x =0.系数化为1,得x =0.(3)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(4)2x +13=1-x -15. 解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.知识点2 去分母解方程的应用5.小明早晨上学时,每小时走5千米,中午放学沿原路回家时,每小时走4千米,结果回家所用的时间比上学所用的时间多10分钟,问小明家离学校多远?设小明家离学校有x 千米,那么所列方程是(B)A.x 5=x 4-10B.x 5+16=x 4C .5x =4x +10D.x 5-x 4=16 6.整理一批图书,由一个人做要40 h 完成.现计划由一部分人先做4 h ,再增加2人和他们一起做8 h ,完成这项工作.假设这些人的工作效率相同,则应先安排多少人工作?解:设应先安排x 人工作.根据题意,得4x 40+8(x +2)40=1.解得x =2. 答:应先安排2人工作.易错点 去分母时,漏乘不含分母的项7.(唐山滦南县期末)把方程x -x -12=2-x +210去分母,正确的是(A) A .10x -5(x -1)=20-(x +2)B .10x -5(x -1)=20-2(x +2)C .10x -5(x -1)=2-2(x +2)D .10x -(x -1)=2-2(x +2)中档题8.若a 3+1与2a +13互为相反数,则a 等于(C) A.43 B .10 C .-43 D .-109.(唐山滦南县期末)某书上有一道解方程的题:1+□3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么□处应该是(B)A .7B .-10C .2D .-210.如果规定“*”的意义为a*b =a +2b 2(其中a ,b 为有理数),那么方程3*x =52的解是x =1.11.解下列方程:(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)x -x -12=2-x +25. 解:去分母,得10x -5(x -1)=20-2(x +2).去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117. 12.(邢台宁晋市期末)某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程解为x =2,试求a 的值,并求出原方程正确的解.解:根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2, 解得x =-2.13.某船从A 地顺流而下到达B 地,然后逆流返回,到达A ,B 两地之间的C 地,一共航行了7 h ,已知此船在静水中的速度为8 km/h 时,水流速度为2 km/h.A ,C 两地之间的距离为10 km ,求A ,B 两地之间的距离.解:设A ,B 两地之间的距离为x km ,则B ,C 两地之间的距离为(x -10)km.由题意,得x 8+2+x -108-2=7.解得x =32.5.答:A ,B 两地之间的距离为32.5 km.综合题14.某童装厂甲车间的3名工人1天完成的总工作量比日人均定额的3倍多60件,乙车间的4名工人1天完成的总工作量比日人均定额的5倍少20件.(1)如果两组工人实际完成的日人均工作量相同,那么日人均定额是多少件?(2)如果甲组工人实际完成的日人均工作量比乙组多10件,那么日人均定额是多少件?(3)如果乙组工人实际完成的日人均工作量比甲组多10件,那么日人均定额是多少件? 解:(1)设日人均定额是x 件.由题意,得3x +603=5x -204.解得x =100. 答:如果两组工人实际完成的日人均工作量相同,那么日人均定额是100件.(2)设日人均定额是y 件.由题意,得3y +603-5y -204=10.解得y =60. 答:如果甲组工人实际完成的日人均工作量比乙组多10件,那么日人均定额是60件.(3)设日人均定额是z 件,由题意.得5z -204-3z +603=10.解得z =140. 答:如果乙组工人实际完成的日人均工作量比甲组多10件,那么日人均定额是140件.。
3.3 解一元一次方程(去括号与去分母,分层练习)(原卷版)-2024-2025学年七年级数学上册同
3.3解一元一次方程(二) ——去括号与去分母一.选择题(共5小题) 1.(2023春•沈丘县期末)将方程3x−12−x+25=−2去分母得( )A .5(3x ﹣1)﹣(x +2)=﹣2B .5(3x ﹣1)﹣2(x +2)=﹣2C .5(3x ﹣1)﹣2(x ﹣2)=﹣20D .5(3x ﹣1)﹣2(x +2)=﹣202.(2023春•衡阳期末)解方程1−x+36=x2,去分母,得( ) A .1﹣x ﹣3x =3B .6﹣x ﹣3=3xC .6﹣x +3=3xD .1﹣x +3=3x3.(2022秋•天山区校级期末)解方程1−x+33=x2,去分母正确的是( ) A .1﹣2x ﹣3=3xB .1﹣2x ﹣6=3xC .6﹣2x ﹣6=3xD .6﹣2x +6=3x4.(2022秋•芙蓉区校级期末)在解方程x−13+x =3x+12时,方程两边同时乘以6,去分母后,正确的是( )A .2x ﹣1+6x =3(3x +1)B .2(x ﹣1)+6x =3(3x +1)C .2(x ﹣1)+x =3(3x +1)D .(x ﹣1)+x =3(x ﹣1)5.(2022秋•平泉市校级期末)方程:5x+13−2x−16=1的解为( )A .38B .−38C .83D .−83二.填空题(共3小题)6.(2022春•永春县月考)方程x ﹣4=0的解是 . 7.(2022•白云区二模)方程x+12=2−x 4的解是 .8.(2023•沙坪坝区校级开学)若2x ﹣1=0,则x 的值为 .三.解答题(共3小题)9.(2022秋•南岗区期末)解方程: (1)5x =1519; (2)14x −16x =4.10.(2022秋•芜湖期末)阅读材料:如何将0.7.化为分数形式. 探究过程:步骤①设x =0.7.;步骤②10x =10×0.7.;步骤③10x =7.7.,则10x =7+0.7.;步骤④10x =7+x ,解得x =79. 请你根据上述阅读材料,解答下列问题: (1)步骤①到步骤②的依据是 ; (2)仿照上述探究过程,请你把0.3.7.化为分数形式: 步骤①设x =0.3.7.,步骤②100x =100×0.3.7.; 步骤③ ;步骤④ ,解得x = ; (3)请你将0.48.化为分数形式,并说明理由. 11.(2022秋•邢台期末)解方程: (1)3(2x ﹣1)=5x +2; (2)5x+13−2x−16=1.一.选择题(共3小题)1.(2023•陇西县校级模拟)定义a ⓧb =2a +b ,则方程3ⓧx =4ⓧ2的解为( ) A .x =4B .x =﹣4C .x =2D .x =﹣22.(2022秋•惠东县期末)若代数式a+34比2a−37的值多1,则a =( ) A .﹣5B .−15C .5D .153.(2022秋•聊城期末)把方程3x 0.2−1=2x0.3的分母化为整数可得方程( )A .30x2−10=20x3B .30x2−1=20x3C .30x 2−10=2x 3D .3x 2−1=2x 3二.解答题(共1小题)4.(2022秋•川汇区期末)解方程: (1)5x +2(x ﹣1)=2x ﹣(x +10); (2)x+12=2−x 3+3.一.选择题(共3小题)1.(2023•平桥区校级开学)王涵同学在解关于x 的一元一次方程7a +x =18时,误将+x 看作﹣x ,得方程的解为x =﹣4,那么a 原方程的解为( ) A .x =4B .x =2C .x =0D .x =﹣22.(2022秋•潮安区期末)设a ⊕b =3a ﹣b ,且x ⊕(2⊕3)=1,则x 等于( ) A .3B .8C .43D .163.(2022秋•通川区校级期末)若关于x 的方程kx ﹣2x =14的解是正整数,则k 的整数值有( )个. A .1个B .2个C .3个D .4个二.解答题(共2小题)4.(2023春•襄汾县月考)解一元一次方程: (1)6(x −23)−(x +7)=11; (2)2x−13=2x+16−2.5.(2022秋•龙亭区校级期末)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7⋅化为分数形式,由于0.7⋅=0.777…,设x =0.777…,① 得10x =7.777…,②②﹣①得9x =7,解得x =79,于是得0.7⋅=79.同理可得0.3⋅=39=13,1.4⋅=1+0.4⋅=1+49=139.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【类比应用】(1)4.6⋅= ; (2)将0.2⋅7⋅化为分数形式,写出推导过程; 【迁移提升】(3)0.2⋅25⋅= ,2.01⋅8⋅= ;(注0.2⋅25⋅=0.225225…,2.01⋅8⋅=2.01818…) 【拓展发现】(4)若已知0.7⋅14285⋅=57,则2.2⋅85714⋅= .。
解一元一次方程(去括号)答案
注: ⑴有多重括号,通用方法是由里向外依 次去括号。⑵在去括号的过程中,可以同时 作合并变形。 练习 2:解下列方程
( 1) 3 2 1 3x 5 4 x 1 2
( 2) 10 2 4 0.5x 1 3 x 1 5
例3
【课堂操练】
1. 将多项式 2 x 2 3 4x 2 去括号
得 ,合并得。
2.方程 2 x 2 3 4x 1 9 1 x 去括
系数化为 1,得 练习 2:
9
x=
104
( 等式的性质 2)
( 1)答案: 解:去括号,得
3–(2 –6 x –5)= 4 x –4+ 2 合并、去括号,得
3 + 3 + 6 x = 4 x–2 移项,得
6x –4x = –2–3–3 合并同类项,得
2x = –8 系数化为 1,得
x =–4 ( 2)答案: 解:去括号,得
–10 –(8 –x –1)= 3 x –3+ 5 合并、去括号,得
–10 –7 +x = 3 x + 2 移项,得
x –3x = 2 + 10 + 7 合并同类项,得
–2x = 19 系数化为 1,得
19
x=
2
例3 ( 1) ≠ 2( 2)= 2
【课堂操练】 1. 2x + 4 + 12 x–614 x –2
8 –6x = 20 + 15 + 12 x 移项合同类项,得
–18x = 27
系数化为 1,得
3
x= –
2
【课外拓展】
1.答案: 解: m( x–1) = 5x –2
去括号,得 mx–m = 5x –2
人教版七年级数学教案:3.3解一元一次方程-去括号
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程-去括号》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决一些含括号的问题?”比如购物时遇到算总价的问题。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索去括号的奥秘。
-运算顺序和法则的掌握:在去括号后,学生需要按照正确的运算顺序和运算法则进行计算,避免出现运算错误。
-例:在上述方程中,去括号后可能出现多项式的加减运算,需要学生按照运算顺序逐步求解。
在教学过程中,教师应针对这些重点和难点进行详细的讲解和反复的练习,确保学生能够透彻理解并熟练掌握。通过具体的例题和变式练习,帮助学生识别和突破难点,从而提高解题能力。
(1)3(x - 2) = 12 - 2(x + 1)
(2)5(a + 3) - 2(a - 2) = 1
(3)2(3x - 4) + 5(2x + 1) = 3(4x - 2)
二、核心素养目标
1.培养学生逻辑推理能力:通过去括号法则的运用,使学生理解一元一次方程的解题过程,提高学生逻辑思维和推理能力。
人教版七年级数学教案:3.3解一元一次方程-去括号
一、教学内容
本节课选自人教版七年级数学下册第三章第三节“解一元一次方程-去括号”。教学内容主要包括以下两个方面:
1.掌握去括号的方法:利用分配律将方程中的括号去掉,包括单项式去括号和多项式去括号。
2.能够正确运用去括号法则解决具体的一元一次方程问题,例如:
Hale Waihona Puke 3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
解一元一次方程(二)--去括号与去分母教学设计
2分钟
6、
布
置
作
业
全体:《同步训练》A基础巩固;小组1-3号:《同步训练》B能力提升;
拓展探究:例1,例2的其他解法。
分层次全面巩固学生对一元一次方程解法的理解与运用。
因材施教,引导不同层次同学对本节课内容有不同程度的理解。
2分钟
教学反思
知、能、情达成情况
学生完成以上问题,并根据结果尝试去列方程,在这一过程中,引导学生顺利找出各量之间的关系,根据情况规范解答。
通过对例题的解决,培养学生分析解决问题的能力,帮助学生进一步运用方程思想解决实际问题,提高学生应用意识。并在此环节,渗透方程建模思想和化归思想,突破本节课的重、难点。
6分钟
4、
随
堂
练
习
教师利用“雨课堂”生成试卷进行随堂练习检测和批改,展示问题的正确率。采用小组合作学习,根据检测结果,组内解决,教师实时监测,及时帮助学生解决困惑。
学生学习目标已经基本达成,但运用方程思想解决实际问题方面仍需进一步培养。
优点与不足
去括号是解方程、不等式时常用的基本步骤之一,是一种同解变形。同时这节课既是本章的基础也是解一元一次方程的关键步骤,一元一次方程在实际问题中应用十分广泛,我对本节课的教学反思如下:
一、整堂课学生利用移动终端学习,提高了学习效率;
2、过程与方法:
通过微课自主学习,并能够将实际问题抽象为数学问题,进而通过列方程解决问题,逐步渗透方ห้องสมุดไป่ตู้思想和化归思想;
3、情感态度与价值观:
增强数学的应用意识,激发学生学习数学的热情。
教学重点难点
重点:去括号解一元一次方程,将实际问题抽象为方程,列方程解应用题;
2021年七年级数学下册课件3-3 解一元一次方程(二)—去括号与去分母(第4课时)
合并同类项,得 x=6.
(2) 3x+2-1=2x-1-2x+1 .
2
4
5
解:(1)去分母(方程两边乘20),得
10(3 x+2)-20=5(2 x-1)-4(2 x+1)
去括号,得 30x+20-20=10x-5-8x-4
移项,得 30x-10x+8x=-20+20-5-4
合并同类项,得 28x=− 9
(一)复习回顾,巩固解法
1.解一元一次方程的一般步骤是什么?
2.解下列方程:
(1) x + 1-2= x;
2
4
(2)3x+2-1=2x-1-2x+1 .
2
4
5
(1) x + 1-2= x;
2
4
解:(1)去分母(方程两边乘4),得
2( x+1)-8=x
去括号,得 2x+2-8=x
移项,得 2x-x=8-2
余团员乘汽车出发,速度为 45 km/h,结果他们同时
到达目的地,则目的地距学校多少km?
解:设目的地距学校 x km,则骑自行车所用时间为
x
x
9 h,乘汽车所用时间为 45 h.
由题意得
x - x =40 . 9 45 60
解得
x=7.5
答:目的地距学校7.5 km.
(三)巩固训练,巩固方法
1.一通讯员骑自行车把信送往某地.如果每小时行15 km, 就比预定时间少用24分钟;如果每小时行12 km,就比 预定时间多用15分钟,那么预定时间是多少小时?他 去某地的路程是多少km?
从A地到B地所用的时间表示为:7x0
h和
x 60
h.
根据题意,得
x - x =1 60 70
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下半年共用电度
因为全年共用了15万度电,
所以,可列方程6x+6(x-2000)=150000
问题:
1.这个方程有什么特点,和以前我们学过的方程有什么不 同?怎样使这个方程向x=a转化?
2.上面方程在求解中有哪些步骤?
3.每一步的依据是什么?
4.在每一步求解时要注意什么?
思考:本题还有其他列方程的方法吗?怎么解?
三、例题讲解:
例1解方程
备注
(补 充)
(1)2x-(x+10 )=5x+2(x-2)
(2)3x_7(x_1 )=3_2(x+3)
四、学以致用
1.判断,下列方程变形是否正确?
(1)-2(3x-5)=-6x+10.()
(2)4(y+1)=4y.()
⑶若3x—(2—4x)=5,则3x+4x—2=5.()
⑷解方程5(x-2)=8,
解:去括号,得5x-2=8,移项,得5x=8+2,合并同类项,5x=10,系数化为1,得x=2.()
⑸方程-(x+2)=2x+4的解是x=-2.()
2.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码 头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千 米/时,求船在静水中的速度?
顺流行驶的路程=逆流行驶的路程
教学重点
「含括号的一兀一次方程的解法。
教学难点
:含括号的一兀一次方程的解法。
教学用具
:多媒体
教学方法(学习方
法)
合作互助式
教学过程
一、复习回顾
1.解方程:6x-7=4x-1
一元一次方程的解法我们学了哪几步?
2.去括号的规律?
去括号,看符号;是“+”号,不变号;是“-”号,全变号。
3.依据去括号法则填空:
解:设船在静水中的平均速度为x千米/时,则顺流速度为
千米/时,逆流速度为千米/时,由题意得.
2(x+3)=2.5(x-3)
2x+6=2.5x-7.5
2x-2.5x=-7.5-6
-0.5x=-13.5
x=27
答:船在静水中的平均速度为27千米/时.
当堂检测:
P95练习
五、课堂小结:
说说这节课你的收获?
课题
3.3解一元一次方程去括号课时及授课时1课时
间年 月日
教学目标(学习目
标)
1、知识与技能:掌握解含有括号的一元一次方程的方法,能用多种方 法灵活地解一元一次方程。
2、过程与方法:经历对一元一次方程解法的探究过程,深入理解等式 基本性质在解方程中的作用,学会多角度寻求解决冋题的方法。
3、情感、态度与价值观:通过探索含有括号的一元一次方程的解法, 体验整体探索思想的意义、培养学生善于观察、总结的良好思维习惯。
需要注意的是:
(1)如果括号外的因数是负数时,去括号后原括号内各项的符 号要改变符号:
(2)乘数与括号内多项式相乘时,乘数应遍乘括号内的各项, 不要漏乘.
六、作业:课本P98第1、2ቤተ መጻሕፍቲ ባይዱ。
板书设计
3.3解一兀一次方程
去括号
教学反思
5x+(3x-1)=5x+;-2x-(5x-1)=-2x;
7x-2(3x-5)=7x
二、合作交流、探究新知
问题1:
某工厂加强节能措施,去年下半年与上半年相比,月平均 用电量减少2000度,全年用电15万度,这个工厂去年上半年 每月平均用电多少度?
分析:
设上半年每月平均用电x度,
则下半年每月平均用电度