中考复习二次函数的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的应用
主备:李江华审核:叶天明审核领导:时间:20XX年4月____号
复习目标:能利用二次函数的观点来解决较复杂的几何与代数应用题
复习要求:正确理解函数关系,规范解题过程。
1、如图所示,是一条高速公路的隧道口在平面直角坐标系上的示意图,点A和A1、点B和B1分别关于y轴对称,隧道拱部分BCB1为一条抛物线,最高点C离路面AA1的距离为8米,点B离路面为6米,隧道的宽度AA1为16米;
(1)求隧道拱抛物线BCB1的函数解析式;
(2)现有一大型运货汽车,装载某大型设备后,其宽度为4米,车载大型设备的顶部与路面的距离均为7米,他能否通过这个隧道?请说明理由。
2、某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,
销售价应定为多少元?
3、某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量是10万件。为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(万元)时,产品的销售量将是原销售量的y倍,且y=-0.1x2+0.7x+0.7,如果把利润看作是销售总额减去成本费和广告费:
(1)试写出年利润S(万元)与广告费x(万元)的函数关系式,并计算广告费是多少元时,公司获得的年利润最大,最大年利润是多少万元;
(2)把(1)中的最大利润留出3万元作广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资额和预计年收益如下表:
如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问有几种符合要求的投资方式?写出每种投资方式所选的项目。
4、某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元进行批量生产。已知生产每件产品的成本为40元,在销售中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额-生产成本-投资)为z(万元)。
(1)试写出y与x之间的函数关系式(不必写出x的取值范围);
(2)试写出z与x之间的函数关系式(不必写出x的取值范围);
(3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可以定为多少?相应的年销售量分别为多少万件?
(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年获利不低于1130万元。请你借助函数的大致图象说明,第二年的销售单价x(元)应确定在什么范围内?