利用空间向量求空间角-教案

合集下载

《利用向量法求空间角》教案

《利用向量法求空间角》教案

《利用向量法求空间角》教案一、教学目标1. 让学生理解空间向量的概念,掌握空间向量的基本运算。

2. 引导学生掌握利用向量法求空间角的方法,培养空间想象能力。

3. 通过对空间角的学习,提高学生解决实际问题的能力。

二、教学内容1. 空间向量的概念及基本运算2. 空间向量夹角的定义及计算方法3. 空间向量垂直的判定与性质4. 利用向量法求空间角的大小5. 应用实例解析三、教学重点与难点1. 教学重点:(1)空间向量的概念及基本运算(2)空间向量夹角的计算方法(3)利用向量法求空间角的大小2. 教学难点:(1)空间向量垂直的判定与性质(2)应用实例的解析四、教学方法1. 采用讲授法,系统地讲解空间向量及空间角的相关概念、性质和计算方法。

2. 利用多媒体课件,展示空间向量的几何形象,增强学生的空间想象力。

3. 结合具体实例,引导学生运用向量法求解空间角的大小,提高解决实际问题的能力。

4. 组织课堂讨论,鼓励学生提问、发表见解,提高学生的参与意识。

五、教学安排1. 第一课时:介绍空间向量的概念及基本运算2. 第二课时:讲解空间向量夹角的定义及计算方法3. 第三课时:讲解空间向量垂直的判定与性质4. 第四课时:讲解利用向量法求空间角的大小5. 第五课时:应用实例解析,巩固所学知识六、教学过程1. 导入:回顾上一节课的内容,通过提问方式检查学生对空间向量的理解和掌握情况。

2. 新课导入:介绍空间向量夹角的定义,解释其在几何中的意义。

3. 课堂讲解:详细讲解空间向量夹角的计算方法,包括夹角余弦值的求法。

4. 例题讲解:挑选典型例题,演示利用向量法求空间向量夹角的过程。

5. 课堂练习:学生独立完成练习题,巩固向量夹角的知识。

六、教学内容1. 空间向量夹角的定义2. 空间向量夹角的计算方法3. 空间向量夹角的应用实例七、教学重点与难点1. 教学重点:(1)空间向量夹角的定义及其计算方法(2)利用向量夹角解决实际问题2. 教学难点:(1)空间向量夹角的计算方法(2)空间向量夹角在实际问题中的应用八、教学方法1. 采用案例教学法,通过具体实例讲解空间向量夹角的含义和应用。

利用向量法求空间角》教案

利用向量法求空间角》教案

利用向量法求空间角一、教学目标1. 让学生掌握空间向量的基本概念和运算法则。

2. 培养学生利用向量法求空间角的能力。

3. 提高学生解决空间几何问题的综合素质。

二、教学内容1. 空间向量的概念及其表示方法。

2. 空间向量的线性运算:加法、减法、数乘、数量积(点积)、叉积。

3. 空间向量的坐标表示与运算。

4. 空间角的概念及求法。

5. 利用向量法求空间角的方法与步骤。

三、教学重点与难点1. 教学重点:(1)空间向量的概念及其表示方法。

(2)空间向量的线性运算及坐标表示。

(3)空间角的概念及求法。

(4)利用向量法求空间角的方法与步骤。

2. 教学难点:(1)空间向量的坐标表示与运算。

(2)利用向量法求空间角的具体步骤。

四、教学方法与手段1. 采用讲授法、示范法、练习法、讨论法等教学方法。

2. 使用多媒体课件、黑板、教具等教学手段。

五、教学过程1. 导入新课:介绍空间向量的概念,引导学生回顾初中阶段所学的一维向量和二维向量,引出三维空间向量的概念。

2. 知识讲解:讲解空间向量的表示方法、线性运算(加法、减法、数乘)、数量积(点积)和叉积。

3. 实例演示:利用多媒体课件演示空间向量的坐标表示与运算,让学生直观地感受空间向量的运算过程。

4. 练习巩固:布置一些有关空间向量的练习题,让学生独立完成,检验学生对知识的理解和掌握程度。

5. 讲解空间角的概念及求法:讲解空间角的概念,引导学生理解空间角的大小与两个向量的夹角有关。

6. 方法讲解:讲解利用向量法求空间角的方法与步骤,让学生了解如何运用向量知识求解空间角。

7. 课堂小结:对本节课的主要内容进行总结,强调空间向量运算和空间角求解的方法。

8. 课后作业:布置一些有关利用向量法求空间角的练习题,让学生巩固所学知识。

六、教学拓展1. 引导学生思考空间向量在实际问题中的应用,例如物理学中的力、速度等问题。

2. 探讨空间向量与其他数学领域的联系,如代数、微积分等。

七、课堂练习1. 布置一些有关空间向量运算和空间角求解的练习题,让学生独立完成。

用空间向量求空间角课件(共22张PPT)

用空间向量求空间角课件(共22张PPT)

向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,

数学 3.2.3用空间向量求空间角教学设计 新人教A版选修2 1 教案

数学 3.2.3用空间向量求空间角教学设计 新人教A版选修2 1 教案

立体几何中的向量方法——空间“角”问题(后附学案)一、教材分析:立体几何是高中数学教学中的一个重要内容,在整个高中数学学习中占有重要的地位,它不仅能培养学生的辩证唯物主义观点,还能培养学生的空间想象能力和逻辑思维能力,是历年高考的重点考查内容之一。

用向量法处理几何问题,可使空间形式的研究从“定性”推理转化为“定量”计算.空间角又是立体几何中的重要知识点,学好了它对其他数学知识的学习及贯穿运用有很大的帮助,因此在首轮复习有必要再对其进行专题复习。

二、学情分析学生虽已学完了立体几何,也对立体几何有了一定的认识,但由于空间角是一个难点,一般的方法是由“作、证、算”三部分组成,学生对作出空间角的方法即如何化空间角为平面角并在可解三角形中来求解有一定的困难,还不能熟练掌握,而空间向量的引入,使立几问题演绎难度降低,相比较来说过关比较容易,因此有必要对此内容通过引入空间向量的方法进行专题训练,使学生能更好地掌握。

三、教学目标知识基础:空间向量的数量积公式、夹角公式,坐标表示。

认知目标:掌握利用空间向量求空间角(两条异面直线所成的角,直线和平面所成的角及二面角)的方法,并能熟练准确的求解结果及完整合理的表达。

能力目标:培养学生观察分析、类比转化的能力;体验从“定性”推理到“定量”计算的转化,提高分析问题、解决问题的能力. 使学生更好的掌握化归和转化的思想。

情感目标:激发学生的学习热情和求知欲,体现学生的主体地位;感受和体会数学美的魅力,激发“学数学用数学”的热情.教学重点:1)向量法求空间角的方法和公式;2)空间角与向量夹角的区别和联系。

教学难点:1)两条异面直线的夹角、二面角的平面角与两个空间向量的夹角之间的区别;2)构建恰当的空间直角坐标系,并正确求出点的坐标及向量的坐标. 关 键: 建立恰当的空间直角坐标系,正确写出空间向量的坐标,将几何问题转化为代数问题.四、教学方法:启发式讲解互动式讨论研究式探索反馈式评价 五、教学手段:借助多媒体辅助教学 六、教学过程:教师教学活动学生参与活动设计意图 教师提出问题:1、异面直线所成的角、线面角、二面角的X 围分别是什么?2、两向量夹角的X 围是什么?3、向量的有关知识(1)两向量数量积的定义 (2)两向量夹角公式(3)什么是直线的方向向量?什么是平面的法向量?(4)如何用直线的方向向量和平面的法向量证明线面间的平行与垂直? 提问学生,学生一一作出回答。

高中数学_利用空间向量求空间角教学设计学情分析教材分析课后反思

高中数学_利用空间向量求空间角教学设计学情分析教材分析课后反思

利用空间向量求空间角一、高考考纲要求:能用向量方法解决异面直线夹角、线面角、面面角问题。

体会向量法在立体几何中的应用。

二、命题趋势:在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多。

三、教学目标知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用;过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力;情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力。

四、教学重难点重点:复习向量法求空间角的方法与步骤。

(重点)难点:强化向量法求空间角公式的理解。

(难点)五、教学过程板书设计:课题思维导图例题例题板演利用空间向量求空间角人教B版选修2-1学情分析学生虽已学完立体几何,也对立体几何有了一定认识,但由于空间角是一个难点,一般的方法是由“作,证,算”三部分组成,学生对做出空间角的方法即如何化空间角为平面角,并在可解三角形中求解有一定的困难,还不能熟练掌握,而空间向量的引入,使立体几何问题难度降低,相比较来说过关比较容易,因此有必要对此内容通过引入空间向量的方法进行专题训练,使学生更好的掌握。

学生已经分节对每一个空间角进行了学习,有些混淆,需要通过思维导图形成知识框架,讨论解决模糊知识,清除知识障碍,并准确迅速求空间角。

利用空间向量求空间角人教B版选修2-1效果分析新课程提倡自主、合作、探究的学习方式,课堂教学效率是学生学习成绩提高的关键。

教师应着力构建自主的课堂,让学生在生动、活泼的状态中高效率地学习。

如何才能提高课堂教学的有效性,我在本节课中的教学中主要运用了以下几种方法。

一、创设数学学习情境,激发学生的学习兴趣“兴趣是最好的老师,有兴趣不是负担”,这句话饱含深刻的道理。

利用向量法求空间角教案

利用向量法求空间角教案

利用向量法求空间角-经典教案教案章节一:向量基础教学目标:1. 理解向量的概念及其表示方法。

2. 掌握向量的运算规则,包括加法、减法、数乘和点乘。

教学内容:1. 向量的定义及表示方法。

2. 向量的运算规则:a) 向量加法:三角形法则和平行四边形法则。

b) 向量减法:向量减去另一个向量等于加上这个向量的相反向量。

c) 数乘:一个实数乘以一个向量,得到一个新的向量,其实数乘以原向量的模,新向量的方向与原向量相同。

d) 点乘:两个向量的点乘,得到一个实数,表示两个向量的夹角的余弦值。

教学活动:1. 通过实际操作,让学生直观地理解向量的概念和表示方法。

2. 通过例题,让学生掌握向量的运算规则。

教案章节二:空间向量教学目标:1. 理解空间向量的概念及其表示方法。

2. 掌握空间向量的运算规则,包括空间向量的加法、减法、数乘和点乘。

教学内容:1. 空间向量的定义及表示方法。

2. 空间向量的运算规则:a) 空间向量加法:三角形法则和平行四边形法则。

b) 空间向量减法:空间向量减去另一个空间向量等于加上这个空间向量的相反空间向量。

c) 空间向量的数乘:一个实数乘以一个空间向量,得到一个新的空间向量,其实数乘以原空间向量的模,新空间向量的方向与原空间向量相同。

d) 空间向量的点乘:两个空间向量的点乘,得到一个实数,表示两个空间向量的夹角的余弦值。

教学活动:1. 通过实际操作,让学生直观地理解空间向量的概念和表示方法。

2. 通过例题,让学生掌握空间向量的运算规则。

教案章节三:向量的投影教学目标:1. 理解向量的投影的概念及其计算方法。

2. 掌握向量的正交投影和斜投影的计算方法。

教学内容:1. 向量的投影的定义及计算方法。

2. 向量的正交投影和斜投影的计算方法:a) 向量的正交投影:将向量投影到垂直于某一平面的向量上,得到的投影向量与投影平面垂直。

b) 向量的斜投影:将向量投影到某一平面上,得到的投影向量与投影平面不垂直。

利用向量法求空间角-教案

利用向量法求空间角-教案

利用向量法求空间角-经典教案第一章:向量法概述1.1 向量的概念向量的定义向量的表示方法向量的几何性质1.2 向量的运算向量的加法向量的减法向量的数乘向量的点积向量的叉积1.3 向量法在空间角求解中的应用向量法求解空间角的基本思路向量法与传统解法的比较第二章:空间向量基本定理2.1 空间向量基本定理的定义空间向量基本定理的表述空间向量基本定理的意义2.2 空间向量基本定理的证明向量加法的平行性质向量数乘的分配性质向量点积的性质2.3 空间向量基本定理的应用利用空间向量基本定理求解空间角空间向量基本定理在其他几何问题中的应用第三章:空间向量的线性运算3.1 空间向量的线性组合线性组合的定义线性组合的运算规则3.2 空间向量空间的线性相关性线性相关的定义线性相关的判定条件3.3 空间向量空间的基底基底的概念基底的选取方法第四章:空间向量的内积与距离4.1 空间向量的内积内积的定义内积的运算规则4.2 空间向量的距离距离的定义距离的运算规则4.3 空间向量的内积与距离的应用利用内积与距离求解空间角内积与距离在其他几何问题中的应用第五章:空间向量的外积与向量积5.1 空间向量的外积外积的定义外积的运算规则5.2 空间向量积向量积的定义向量积的运算规则5.3 空间向量的外积与向量积的应用利用外积与向量积求解空间角外积与向量积在其他几何问题中的应用第六章:空间向量法求解空间角6.1 空间向量的加法与减法空间向量的加法运算空间向量的减法运算运算过程中的注意事项6.2 空间向量的数乘空间向量的数乘定义数乘对向量几何性质的影响6.3 空间向量的点积点积的定义与运算规则点积的性质与应用6.4 空间向量的叉积叉积的定义与运算规则叉积的性质与应用第七章:空间向量法在立体几何中的应用7.1 立体几何中的基本概念点、线、面的关系立体几何中的各类角度定义7.2 利用空间向量法求解立体几何问题求解空间角的步骤与方法向量法在立体几何中的应用案例7.3 空间向量法在立体几何教学中的意义提高学生的空间想象能力培养学生的逻辑思维能力第八章:空间向量法在现实生活中的应用8.1 空间向量在导航与定位中的应用导航与定位的基本原理空间向量在导航与定位中的应用案例8.2 空间向量在运动规划中的应用运动规划的基本概念空间向量在运动规划中的应用案例8.3 空间向量在其他现实生活中的应用建筑设计中的空间向量应用航空航天领域的空间向量应用第九章:空间向量法的拓展与延伸9.1 空间向量与线性代数的关系线性代数基本概念回顾空间向量与线性代数之间的联系9.2 空间向量法在其他学科中的应用物理学中的空间向量应用计算机科学中的空间向量应用9.3 空间向量法的进一步研究空间向量法的优化与发展空间向量法在未来的研究方向第十章:空间向量法教学实践与反思10.1 空间向量法教学设计教学目标与内容的安排教学方法与手段的选择10.2 空间向量法教学效果评估学生学习情况的分析教学方法的调整与改进10.3 空间向量法教学反思教学过程中的优点与不足对未来教学的展望与计划重点和难点解析重点一:向量的概念与表示方法向量是既有大小,又有方向的量,通常用箭头表示。

利用向量法求空间角》教案

利用向量法求空间角》教案

利用向量法求空间角一、教学目标1. 让学生掌握空间向量的基本概念和性质。

2. 让学生学会使用向量法求解空间角。

3. 培养学生解决实际问题的能力。

二、教学内容1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

三、教学方法1. 采用讲授法,讲解空间向量的基本概念和性质。

2. 采用演示法,展示向量法求解空间角的步骤。

3. 采用案例教学法,分析实际问题中的应用。

四、教学步骤1. 引入空间向量的概念,讲解其基本性质。

2. 讲解向量法求解空间角的基本步骤。

3. 分析实际问题中的应用案例,引导学生运用向量法解决问题。

五、课后作业1. 复习本节课所学内容,整理笔记。

2. 完成课后练习题,巩固所学知识。

3. 选择一个实际问题,尝试运用向量法解决。

六、教学评价1. 课堂讲解:观察学生对空间向量概念和性质的理解程度。

2. 课后作业:检查学生对向量法求解空间角的掌握情况。

3. 实际问题解决:评估学生在实际问题中的应用能力。

七、教学资源1. 教案、PPT、教材等相关教学资料。

2. 计算机、投影仪等教学设备。

3. 实际问题案例库。

八、教学时间1课时(45分钟)九、教学重点与难点1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

十、教学PPT内容1. 空间向量的基本概念和性质。

2. 向量法求解空间角的基本步骤。

3. 实际问题中的应用案例。

十一、教学案例案例一:求解空间直角坐标系中两向量的夹角。

案例二:求解空间四边形的对角线夹角。

案例三:求解空间旋转体的主轴与旋转轴的夹角。

十二、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对空间向量法的理解和应用能力。

十三、教学拓展1. 研究空间向量在几何中的应用。

2. 探索向量法在物理学、工程学等领域的应用。

十四、教学建议1. 注重学生空间想象能力的培养。

2. 鼓励学生积极参与课堂讨论,提高课堂氛围。

利用向量法求空间角教案

利用向量法求空间角教案

利用向量法求空间角-经典教案教案章节:一、向量法求空间角的概念教学目标:1. 了解向量法求空间角的概念。

2. 掌握向量法求空间角的基本方法。

教学内容:1. 向量法求空间角的概念介绍。

2. 向量法求空间角的计算方法。

教学步骤:1. 引入向量法求空间角的概念,解释空间角的概念。

2. 讲解向量法求空间角的计算方法,通过示例进行演示。

3. 进行练习,让学生巩固向量法求空间角的方法。

教学评估:1. 通过课堂提问,检查学生对向量法求空间角概念的理解。

2. 通过练习题,检查学生对向量法求空间角计算方法的掌握。

二、向量法求空间角的计算方法教学目标:1. 掌握向量法求空间角的计算方法。

2. 能够应用向量法求解空间角的问题。

教学内容:1. 向量法求空间角的计算方法介绍。

2. 向量法求空间角的计算实例。

教学步骤:1. 复习向量法求空间角的概念,引入计算方法。

2. 讲解向量法求空间角的计算步骤,通过示例进行演示。

3. 进行练习,让学生巩固向量法求空间角的计算方法。

教学评估:1. 通过课堂提问,检查学生对向量法求空间角计算方法的理解。

2. 通过练习题,检查学生对向量法求解空间角问题的能力。

三、向量法求空间角的练习题教学目标:1. 巩固向量法求空间角的计算方法。

2. 提高学生应用向量法求解空间角问题的能力。

教学内容:1. 向量法求空间角的练习题。

教学步骤:1. 给出向量法求空间角的练习题,让学生独立完成。

2. 对学生的答案进行讲解和指导,解决学生在解题过程中遇到的问题。

3. 进行练习,让学生进一步巩固向量法求空间角的计算方法。

教学评估:1. 通过练习题,检查学生对向量法求解空间角问题的能力。

2. 通过学生的解题过程,了解学生对向量法求空间角计算方法的掌握情况。

四、向量法求空间角的拓展与应用教学目标:1. 了解向量法求空间角的拓展与应用。

2. 能够应用向量法解决实际问题中的空间角问题。

教学内容:1. 向量法求空间角的拓展与应用介绍。

空间向量求空间角.教案

空间向量求空间角.教案

空间向量求空间角教学知能目标:1.理解空间向量求解空间角的一般方法; 2.能用空间向量解决空间角问题。

教学情感目标:培养学生探究新知的精神,培养学生数形结合的能力,化归的能力。

教学重点:理解空间向量求解空间角的一般方法,并能利用空间向量解决空间角问题。

教学难点:线面角,面面角的化归。

一、复习引入:1 .在三棱锥P ABC -中,,,,PA AB AB AC AC PA ⊥⊥⊥2PA PB PC ===,则面ABC 的法向量是什么?面PBC的法向量又怎么求?2 .空间向量的数量积运算公式是什么?二、新课探究:四棱柱1111ABCD A BC D -的底面是的边长为1的正方形,侧棱垂直底面,11,4,,,AB AA E F G ==分别是11,,CC AC BB 的中点。

问题1:求异面直线11,B F D E 所成角的余弦值.探究:如何用空间向量求异面直线所成的角?设l 1与l 2是两异面直线,,a b 分别为l 1、l 2的方向向量,它们所成角为θ, l 1、l 2所成的角为ϕ,则θ与ϕ相等或互补,则cos cos a b a bϕθ⋅==αbaCAP问题2:求直线AC 与平面1AGF 所成角的余弦值;探究:如何用空间向量求直线与平面所成的角?如图,设l 为平面α的斜线,lA α=,,a 为l 的方向向量, n 为平面α的法向量,它们所成角为θ, l 与平面α所成的角为ϕ,则sin cos a n a nϕθ⋅==问题3:求二面角1A AG F --的平面角的余弦值。

探究:如何用空间向量求二面角?平面α与β相交于直线l ,平面α的法向量为1n ,平面β的法向量为2n ,12,n n <> = θ,则二面角l αβ--为θ或πθ-.设二面角的大小为ϕ,则2112cos cos n n n n ϕθ⋅==φn a CB A αφn 2n 1lBA Oβα三、巩固提高:已知四棱锥S ABCD -的底面ABCD 是边长为a 的正方形,(1)当时2SA a =时,求异面直线AB 和SC 所成角的余弦值;(2)当2SA a =时求直线BD 和平面SCD 所成角的余弦值;(3)当SAAB的值为多少时,二面角B SC D --的大小为120︒?四、小结:1.求异面直线所成的角ϕ时,一定要注意(0,90]ϕ∈︒︒,从而有cos cos a b a bϕθ⋅==2.求直线与平面所成的角ϕ时,一定要注意它和,a n <>之间的关系,从而有sin cos a n a nϕθ⋅==3.求二面角ϕ时一定要注意它和,m n <>之间的关系,从而有cos cos m n m nϕθ⋅==,同时还要观察图形确定二面角的范围。

41、利用空间向量求空间角(教师版)

41、利用空间向量求空间角(教师版)

**教育ISO讲义利用空间向量求空间角爱思课堂——有趣【问题导思】图11.如图1,s1,s2分别是直线l1,l2的方向向量,则直线l1,l2的夹角θ与〈s1,s2〉有怎样的关系?2.如图1,n1,n2分别是平面π1,π2的法向量,则二面角π1-l-π2的大小θ与〈n1,n2〉有怎样的关系?图22.将图1改成图3呢?图3【知识梳理】1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b||a||b|❶, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n||a||n|❷.【典型例题】【例题】1、如图,在三棱锥P ­ABC 中,PA ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【答案】:见解析【解析】:由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ―→=(0,2,0),DB ―→=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨取z =1,可得n =(1,0,1). 又MN ―→=(1,2,-1),可得MN ―→·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH ―→=(-1,-2,h ), BE ―→=(-2,2,2). 由已知,得|cos 〈NH ―→,BE ―→〉|=|NH ―→·BE ―→||NH ―→||BE ―→|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.【例题】2、如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55 B.53C.255D.35【答案】:A【解析】:不妨令CB =1,则CA =CC 1=2.可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1),∴1BC =(0,2,-1),1AB =(-2,2,1), ∴cos 〈1BC ,1AB 〉=1BC ·1AB |1BC ||1AB |=4-15×9=15=55>0.∴1BC 与1AB 的夹角即为直线BC 1与直线AB 1的夹角, ∴直线BC 1与直线AB 1夹角的余弦值为55. 【总结】用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角. 【变式训练】1.如图所示,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .30°B .45°C .60°D .90° 【答案】:见解析【解析】:以B 为坐标原点,以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系如图所示.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),∴EF ―→=(0,-1,1),BC 1―→=(2,0,2),∴EF ―→·BC 1―→=2,∴cos 〈EF ―→,BC 1―→〉=22×22=12,则EF 和BC 1所成的角是60°,故选C.【变式训练】2.如图,在四棱锥P ­ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值. 【答案】:见解析【解析】:(1)证明:因为四边形ABCD 是菱形,所以AC ⊥BD .因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA ⊥BD .又因为AC ∩PA =A ,所以BD ⊥平面PAC . (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,射线OB ,OC 分别为x 轴,y 轴的正半轴建立空间直角坐标系O ­xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0), 所以PB ―→=(1,3,-2),AC ―→=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=|PB ―→·AC ―→||PB ―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. 【变式训练】3. 如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1. 【答案】:见解析【解析】:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0,1FB ·BC =0,∴FB 1⊥BB 1,FB 1⊥BC .∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.考点二 直线与平面所成的角 【典型例题】【例题】3、如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A ­PB ­C 为90°,求PD 与平面PBC 所成角的大小. 【答案】:见解析【解析】:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz ,则C (22,0,0).设D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎪⎫423,0,23,B (2,-b,0).于是PC =(22,0,-2), BE =⎝ ⎛⎭⎪⎫23,b ,23,DE =⎝ ⎛⎭⎪⎫23,-b ,23,从而PC ·BE =0,PC ·DE =0, 故PC ⊥BE ,PC ⊥DE . 又BE ∩DE =E , 所以PC ⊥平面BED .(2) AP =(0,0,2),AB =(2,-b,0). 设m =(x ,y ,z )为平面PAB 的法向量,则m ·AP =0,m ·AB =0,即2z =0且2x -by =0, 令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b,n =⎝⎛⎭⎪⎫1,-2b,2.因为二面角A -PB -C 为90°,所以面PAB ⊥面PBC ,故m ·n =0, 即b -2b=0,故b =2,于是n =(1,-1,2),DP =(-2,-2,2),所以cos 〈n ,DP 〉=n ·DP |n ||DP |=12,所以〈n ,DP 〉=60°.因为PD 与平面PBC 所成角和〈n ,DP 〉互余, 故PD 与平面PBC 所成的角为30°.【例题】4、(2020·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. 【答案】:见解析【解析】:(1)证明:连接AC 交BD 于点N ,连接MN ,则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC . (2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4), ∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. ∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cosn ,AE―→|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.【总结技巧】利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角). (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.【变式训练】4、在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.【答案】:见解析【解析】:建立如图所示的空间直角坐标系D ­xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0, BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:13【变式训练】5、设二面角的大小为,点在平面内,点在上,且,则与平面所成的角的大小为__________.【答案】30° 【解析】如图,作平面于点,在平面内过作于点,连接,由三垂线定理得,所以为二面角的平面角,所以,又,所以.连接,则为与平面的所成角.设,则,,,,所以,所以.【变式训练】6、如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.【答案】:见解析【解析】(1)证明:∵三棱柱ABC ­A 1B 1C 1是直三棱柱,∴AA 1⊥平面ABC ,又BD ⊂平面ABC ,∴BD ⊥AA 1,∵BA =BC ,D 为AC 的中点,∴BD ⊥AC ,又AC ∩AA 1=A ,AC ⊂平面ACC 1A 1,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,∴BD ⊥A 1D . (2)由(1)知BD ⊥AC ,AA 1⊥平面ABC ,以D 为坐标原点,DB ,DC 所在直线分别为x 轴,y 轴,过点D 且平行于AA 1的直线为z 轴建立如图所示的空间直角坐标系D ­xyz .设AA 1=λ(λ>0),则A 1(0,-4,λ),B (3,0,0),C 1(0,4,λ),D (0,0,0),∴DA 1―→=(0,-4,λ),DC 1―→=(0,4,λ),DB ―→=(3,0,0), 设平面BC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DC 1―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧4y +λz =0,3x =0,则x =0,令z =4,可得y =-λ,故n =(0,-λ,4)为平面BC 1D 的一个法向量. 设直线A 1D 与平面BC 1D 所成角为θ, 则sin θ=|cosn ,DA 1―→|=|n ·DA 1―→||n |·|DA 1―→|=|4λ+4λ|λ2+16·λ2+16=45,解得λ=2或λ=8,即AA 1=2或AA 1=8.【变式训练】7、如图,已知PA ⊥平面ABC ,且PA =2,等腰直角三角形ABC 中,AB =BC =1,AB ⊥BC ,AD ⊥PB 于D ,AE ⊥PC 于E .(1)求证:PC ⊥平面ADE ;(2)求直线AB 与平面ADE 所成角的大小. 【答案】:见解析【解析】:(1)证明:因为PA ⊥平面ABC ,所以PA ⊥BC ,又AB ⊥BC ,且PA ∩AB =A , 所以BC ⊥平面PAB ,从而BC ⊥AD . 又AD ⊥PB ,BC ∩PB =B , 所以AD ⊥平面PBC , 得PC ⊥AD ,又PC ⊥AE ,AE ∩AD =A , 所以PC ⊥平面ADE .(2)如图所示,建立空间直角坐标系B -xyz . 则A (1,0,0),C (0,1,0),P (1,0,2),因为PC ⊥平面ADE ,所以PC =(-1,1,-2)是平面ADE 的一个法向量. 设直线AB 与平面ADE 所成的角为θ,则sin θ=|PC ·AB ||PC ||AB |=-1,1,-2·-1,0,02=12, 则直线AB 与平面ADE 所成的角为30°.考点三 二面角 【典型例题】【例题】5、如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的余弦值.【答案】:见解析【解析】:(1)证明:由四边形ABCD 为菱形,得AC ⊥BD .由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC .因此EF ⊥DH ,从而EF ⊥D ′H .由AB =5,AC =6,得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3,则OD ′2=OH 2+D ′H 2,所以D ′H ⊥OH . 又OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)以H 为坐标原点,HB ,HF ,HD ′分别为x 轴,y 轴,z 轴建立空间直角坐标系H ­xyz ,如图所示. 则B (5,0,0),C (1,3,0),D ′(0,0,3),A (1,-3,0), (由口诀“起点同”,我们先求出起点相同的3个向量.)所以AB ―→=(4,3,0), AD ′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.) 由⎩⎪⎨⎪⎧ AD ′―→=-1,3,3, AB ―→=4,3,0,可得平面ABD ′的法向量n 1=(-3,4,-5),由⎩⎪⎨⎪⎧AD ′―→=-1,3,3, AC ―→=0,6,0,可得平面AD ′C 的法向量n 2=(-3,0,-1). 于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=7525.所以二面角B ­D ′A ­C 的余弦值为7525.【例题】6、在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长; (2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值. 【答案】:见解析【解析】:(1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1于点E ,因为AA 1∥BB 1,得OE ⊥BB 1,因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .因为AB =AC ,OB =OC ,得AO ⊥BC ,所以BC ⊥平面AA 1O ,所以BC ⊥OE , 所以OE ⊥平面BB 1C 1C .又AO =AB 2-BO 2=1,AA 1=5,得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),B 1(-1,2,2),由AE =151AA 得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25,由(1)得平面BB 1C 1C 的法向量是OE =⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·11A B =0,n ·1A C =0,得⎩⎪⎨⎪⎧-x +2y =0,y +z =0.令y =1,得x =2,z =-1,即n =(2,1,-1), 所以cos 〈OE ,n 〉=OE ·n| OE |·|n |=3010,即平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值是3010. 【例题】7、如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=,求二面角A PB C --的余弦值. 【答案】:见解析【解析】(1)证明:因为90BAP CDP ∠=∠=,所以PA AB ⊥,PD CD ⊥.又因为AB CD ∥,所以PD AB ⊥,又因为PD PA P =,PD 、PA ⊂平面PAD所以AB ⊥平面PAD ,又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD (2)取AD 中点O ,BC 中点E ,联结PO ,OE ,因为AB CD ∥,所以四边形ABCD 为平行四边形,所以OE AB ∥. 由(1)知,AB ⊥平面PAD ,所以OE ⊥平面PAD , 又PO 、AD ⊂平面PAD ,所以OE PO ⊥,OE AD ⊥.又因为PA PD =,所以PO AD ⊥,所以PO 、OE 、AD 两两垂直, 所以以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -设2PA =,所以()002D -,,,()220B ,,,()002P ,,,()202C -,,,所以()022PD =--,,,()222PB =-,,,()2200BC =-,,设()x y z =n ,,为平面PBC 的法向量,由00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,得2220220x y z x ⎧+-=⎪⎨-=⎪⎩.令1y =,则2z =,0x =,可得平面PBC 的一个法向量()012=n ,,. 因为90APD ∠=︒,所以PD PA ⊥,又知AB ⊥平面PAD ,PD ⊂平面PAD ,DCBAP所以PD AB ⊥,又PA AB A =,所以PD ⊥平面PAB , 即PD 是平面PAB 的一个法向量,()022PD =--,, 所以23cos 323PD PD PD ⋅-===-⋅n n n,. 由图知二面角A PB C --为钝角,所以它的余弦值为33-. 【例题】8、如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 【答案】:见解析【解析】: (1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC .所以ED ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC . 所以DE ⊥A 1C . 又因为A 1C ⊥CD . 所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系C -xyz ,则A 1(0,0,23),D (0,2,0),M (0,1, 3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·1A B =0,n ·BE =0.又1A B (3,0-23)= (-1,2,0),所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z = 3. 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ. 因为CM =(0,1,3),所以sin θ=|cos 〈n , CM 〉|=|n ·CM |n ||CM ||=48×4=22.所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下:假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3].设平面A 1DP 的法向量为m =(x ,y ,z ),则m ·1A D =0,m ·DP =0.又1A D =0,2,-23),DP =(p ,-2,0),所以⎩⎨⎧2y -2 3z =0,px -2y =0.令x =2,则y =p ,z =p3.所以m =(2,p ,p3).平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直. 【方法归纳】1.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小. 2.利用法向量求二面角时的几个注意点(1)对于某些平面的法向量要注意题中条件隐含着,不用单独求.(2)注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论错误.(3)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(4)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等. 【变式训练】8、如图所示,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形, ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角––D AE C 的余弦值. 【答案】:见解析【解析】⑴取AC 中点为O ,联结BO ,DO ;因为ABC △为等边三角形,所以BO AC ⊥,所以AB BC =.AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩,ABD CBD ≅△△.所以AD CD =,即ACD △为等腰直角三角形, ADC ∠为直角又O 为底边AC 中点,所以DO AC ⊥.令AB a =,则AB AC BC BD a ====,易得:22OD a =,32OB a =所以222OD OB BD +=,由勾股定理的逆定理可得2DOB π∠=,即OD OB ⊥.OD ACOD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面,所以OD ⊥平面ABC . BEC DA O又因为OD ⊂平面ADC ,由面面垂直的判定定理可得平面ADC ⊥平面ABC . ⑵由题意可知V V D ACE B ACE --=,即B ,D 到平面ACE 的距离相等,即E 为BD 中点.以O 为原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,30,,02B a ⎛⎫ ⎪ ⎪⎝⎭,30,,44a E a ⎛⎫⎪ ⎪⎝⎭易得:3,,244a a AE a ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭, 设平面AED 的法向量为1n ,平面AEC 的法向量为2n , 则110AE AD ⎧⋅=⎪⎨⋅=⎪⎩n n ,解得()13,1,3=n ,220AE OA ⎧⋅=⎪⎨⋅=⎪⎩n n ,解得()20,1,3=-n .若二面角D AE C --为θ,易知θ为锐角,则12127cos 7θ⋅==⋅n n n n .【变式训练】:9、如图所示,四棱锥P ­ABCD 中,PA ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面PAD ⊥平面CGF ; (2)若BC =2,PA =3,求二面角B ­CP ­D 的余弦值. 【答案】:见解析【解析】:(1)证明:在△BCD 中,EB =ED =EC =BC ,故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°. ∴AB ∥EF ,∴∠EFD =∠BAD =90°, ∴EF ⊥AD ,AF =FD . 又PG =GD ,∴GF ∥PA .又PA ⊥平面ABCD ,∴GF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴GF ⊥AD . 又GF ∩EF =F ,∴AD ⊥平面CGF . 又AD ⊂平面PAD ,∴平面PAD ⊥平面CGF .z OADC EBx y(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (3,3,0),D (0,23,0),P (0,0,3),故CB ―→=(-1,-3,0), CP ―→=(-3,-3,3),CD ―→=(-3,3,0). 设平面BCP 的一个法向量为n 1=(1,y 1,z 1), 则⎩⎪⎨⎪⎧ n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎨⎧-1-3y 1=0,-3-3y 1+3z 1=0,解得⎩⎪⎨⎪⎧y 1=-33,z 1=23,即n 1=⎝ ⎛⎭⎪⎫1,-33,23. 设平面DCP 的一个法向量为n 2=(1,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎨⎧-3+3y 2=0,-3-3y 2+3z 2=0,解得⎩⎨⎧y 2=3,z 2=2,即n 2=(1,3,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=43169×8=24, 由图知二面角B ­CP ­D 为钝角, 所以二面角B ­CP ­D 的余弦值为-24. 【变式训练】10、如图,三棱柱111ABC A B C -的所有棱长均为2,底面ABC ⊥侧面11AA B B , 1160AA B ∠=︒,P 为1CC 的中点, 11AB A B O ⋂=.(1)证明: 11AB A P ⊥.(2)若M 是AC 棱上一点,满足45MOP ∠=︒,求二面角1M BB A --的余弦值.【答案】:见解析【解析】:(1)取AB 的中点D ,连接,,OP CD OD ,易证OPCD 为平行四边形,从而OP CD .由底面ABC ⊥侧面11AA B B ,可得CD ⊥侧面11AA B B ,即1AB OP ⊥,又侧面11AA B B 为菱形,所以11AB A B ⊥,从而1AB ⊥平面1A OP ,可证得AB 1⊥A 1P .(2)以O 为原点,建立如图所示的空间直角坐标系z xoy -.利用向量法求解.试题解析;(1)取AB 的中点D ,连接,,OP CD OD ,易证OPCD 为平行四边形,从而OP CD .由底面ABC ⊥侧面11AA B B ,底面ABC ⋂侧面11AA B B AB =, CD AB ⊥, CD ⊆底面ABC ,所以CD ⊥侧面11AA B B ,即OP ⊥侧面11AA B B ,又1AB ⊆侧面11AA B B ,所以1AB OP ⊥,又侧面11AA B B 为菱形,所以11AB A B ⊥,从而1AB ⊥平面1A OP ,因为1A P ⊆平面1A OP ,所以11AB A P ⊥.(2)由(1)知, 1OP OA ⊥, OP OA ⊥, 1OA OA ⊥,以O 为原点,建立如图所示的空间直角坐标系z xoy -.因为侧面11AA B B 是边长为2的菱形,且1160AA B ∠=︒,所以()0,0,0O , ()0,1,0A , ()10,1,0B -,()3,0,0B -, 31,,322C ⎛⎫- ⎪ ⎪⎝⎭, ()0,0,3P ,得()0,0,3OP =.设()0AM AC λλ=>,得31,1,322M λλλ⎛⎫-- ⎪ ⎪⎝⎭,所以31,1,322OM λλλ⎛⎫=-- ⎪ ⎪⎝⎭,所以3OP OM λ⋅=.而cos OP OM OP OM MOP ⋅=⋅⋅∠= 222312313422λλλ⎛⎫⨯+-+⨯⎪⎝⎭.所以2223133133422λλλλ⎛⎫⨯+-+⨯= ⎪⎝⎭,解得12λ=.所以333,,442M ⎛⎫- ⎪ ⎪⎝⎭, ()13,1,0B B =-, 1373,,442B M ⎛⎫=- ⎪ ⎪⎝⎭.设平面1B BM 的法向量()1,,n x y z =,由11110{ 0B B n B M n ⋅=⋅=得30{3730442x y x y z -+=-++=,取()11,3,3n =-.而侧面11AA B B 的一个法向量()20,0,1n =.设二面角1M BB A --的大小为θ.则121212cos cos ,n n n n n n θ⋅===33131313=【变式训练】11、如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由. 【答案】:见解析【解析】:(1)证明:连接A 1C ,交AC 1于点O ,连接OD .由ABC -A 1B 1C 1是直三棱柱,得四边形ACC 1A 1为矩形,O 为A 1C 的中点. 又D 为BC 的中点,所以OD 为△A 1BC 的中位线, 所以A 1B ∥OD ,因为OD ⊂平面ADC 1,A 1B ⊄平面ADC 1, 所以A 1B ∥平面ADC 1.(2)由ABC -A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA ,BC ,BB 1两两垂直. 以BC ,BA ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz .设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0), 所以AD =(1,-2,0),1AC =(2,-2,1).设平面ADC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AD =0,n ·1AC =0.所以⎩⎪⎨⎪⎧x -2y =0,2x -2y +z =0.取y =1,得n =(2,1,-2).易知平面ADC 的一个法向量为v =(0,0,1).所以cos 〈n ,v 〉=n ·v |n |·|v |=-23.因为二面角C 1-AD -C 是锐二面角, 所以二面角C 1-AD -C 的余弦值为23.(3)假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1), 故可设E (0,λ,1),其中0≤λ≤2. 所以AE =(0,λ-2,1),1DC =(1,0,1). 因为AE 与DC 1成60°角,所以|cos 〈AE ,1DC 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AE ·1DC |AE |·|1DC |=12. 即⎪⎪⎪⎪⎪⎪1λ-22+1·2=12,解得λ=1或λ=3(舍去).所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.A 级1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B.3015 C.3010D.1515【答案】:C【解析】:建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010.2.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535 B.277C.33D.24【答案】:A【解析】:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1), D 1E ―→=(1,1,-1), D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B. 6C. 5 D .2【答案】:A【解析】:由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4, cosAB 1―→,BC 1―→=AB 1―→·BC ―→|AB 1―→|·|BC ―→|=24,故tan AB 1―→,BC 1―→=7.4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35B.56C.3310D.3610【答案】:A【解析】:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1),E ⎝ ⎛⎭⎪⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝ ⎛⎭⎪⎫12,-32,1, GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33D.22【答案】:B【解析】:以A 为坐标原点建立如图所示的空间直角坐标系A ­xyz ,设棱长为1, 则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.6.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.【答案】:2【解析】:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎨⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22,解得a =2或a =-12(舍去),∴AE =2.7.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.【答案】:见解析【解析】:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示 的空间直角坐标系O ­xyz , 由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1), OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1), 则cos 〈m ,n 〉=m ·n |m ||n |=33. 由图知二面角F ­OE ­A 为锐角, 所以二面角F ­OE ­A 的余弦值为33. 答案:338.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 【答案】:见解析【解析】:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点, DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz .当三棱锥M ­ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量, 则⎩⎪⎨⎪⎧n ·AM ―→=0,n ·AB ―→=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2),又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.9.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­PA ­C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】:见解析【解析】:(1)证明:因为PA =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3.连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面PAC 的一个法向量OB ―→=(2,0,0).设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ AP ―→·n =0, AM ―→·n =0,得⎩⎨⎧ 2y +23z =0,ax +4-a y =0,令y =3a ,得z =-a ,x =3(a -4),所以平面PAM 的一个法向量为n =(3(a-4),3a ,-a ),所以cos 〈OB ―→,n 〉=23a -423a -42+3a 2+a2. 由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32, 所以23|a -4|23a -42+3a 2+a2=32, 解得a =43或a =-4(舍去). 所以n =⎝ ⎛⎭⎪⎫-833,433,-43. 又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34. 所以PC 与平面PAM 所成角的正弦值为34. B 级1.如图,四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B ­OB 1­C 的余弦值.【答案】:见解析【解析】:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD ,∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD .∵A 1O ∩CO =O ,∴BD ⊥平面A 1CO .∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→, OA 1―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°,∴OB =OD =1,OA =OC =3,OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6).设平面OBB 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ OB ―→·n =0,OB 1―→·n =0,即⎩⎨⎧ x =0,x +3y +6z =0.令y =2,得z =-1,∴n =(0,2,-1)是平面OBB 1的一个法向量.同理可求得平面OCB 1的一个法向量m =(6,0,-1),∴cos n ,m =n ·m |n |·|m |=13×7=2121, 由图可知二面角B ­OB 1­C 是锐二面角,∴二面角B ­OB 1­C 的余弦值为2121.2.如图,在四棱锥P ­ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD .平面PAD ⊥平面ABCD ,PA =PD ,点E 在PC 上,DE ⊥平面PAC .(1)求证:PA ⊥平面PCD ;【答案】:见解析【解析】:(1)证明:由DE ⊥平面PAC ,得DE ⊥PA ,又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,CD ⊥AD ,所以CD ⊥平面PAD ,所以CD ⊥PA ,又CD ∩DE =D ,所以PA ⊥平面PCD .(2)取AD 的中点O ,连接PO ,因为PA =PD ,所以PO ⊥AD ,又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,以O 为坐标原点建立如图所示的空间直角坐标系O ­xyz ,由(1)得PA ⊥PD ,由AD =2得PA=PD =2,PO =1,设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0),则BC ―→=(-a,2,0),PC ―→=(a,1,-1).设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎪⎨⎪⎧ m ·BC ―→=0,m ·PC ―→=0,得⎩⎪⎨⎪⎧ -ax +2y =0,ax +y -z =0,令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面PAD 的一个法向量.由|cos m ,n |=|m ·n||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105,所以在Rt △PCD 中,PC =2155, 由等面积法可得DE =CD ·PD PC =33. 3.如图,在三棱锥P ­ABC 中,平面PAB ⊥平面ABC ,AB =6,BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线PA 与平面ABC 所成的角为45°,求平面PAC 与平面PDE 所成的锐二面角大小.【答案】:见解析【解析】:(1)证明:∵AC =26,BC =23,AB =6,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴cos ∠ABC =236=33. 又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8,∴CD =22,又AD =4,∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,CD ⊂平面ABC ,∴CD ⊥平面PAB ,又PD ⊂平面PAB ,∴CD ⊥PD ,∵PD ⊥AC ,AC ∩CD =C ,∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的空间直角坐标系D ­xyz , ∵直线PA 与平面ABC 所成的角为45°,即∠PAD =45°,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),∴CB ―→=(-22,2,0),AC ―→=(22,4,0),PA ―→=(0,-4,-4).∵AD =2DB ,CE =2EB ,∴DE ∥AC ,由(1)知AC ⊥BC ,∴DE ⊥BC ,又PD ⊥平面ABC ,BC ⊂平面ABC ,∴PD ⊥BC ,∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量.设平面PAC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AC ―→=0,n ·PA ―→=0,即⎩⎨⎧ 22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1,∴n =(2,-1,1)为平面PAC 的一个法向量.∴cos n ,CB ―→=-4-24×12=-32, ∴平面PAC 与平面PDE 所成的锐二面角的余弦值为32, 故平面PAC 与平面PDE 所成的锐二面角为30°.一、本节课我们学习了哪些内容?。

《利用向量法求空间角》教案

《利用向量法求空间角》教案

《利用向量法求空间角》教案一、教学目标1. 让学生掌握空间向量的基本概念及其运算法则。

2. 培养学生利用向量法求空间角的能力。

3. 提高学生对空间几何图形直观感知和分析解决问题的能力。

二、教学内容1. 空间向量的概念及其表示方法。

2. 空间向量的运算法则。

3. 空间向量与空间角的关系。

4. 利用向量法求空间角的方法步骤。

5. 实际应用举例。

三、教学重点与难点1. 教学重点:空间向量的基本概念、运算法则、利用向量法求空间角的方法。

2. 教学难点:空间向量与空间角的关系,利用向量法求空间角的步骤。

四、教学方法1. 采用讲授法,讲解空间向量的基本概念、运算法则和求空间角的方法。

2. 运用案例分析法,分析实际应用问题。

3. 引导学生运用小组合作、讨论交流等方式,提高分析解决问题的能力。

五、教学过程1. 导入新课:简要回顾二维向量的基本概念及其运算法则,引出空间向量的概念。

2. 讲解空间向量的基本概念及其表示方法,让学生掌握空间向量的定义和表示方法。

3. 讲解空间向量的运算法则,引导学生运用运算法则进行向量运算。

4. 讲解空间向量与空间角的关系,引导学生理解向量法求空间角的依据。

5. 讲解利用向量法求空间角的方法步骤,并通过示例演示求解过程。

6. 开展课堂练习,让学生运用向量法求解空间角的问题。

7. 分析实际应用举例,让学生体会向量法在解决空间几何问题中的应用价值。

9. 布置课后作业,巩固所学知识。

六、教学评价1. 课后作业:布置有关空间向量运算和空间角求解的习题,检验学生对课堂内容的掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

3. 小组讨论:评估学生在小组合作、讨论交流中的表现,检验学生对知识的理解和应用能力。

七、教学反思1. 教师应根据学生的实际水平,适当调整教学内容和难度,确保学生能够跟上教学进度。

2. 在教学过程中,注意引导学生运用数学符号和语言进行表达,培养学生的数学思维能力。

《利用向量法求空间角》教案

《利用向量法求空间角》教案

《利用向量法求空间角》教案一、教学目标:1. 让学生掌握空间向量的基本概念和性质。

2. 培养学生利用向量法求空间角的能力。

3. 提高学生解决实际问题的能力。

二、教学内容:1. 空间向量的基本概念和性质。

2. 空间向量的加法、减法、数乘和数量积。

3. 空间向量的坐标表示和运算。

4. 利用向量法求空间角的方法和步骤。

三、教学重点与难点:1. 教学重点:空间向量的基本概念和性质,向量的加法、减法、数乘和数量积,空间向量的坐标表示和运算,利用向量法求空间角的方法和步骤。

2. 教学难点:空间向量的坐标表示和运算,利用向量法求空间角的方法和步骤。

四、教学方法:1. 采用讲授法,讲解空间向量的基本概念和性质,向量的加法、减法、数乘和数量积,空间向量的坐标表示和运算,利用向量法求空间角的方法和步骤。

2. 采用案例分析法,分析实际问题,引导学生运用向量法求解空间角。

3. 采用互动教学法,鼓励学生提问、讨论,提高学生的参与度和积极性。

五、教学安排:1. 第一课时:讲解空间向量的基本概念和性质。

2. 第二课时:讲解向量的加法、减法、数乘和数量积。

3. 第三课时:讲解空间向量的坐标表示和运算。

4. 第四课时:讲解利用向量法求空间角的方法和步骤,案例分析。

5. 第五课时:课堂练习,巩固所学知识。

六、教学评价:1. 课后作业:布置有关空间向量运算和求空间角的练习题,检验学生对知识的掌握程度。

2. 课堂练习:在课堂上进行实时练习,及时发现并纠正学生的错误。

3. 小组讨论:组织学生进行小组讨论,促进学生之间的互动和学习。

4. 期末考试:设置有关空间向量和空间角的题目,全面评估学生对课程内容的掌握情况。

七、教学资源:1. 教材:选用权威、实用的教材,如《高等数学》、《线性代数》等。

2. 课件:制作精美、清晰的课件,辅助讲解和展示。

3. 教学视频:寻找相关的教学视频,为学生提供多角度、直观的学习资源。

4. 练习题库:整理和筛选一批空间向量和空间角的练习题,供学生课后练习使用。

利用向量法求空间角教案

利用向量法求空间角教案

利用向量法求空间角-经典教案第一章:向量基础知识回顾1.1 向量的定义1.2 向量的表示方法1.3 向量的运算规则1.4 向量的长度和方向第二章:空间向量基本概念2.1 空间向量的定义2.2 空间向量的表示方法2.3 空间向量的运算规则2.4 空间向量的坐标表示第三章:向量点积的性质与应用3.1 向量点积的定义与性质3.2 向量点积的坐标表示3.3 向量点积的应用3.4 向量点积与空间角度的关系第四章:向量叉积的性质与应用4.1 向量叉积的定义与性质4.2 向量叉积的坐标表示4.3 向量叉积的应用4.4 向量叉积与空间角度的关系第五章:空间角度的计算方法5.1 空间角度的定义5.2 空间角度的计算方法5.3 空间角度的坐标表示5.4 利用向量法求空间角度的实例分析第六章:空间向量投影6.1 向量投影的概念6.2 向量在坐标轴上的投影6.3 向量的直角坐标投影6.4 向量投影在空间角度求解中的应用第七章:空间向量的分解7.1 向量分解的概念7.2 向量的线性组合7.3 向量的正交分解7.4 向量分解在空间角度求解中的应用第八章:空间向量夹角8.1 向量夹角的定义8.2 向量夹角的计算公式8.3 向量夹角的余弦值8.4 向量夹角在空间角度求解中的应用第九章:空间向量长度的求解9.1 向量长度的定义9.2 向量长度的计算公式9.3 向量长度的坐标表示9.4 向量长度在空间角度求解中的应用第十章:空间向量垂直与平行的判断10.1 向量垂直的判断10.2 向量平行的判断10.3 向量垂直和平行的坐标表示10.4 向量垂直和平行在空间角度求解中的应用第十一章:空间向量组的线性相关性11.1 线性相关的定义11.2 线性相关的判定条件11.3 线性相关的坐标表示11.4 线性相关性在空间角度求解中的应用第十二章:空间向量组的基底12.1 基底的概念12.2 基底的性质12.3 基底的选取方法12.4 基底在空间角度求解中的应用第十三章:空间坐标变换13.1 坐标变换的概念13.2 坐标变换的公式13.3 坐标变换的性质13.4 坐标变换在空间角度求解中的应用第十四章:空间向量方程14.1 空间向量方程的概念14.2 空间向量方程的求解方法14.3 空间向量方程的解的应用14.4 空间向量方程在空间角度求解中的应用第十五章:空间角度的应用案例分析15.1 空间角度在几何中的应用15.2 空间角度在物理学中的应用15.3 空间角度在工程学中的应用15.4 空间角度在其他领域的应用案例分析重点和难点解析本文主要讲解了利用向量法求空间角的相关知识,重点包括向量基础知识、空间向量基本概念、向量点积与叉积的性质与应用、空间角度的计算方法、空间向量投影与分解、空间向量夹角与长度的求解,以及空间向量垂直与平行的判断等。

利用向量法求空间角教案

利用向量法求空间角教案

§3.2.3立体几何中的向量方法——利用空间向量求空间角教学目标1.使学生学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法;2.使学生能够应用向量方法解决一些简单的立体几何问题;3.使学生的分析与推理能力和空间想象能力得到提高. 教学重点求解二面角的向量方法 教学难点二面角的大小与两平面法向量夹角的大小的关系 教学过程 一、复习引入1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。

(回到图形) 2.向量的有关知识:(1)两向量数量积的定义:><=⋅,cos |||| (2)两向量夹角公式:||||,cos b a >=<(3)平面的法向量:与平面垂直的向量a二、知识讲解与典例分析知识点1:面直线所成的角(范围:]2,0(πθ∈)(1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a´与b´,那么直线a´与b´ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角 设两异面直线a 、b 的方向向量分别为和,问题1:当与的夹角不大于90°时,异面直线a 、b的角与 和 的夹角的关系?问题2:与的夹角大于90°时,,异面直线a 、b与 和的夹角的关系?结论:异面直线a 、b 所成的角的余弦值为|||||,cos |cos n m =><=θ思考:在正方体1111D C B A ABCD -中,若与分别为11B A 、11D C 的四等分点,求异面直线1DF 与1BE 的夹角余弦值?(1)方法总结:①几何法;②向量法(2)><11,cos BE DF 与><B E DF 11,cos 相等吗? (3)空间向量的夹角与异面直线的夹角有什么区别?例1如图,正三棱柱111C B A ABC -的底面边长为,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。

《利用向量法求空间角》教案

《利用向量法求空间角》教案

《利用向量法求空间角》教案一、教学目标1. 让学生掌握空间向量的概念及其表示方法。

2. 培养学生运用向量法求空间角的能力。

3. 引导学生运用数学知识解决实际问题,培养其空间想象能力。

二、教学内容1. 空间向量的概念及其表示方法。

2. 空间向量的坐标运算。

3. 向量法求空间角。

三、教学重点与难点1. 教学重点:空间向量的概念及其表示方法,空间向量的坐标运算,向量法求空间角。

2. 教学难点:空间向量的坐标运算,向量法求空间角。

四、教学方法1. 采用讲授法,讲解空间向量的概念、表示方法及坐标运算。

2. 采用案例分析法,分析并解决实际问题。

3. 采用互动教学法,引导学生积极参与讨论,提高其空间想象力。

五、教学过程1. 导入:通过简单的实例,引导学生思考空间向量的概念及其表示方法。

2. 新课:讲解空间向量的概念、表示方法及坐标运算。

3. 案例分析:分析实际问题,让学生运用向量法求空间角。

4. 互动环节:引导学生积极参与讨论,解决实际问题。

5. 总结:回顾本节课所学内容,强调重点,解答学生疑问。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学目标1. 让学生掌握空间向量的数量积及其运算规则。

2. 培养学生运用数量积求空间角的方法。

3. 引导学生运用数学知识解决实际问题,培养其空间想象能力。

七、教学内容1. 空间向量的数量积及其运算规则。

2. 数量积在求空间角中的应用。

八、教学重点与难点1. 教学重点:空间向量的数量积及其运算规则,数量积在求空间角中的应用。

2. 教学难点:数量积的运算规则,运用数量积求空间角。

九、教学方法1. 采用讲授法,讲解空间向量的数量积及其运算规则。

2. 采用案例分析法,分析并解决实际问题。

3. 采用互动教学法,引导学生积极参与讨论,提高其空间想象力。

十、教学过程1. 导入:通过简单的实例,引导学生思考空间向量的数量积及其运算规则。

2. 新课:讲解空间向量的数量积及其运算规则。

3. 案例分析:分析实际问题,让学生运用数量积求空间角。

最新教案:空间向量与空间角(含解析)

最新教案:空间向量与空间角(含解析)

空间向量与空间角利用向量求空间角1.两条异面直线所成的角的求法设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a||b |(其中φ为异面直线a ,b 所成的角).2.直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.3.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).[基础自测]1.已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°解析:选A 由于cos 〈m ,n 〉=-12,∴〈m ,n 〉=120°.所以直线l 与α所成的角为30°.2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为( )A .45°B .135°C .45°或135°D .90°解析:选C cos 〈m ,n 〉=m ·n |m ||n |=11×2=22, 即〈m ,n 〉=45°,其补角为135°, ∴两平面所成的二面角为45°或135°.3.在如图所示的正方体A1B 1C 1D 1-ABCD 中,E 是C 1D 1的中点,则异面直线DE 与AC 夹角的余弦值为( )A .-1010B .-120C.120D.1010解析:选D 如图建立直角坐标系D -xyz ,设DA =1,A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫0,12,1.则AC =(-1,1,0),DE =⎝⎛⎭⎫0,12,1,若异面直线DE 与AC 所成的角为θ,cos θ=|cos 〈AC ,DE 〉|=1010. 4.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.解析:如图,建立直角坐标系D -xyz ,设DA =1由已知条件A (1,0,0), E ⎝⎛⎭⎫1,1,13,F ⎝⎛⎭⎫0,1,23, AE =⎝⎛⎭⎫0,1,13,AF =⎝⎛⎭⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),面AEF 与面ABC 所成的二面角为θ,由⎩⎨⎧n ·AE =0,n ·AF =0,得⎩⎨⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3). 设平面ABC 的法向量为m =(0,0,-1), 则cos θ=cos 〈n ,m 〉=311,tan θ=23.答案:235.如图,在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值________.解析:建立如图所示直角坐标系,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),1A B =(0,4,-3),1B C =(-4,0,-3).设异面直线A 1B 与B 1C 所成角为θ, 则cos θ=|cos 〈1A B ,1B C 〉|=925. 答案:925[例1] 如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35[自主解答] 不妨令CB =1,则CA =CC 1=2.可得 O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴1BC =(0,2,-1),1AB =(-2,2,1),∴cos 〈1BC ,1AB 〉=1BC ·1AB |1BC ||1AB |=4-15×9=15=55>0.∴1BC 与1AB 的夹角即为直线BC 1与直线AB 1的夹角, ∴直线BC 1与直线AB 1夹角的余弦值为55. [答案] A变式练习1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0,∴FB 1⊥BB 1,FB 1⊥BC .∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.[例2] 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小. [自主解答] (1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz ,则C (22,0,0).设D (2,b,0),其中b >0,则 P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0).于是PC =(22,0,-2), BE =⎝⎛⎭⎫23,b ,23,DE =⎝⎛⎭⎫23,-b ,23,从而PC ·BE =0,PC ·DE =0, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E , 所以PC ⊥平面BED .(2) AP =(0,0,2),AB =(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则 m ·AP =0,m ·AB =0, 即2z =0且2x -by =0, 令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b ,2. 因为二面角A -PB -C 为90°,所以面P AB ⊥面PBC ,故m ·n =0, 即b -2b=0,故b =2,于是n =(1,-1,2),DP =(-2,-2,2), 所以cos 〈n ,DP 〉=n ·DP |n ||DP |=12,所以〈n ,DP 〉=60°.因为PD 与平面PBC 所成角和〈n ,DP 〉互余, 故PD 与平面PBC 所成的角为30°.变式练习2.如图,已知P A ⊥平面ABC ,且P A =2,等腰直角三角形ABC中,AB =BC =1,AB ⊥BC ,AD ⊥PB 于D ,AE ⊥PC 于E .(1)求证:PC ⊥平面ADE ;(2)求直线AB 与平面ADE 所成角的大小. 解:(1)证明:因为P A ⊥平面ABC , 所以P A ⊥BC ,又AB ⊥BC ,且P A ∩AB =A , 所以BC ⊥平面P AB ,从而BC ⊥AD . 又AD ⊥PB ,BC ∩PB =B , 所以AD ⊥平面PBC , 得PC ⊥AD ,又PC ⊥AE ,AE ∩AD =A , 所以PC ⊥平面ADE .(2)如图所示,建立空间直角坐标系B -xyz . 则A (1,0,0),C (0,1,0), P (1,0,2), 因为PC ⊥平面ADE ,所以PC =(-1,1,-2)是平面ADE 的一个法向量. 设直线AB 与平面ADE 所成的角为θ, 则sin θ=|PC ·AB ||PC ||AB |=(-1,1,-2)·(-1,0,0)2=12,则直线AB 与平面ADE 所成的角为30°.[例3] 在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;(2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.[自主解答] (1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1于点E ,因为AA 1∥BB 1,得OE ⊥BB 1,因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .因为AB =AC ,OB =OC ,得AO ⊥BC ,所以BC ⊥平面AA 1O ,所以BC ⊥OE , 所以OE ⊥平面BB 1C 1C .又AO =AB 2-BO 2=1,AA 1=5, 得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),B 1(-1,2,2),由AE =151AA 得点E 的坐标是⎝⎛⎭⎫45,0,25,由(1)得平面BB 1C 1C 的法向量是OE =⎝⎛⎭⎫45,0,25, 设平面A 1B 1C 的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·11A B =0,n ·1A C =0,得⎩⎪⎨⎪⎧-x +2y =0,y +z =0.令y =1,得x =2,z =-1,即n =(2,1,-1),所以cos 〈OE ,n 〉=OE ·n | OE |·|n |=3010,即平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值是3010. 变式练习3.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≤1).(1)求证:对任意的λ∈(0,1],都有AC ⊥BE ; (2)若二面角C -AE -D 的大小为60°,求λ的值.解:(1)证明:如图,建立空间直角坐标系D -xyz ,则A (a,0,0,),B (a ,a,0),C (0,a,0),D (0,0,0),E (0,0,λa ),∴AC =(-a ,a,0),BE =(-a ,-a ,λa ),∴AC ·BE =0对任意λ∈(0,1]都成立,即对任意的λ∈(0,1],都有AC ⊥BE .(2)显然n =(0,1,0)是平面ADE 的一个法向量, 设平面ACE 的法向量为m =(x ,y ,z ), ∵AC =(-a ,a,0),AE =(-a,0,λa ),∴⎩⎨⎧m ·AC =0,m ·AE =0.即⎩⎪⎨⎪⎧ -ax +ay =0,-ax +λaz =0,∴⎩⎪⎨⎪⎧x -y =0,x -λz =0.取z =1,则x =y =λ,∴m =(λ,λ,1), ∵二面角C -AE -D 的大小为60°, ∴|cos 〈n ,m 〉|=|n ·m ||n ||m |=λ1+2λ2=12, ∵λ∈(0,1], ∴λ=22.课后练习A 组1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC=AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角为________.解析:建立如图所示的空间直角坐标系. 设AB =BC =AA 1=2,则C1(2,0,2),E (0,1,0),F (0,0,1), 则EF =(0,-1,1),1BC =(2,0,2), ∴EF ·1BC =2, ∴cos 〈EF ,1BC 〉=22×22=12,∴EF 和BC 1所成角为60°. 答案:60°2.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为________.解析:如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2).设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的一个法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0x +az =0,令z =-1,得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=|m·n ||m ||n |,得1a 2+2=12,即a =2,故AD = 2. 答案: 23.如图,在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成角为________.解析:如图所示,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a ,则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝⎛⎭⎫0,-a 2,a 2. 则CA =(2a,0,0),AP =⎝⎛⎭⎫-a ,-a 2,a2,CB =(a ,a,0). 设平面P AC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB ,n 〉=CB ·n | CB ||n |=a 2a 2·2=12. ∴〈CB ,n 〉=60°,∴直线BC 与平面P AC 的夹角为90°-60°=30°. 答案:30°4.如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ; (2)求二面角P -BD -A 的大小.解:(1)证明:由题可知,AP 、AD 、AB 两两垂直,则分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP =(0,0,3),AC =(23,6,0),BD =(-23,2,0), ∴BD ·AP =0,BD ·AC =0.∴BD ⊥AP ,BD ⊥AC . 又P A ∩AC =A ,∴BD ⊥平面P AC .(2)显然平面ABD 的一个法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD =0,n ·BP =0.由(1)知,BP =(-23,0,3),∴⎩⎨⎧-23x +2y =0,-23x +3z =0,整理得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2), ∴cos 〈m ,n 〉=m ·n |m ||n |=12.∴结合图形可知二面角P -BD -A 的大小为60°.5.如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.解:(1)法一:证明:如图,连接AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱,所以M 为AB ′中点.又因为N 为B ′C ′的中点, 所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′, A ′C ⊂平面A ′ACC ′, 所以MN ∥平面A ′ACC ′.法二:证明:取A ′B ′ 中点P ,连接MP ,NP ,而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′.而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立空间直角坐标系O -xyz ,如图所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1), B ′(λ,0,1),C ′(0,λ,1), 所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎨⎧m ·A M '=0,m ·MN =0,得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎨⎧n ·NC =0,n ·MN =0,得⎩⎨⎧-λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0,可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m·n =0, 即-3+(-1)×(-1)+λ2=0,解得λ=2(负值舍去).6.如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC .所以ED ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC . 所以DE ⊥A 1C . 又因为A 1C ⊥CD . 所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系C -xyz ,则A 1(0,0,23),D (0,2,0),M (0,1, 3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则 n ·1A B =0,n ·BE =0.又1A B (3,0-)= (-1,2,0),所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z = 3. 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ.因为CM =),所以sin θ=|cos 〈n , CM 〉|=|n ·CM |n ||CM ||=48×4=22.所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下:假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3].设平面A 1DP 的法向量为m =(x ,y ,z ),则m ·1A D =0,m ·DP =0. 又1A D =(0,2,-23),DP =(p ,-2,0),所以⎩⎨⎧2y -2 3z =0,px -2y =0.令x =2,则y =p ,z =p 3. 所以m =(2,p ,p 3). 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.B 组1.如图所示,四棱锥P -ABCD 中,底面ABCD 为正方形,PD⊥平面ABCD ,PD =AB =2,E 、F 、G 分别为PC 、PD 、BC 的中点.(1)求证:P A ⊥EF ;(2)求二面角D -FG -E 的余弦值.解:以D 为坐标原点,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),A (0,2,0),C (-2,0,0),P (0,0,2),E (-1,0,1),F (0,0,1),G (-2,1,0).(1)证明:由于PA =(0,2,-2),EF =(1,0,0),则PA ·EF =1×0+0×2+(-2)×0=0,∴P A ⊥EF .(2)易知DF =(0,0,1),EF =(1,0,0),FG =(-2,1,-1), 设平面DFG 的法向量m =(x 1,y 1,z 1),则⎩⎨⎧m ·DF =0,m ·FG =0,解得⎩⎪⎨⎪⎧z 1=0,-2x 1+y 1-z 1=0.令x 1=1,得m =(1,2,0)是平面DFG 的一个法向量. 设平面EFG 的法向量n =(x 2,y 2,z 2), 同理可得n =(0,1,1)是平面EFG 的一个法向量. ∵cos 〈m ,n 〉=m ·n |m |·|n |=25·2=210=105,设二面角D -FG -E 的平面角为θ,由图可知θ=π-〈m ,n 〉,∴cos θ=-105, ∴二面角D -FG -E 的余弦值为-105. 2.如图,在直三棱柱ABC -A1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.解:(1)证明:连接A 1C ,交AC 1于点O ,连接OD .由ABC -A 1B 1C 1是直三棱柱,得四边形ACC 1A 1为矩形,O 为A 1C 的中点.又D 为BC 的中点,所以OD 为△A 1BC 的中位线, 所以A 1B ∥OD ,因为OD ⊂平面ADC 1,A 1B ⊄平面ADC 1, 所以A 1B ∥平面ADC 1.(2)由ABC -A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA ,BC ,BB 1两两垂直. 以BC ,BA ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz . 设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0), 所以AD =(1,-2,0),1AC =(2,-2,1).设平面ADC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AD =0,n ·1AC =0.所以⎩⎪⎨⎪⎧x -2y =0,2x -2y +z =0.取y =1,得n =(2,1,-2).易知平面ADC 的一个法向量为v =(0,0,1). 所以cos 〈n ,v 〉=n ·v |n |·|v |=-23.因为二面角C 1-AD -C 是锐二面角, 所以二面角C 1-AD -C 的余弦值为23.(3)假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1), 故可设E (0,λ,1),其中0≤λ≤2.所以AE =(0,λ-2,1),1DC =(1,0,1). 因为AE 与DC 1成60°角,所以|cos 〈AE ,1DC 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AE ·1DC |AE |·|1DC |=12. 即⎪⎪⎪⎪⎪⎪1(λ-2)2+1·2=12,解得λ=1或λ=3(舍去).所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.3.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.解:(1)证明:如图,以D 为坐标原点,DA 、DP 、DC 所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系D -xyz .设DA =1,则有D (0,0,0),Q (1,1,0),C (0,0,1),P (0,2,0),所以DQ =(1,1,0),DC =(0,0,1),PQ =(1,-1,0),所以PQ ·DQ =0,PQ ·DC =0,即PQ ⊥DQ ,PQ ⊥DC . 又DQ ⊂平面DCQ ,DC ⊂平面DCQ ,且DQ ∩DC =D , 所以PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)由(1)易知B (1,0,1),CB =(1,0,0),BP =(-1,2,-1).设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎨⎧n ·CB =0,n ·BP =0,即⎩⎪⎨⎪⎧x =0,-x +2y -z =0,可取n =(0,-1,-2). 设m =(x 1,y 1,z 1)是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP =0,m ·PQ =0,即⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,x 1-y 1=0,可取m =(1,1,1). 所以cos 〈m ,n 〉=-155,故二面角Q -BP -C 的余弦值为-155. 4.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.解:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛-12,⎭⎫12,0,P (0,0,2).(1)证明:易得PC =(0,1,-2),AD =(2,0,0),于是PC ·AD =0,所以PC ⊥AD .(2) PC =(0,1,-2),CD =(2,-1,0). 设平面PCD 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·PC =0,n ·CD =0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1).可取平面P AC 的法向量m =(1,0,0). 于是cos 〈m ,n 〉=m·n|m |·|n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE =⎝⎛⎭⎫12,-12,h .由CD =(2,-1,0),故cos 〈BE ,CD 〉=BE ·CD |BE |·|CD |=3212+h 2×5=310+20h2, 所以310+20h 2=cos 30°=32,解得h =1010,即AE =1010. 5.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB=2.(1)证明:当点E 在棱AB 上移动时,D 1E ⊥A 1D ; (2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6?若存在,求出AE 的长;若不存在,请说明理由.解:以D 为原点,DA 、DC 、DD1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,y 0,0)(0≤y 0≤2).(1)证明:∵1D E =(1,y 0,-1),1A D =(-1,0,-1), 则1D E ·1A D =(1,y 0,-1)·(-1,0,-1)=0, ∴1D E ⊥1A D ,即D 1E ⊥A 1D . (2)当AE =2-33时,二面角D 1-EC -D 的平面角为π6. ∵EC =(-1,2-y 0,0),1D C =(0,2,-1),设平面D 1EC 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·EC =0,n 1·1D C =0⇒⎩⎪⎨⎪⎧-x +y (2-y 0)=0,2y -z =0.取y =1,则n 1=(2-y 0,1,2)是平面D 1EC 的一个法向量.而平面ECD 的一个法向量为n 2=1DD =(0,0,1),要使二面角D 1-EC -D 的平面角为π6,则cos π6=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=2(2-y 0)2+12+22=32,解得y 0=2-33(0≤y 0≤2). ∴当AE =2-33时,二面角D 1-EC -D 的平面角为π6. 6.在直三棱柱ABC -A 1B 1C 1中,AB =AC =1,∠BAC =90°.(1)若异面直线A 1B 与B 1C 1所成的角为60°,求棱柱的高; (2)设D 是BB 1的中点,DC 1与平面A 1BC 1所成的角为θ,当棱柱的高变化时,求sin θ的最大值.解:建立如图所示的空间直角坐标系A -xyz ,设AA 1=h (h >0),则有B (1,0,0),B 1(1,0,h ),C 1(0,1,h ),A 1(0,0,h ),11B C =(-1,1,0),11A C =(0,1,0),1A B =(1,0,-h ).(1)因为异面直线A 1B 与B 1C 1所成的角为60°,所以cos60°=|11B C ·1A B ||11B C |·|1A B |,即12·h 2+1=12,得1+h 2=2,解得h =1. (2)由D 是BB 1的中点,得D ⎝⎛⎭⎫1,0,h 2, 于是1DC =⎝⎛⎭⎫-1,1,h2. 设平面A 1BC 1的法向量为n =(x ,y ,z ),于是由n ⊥1A B ,n ⊥11A C 可得⎩⎪⎨⎪⎧n ·1A B =0,n ·11A C =0,即⎩⎪⎨⎪⎧x -hz =0,y =0,可取n =(h,0,1), 故sin θ=|cos 〈1DC ,n 〉|,而|cos 〈1DC ,n 〉|=|1DC ·n ||1DC |·|n |=⎪⎪⎪⎪-h +h 214h 2+2·h 2+1=hh 4+9h 2+8. 令f (h )=hh 4+9h 2+8=1h 2+8h2+9, 因为h 2+8h 2+9≥28+9,当且仅当h 2=8h 2,即h =48时,等号成立.所以f (h )≤19+28=18+1=22-17,故当h =48时,sin θ的最大值为22-17.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用空间向量求空间角-教案
利用空间向量求空间角
备课人:龙朝芬授课人:龙朝芬
授课时间:2016年11月28日一、高考考纲要求:
能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用.
二、命题趋势:
在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多.
三、教学目标
知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用;
过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力;
情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标
系,方向向量,法向量的魅力.
四、教学重难点
重点:用向量法求空间角——线线角、线面角、二面角;
难点:将立体几何问题转化为向量问题.
五、教学过程
(一)空间角公式
1、异面直线所成角公式:如图,设异面直线l ,
m
的方向向量分别为a ,b ,异面直线l ,m 所成的角
为θ,则cos cos
,a b θ==
a b a b
⋅.
2、线面角公式:设直线l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成的角,则sin cos ,a n θ==
a n
a n
⋅.
α
m
b
θ
a
l
3、面面角公式:设
1
n,2n分别为平面α、β的法向量,二面角为θ,则
12
,n n
θ=或12,n n
θπ
=-(需要根据具体情况判断相等或互补),其中12
12
12
cos,
n n
n n
n n

=.
(二)典例分析
如图,已知:在直角梯形OABC中,//
OA BC,90
AOC
∠=,SO⊥面OABC,且1,2
OS OC BC OA
====.求:
(1)异面直线SA和OB所成的角的余弦值;
(2)OS与面SAB所成角α的正弦值;
(3)二面角B AS O
--的余弦值.
α
θ
O
O
A
B
C
S
n
a
解:如图建立空间直角坐标系,则(0,0,0)O ,(2,0,0)A ,
(1,1,0)
B ,(0,1,0)
C ,(0,0,1)S ,于是我们有(2,0,1)SA =-,(1,1,0)
AB =-,(1,1,0)OB =,(0,0,1)OS =,
(1)10
cos ,52
SA OB SA OB SA OB
⋅=
=
=⋅,
所以异面直线SA 和OB 10
.
(2)设平面SAB 的法向量(,,)n x y z =, 则
0,0,
n AB n SA ⎧⋅=⎪⎨⋅=⎪⎩,即0,
20.
x y x z -+=⎧⎨
-=⎩
取1x =,则1y =,2z =,所以(1,1,2)n =,
6
sin cos ,16
OS n OS n OS n
α⋅∴==
=
=⨯(3)由(2)知平面SAB 的法向量1
(1,1,2)n =, 又OC ⊥
平面AOS ,OC ∴是平面AOS 的法向量,
令2(0,1
,0)n
OC ==,则有1212126
cos
,61n n n n n n ⋅=
=
=⨯∴二面角B AS O --的余弦值为
6
6
(三)巩固练习
1、在长方体11
1
1
ABCD A B C D -中,2AB =,1
1BC AA ==,点E 、
F
分别1
1
A C ,1
AD 的中点,求:
(1)异面直线EF 和CD 所成的角的余弦值;(2)
1
1
D C 与平面1
1
A BC 所成角的正弦值;
(3)平面1
1
A BC 与平面ABCD 所成的锐二面角的余弦
值.
解析:以D 为原点,分别以射线DA ,DC ,1
DD ,为
x
轴、y 轴、z 轴的非负半轴建立空间直角坐标系D xyz
-,由于2AB =,1
1BC AA ==,所以(0,0,0)D ,(0,2,0)C ,
1
(,1,1)2E ,11
(,0,)22
F ,1
(1,0,1)A ,(1,2,0)B ,1
(0,2,1)C ,1
(0,0,1)D ,则1
(0,1,)
2
EF =--,
(0,2,0)
DC =,
11(1
,2,0)AC =-,
1(1,0,1)
BC =-,
11(0,2,0)
DC =.
(1)5cos
,5
EF DC EF DC EF DC
⋅=
=-
∴异面直线EF 和CD 所成的角余弦值为255;
(2)设平面1
1
A BC 的法向量(,,)n x y z =,则有

1110,0,
n A C n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20,
0.
x y x z -+=⎧⎨
-+=⎩
令2x =,则1y =,2z =,所以(2,1,2)n =, 又设1
1
D C 与平面1
1
A BC 所成的角为θ,
则11111121sin cos
,233
D C n D C n D C n
θ⋅==
=
=⨯.
(3)由(2)知平面1
1
A BC 的法向量1
(2,1,2)
n
=,
又1DD ⊥
平面ABCD ,1
DD ∴是平面ABCD 的法向量,
令2
1(0,0,1)
n
DD ==,则121212
22cos
,313
n n n n n n ⋅=
=
=⨯.
故所成的锐二面角的余弦值为23
. 2、如图所示,四棱锥P ABCD -,ABC ∆为边长为2的正三角形,3CD =,1AD =
,PO 垂直于平面ABCD 于O ,
O
为AC 的中点,1PO =,求:
(1)异面直线AB 与PC 所成角的余弦值; (2)平面PAB 与平面PCD 所成二面角的余弦值.
解:(Ⅰ)如图,以A 为坐标原点建立空间直角坐标系A −xyz ,
因为AD =1,CD =3,AC =2,
所以AD ⊥CD ,∠DAC =π3, ∴AD ∥BC .
(000)
A ,,,(
310)
B -,,,(
310)
C ,,,(010)
D ,,,
3102O ⎛⎫ ⎪ ⎪⎝⎭
,,,
3112P ⎛⎫
⎪ ⎪⎝⎭
,,, 则(310)
AB =-,,,
3112CP ⎛⎫
=-- ⎪ ⎪⎝⎭
,,,
∴2
cos ||||22
AB CP AB CP AB CP 〈〉===-⨯⨯,, ∴异面直线AB 与PC 所成角的余弦值为2.
(Ⅱ)设平面PAB 法向量为1
n =(x 1,y 1,z 1),
可得
11111
31
0230x y z x y ⎧++=⎪
⎪-=⎩,,
令1
1x =,则1
(133)
n =,,,

311(300)2DP DC ⎛⎫=-= ⎪ ⎪⎝⎭
,,,,,,
设平面PCD 法向量为2
222()
n x y z =,,,
可得2222
31
0230y z x ⎧-+=⎪
⎪=⎩,,
令2
1
y
=,则2
n =1012⎛⎫ ⎪⎝
⎭,,,则 121212105
cos =
=||||n n n n n n 〈〉,.
∴平面PAB 与平面PCD 所成二面角的余弦105

(四)课堂小结
1.用向量来求空间角,都需将各类角转化成对应向量的夹角来计算,问题的关键在于确定对应线段的向量.
2.合理建立空间直角坐标系
(1)一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就以这三条直线为坐标轴建立空间直角坐标系;如果不存在这样的三条直线,则应尽可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即
坐标系建立时以其中的垂直相交直线为基本出发点.
(2)建系的基本思想是寻找其中的线线垂直关系,在没有现成的垂直关系时要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系.
[易错防范]
1.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.
2.求二面角要根据图形确定所求角是锐角还是钝角.
(五)课后作业
三维设计——课时跟踪检测(四十八)。

相关文档
最新文档