长沙市中考数学试题压轴题总汇及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长沙市中考数学试题压轴题总汇

【2013】

【2012】如图半径分别为m,n )(n 0〈〈m 的两圆⊙O 1和⊙O 2相交于P,Q 两点,且点P (4,1),两圆同时与两坐标轴相切,⊙O 1与x 轴,y 轴分别切于点M ,点N ,⊙O 2与x 轴,y 轴分别切于点R ,点H 。 (1)求两圆的圆心O 1,O 2所在直线的解析式; (2)求两圆的圆心O 1,O 2之间的距离d ; (3)令四边形PO 1QO 2的面积为S 1, 四边形RMO 1O 2的面积为S 2. 试探究:是否存在一条经过P,Q 两点、开口向下,且在x 轴上截得的线段长为

d

s s 2-21的抛物线?若

存在,亲、请求出此抛物线的解析式;若不存在,请

说明理由。

【2011】如图,在平面直角坐标系中,已知点A (0,2),点P 是x 轴上一动点,以线段AP 为一边,

在其一侧作等边三角形APQ .当点P 运动到原点O 处时,记Q 的位置为B .

(1)求点B 的坐标;

(2)求证:当点P 在x 轴上运动(P 不与O 重合)时,∠ABQ 为定值;

(3)是否存在点P ,使得以A 、O 、Q 、B 为顶点的四边形是梯形?若存在,请求出P

点的坐标;若不存在,请说明理由.

【2010

】如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,OA =cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.

(1)用t 的式子表示△OPQ 的面积S ;

(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;

(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线21

4

y x bx c =++经过B 、P 两点,过

线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ

【2009】如图,二次函数2

y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴

相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,

、(0C ,且当4x =-和2x =时二次函数的函数值y 相等. (1)求实数a b c ,,的值;

第26题图

(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将

BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;

(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.

【2008】如图,六边形ABCDEF 内接于半径为r (常数)的⊙O ,其中AD 为直径,且AB=CD=DE=FA. (1)当∠BAD=75 时,求BC ⌒的长; (2)求证:BC ∥AD ∥FE ;

(3)设AB=x ,求六边形ABCDEF 的周长L 关于x 的函数关系式,并指出x 为何值时,L 取得最大值.

【2007】如图,平行四边形ABCD 中,AB=4,BC=3,∠BAD=120°,E 为BC 上一动点

(不与B 重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE=x ,△DEF 的面积为S .

(1)求证:△BEF ∽△CEG ;

(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 运动到何处时,S 有最大值,最大值为多少?

D

【2006】如图1,已知直线12y x =-与抛物线21

64

y x =-+交于A

B ,两点. (1)求A B ,两点的坐标;

(2)求线段AB 的垂直平分线的解析式;

(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.

【2005】

图2

图1

【2004】已知两点O (0,0)、B (0,2),⊙A 过点B 且与x 轴分别相交于点O 、C ,⊙A 被y 轴分成段两圆弧,其弧长之比为3:1,直线l 与⊙A 切于点O ,抛物线的顶点在直线l 上运动. (1)求⊙A 的半径;

(2)若抛物线经过O 、C 两点,求抛物线的解析式;

(3)过l 上一点P 的直线与⊙A 交于C 、E 两点,且PC=CE ,求点E 的坐标;

(4)若抛物线与x 轴分别相交于C 、F 两点,其顶点P 的横坐标为m ,求△PEC 的面积关于m 的函数解析式.

长沙市中考数学试题压轴题总汇答案

1.(1)连结OB 、OC ,由∠BAD=75︒,OA=OB 知∠AOB=30︒, ·········· (1分) ∵AB=CD,∴∠COD=∠AOB=30︒,∴∠BOC=120︒, ·············· (2分) 故BC

⌒的长为3r 2π. ··························· (3分) (2)连结BD ,∵AB=CD,∴∠ADB=∠CBD,∴BC∥AD, ·········· (5分) 同理EF∥AD,从而BC∥AD∥FE. ··················· (6分) (3)过点B 作BM⊥AD 于M ,由(2)知四边形ABCD 为等腰梯形,从而BC=AD-2AM=2r-2AM . ··································· (7分)

∵AD 为直径,∴∠ABD=90︒,易得△BAM∽△DAB

∴AM=AD AB 2=r

x 22,∴BC=2r -r x 2,同理EF=2r-r x 2

············ (8分)

∴L=4x+2(2r -r x 2)=r x x r 4422++-=()r r x r

622

+--,其中0<x <r 2 · (9分)

∴当x=r 时,L 取得最大值6r . ····················· (10分)

2、略

3、

相关文档
最新文档