《归纳推理》.ppt

合集下载

《归纳、类比、演绎推理》课件

《归纳、类比、演绎推理》课件

构建数学:
类比推理的定义:
类比推理:根据两个(或两类)对象之间在
某些方面的相似或相同,推演出它们在其他方 面也相似或相同,像这样的推理通常称为类比 推理.(简称:类比)
简言之,类比推理是由特殊到特殊的推理.
类比推理的特点:
1.类比是从人们已经掌握了的事物的属性,推测正 在研究的事物的属性,是以旧有的认识为基础,类比 出新的结果. 2.类比是从一种事物的特殊属性推测另一种事物的特 殊属性.即类比推理是由特殊到特殊的推理. 3.类比的结果是猜测性的不一定可靠,但它却有发 现的功能.
⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。
7、归纳推理的几个特点:
1.归纳推理是依据特殊现象推断一般现象,因而,由 归纳推理所得的结论超越了前提所包容的范围. 2.归纳推理是依据若干已知的、没有穷尽的现象推 断尚属未知的现象,因而结论具有猜测性.结论是否 真实,还需经过逻辑证明和实践证明,因此它不能 作为数学证明工具。 3.归纳推理的前提是特殊的情况,因而归纳推理是 立足于观察、经验和实验的基础之上.归纳推理是 一种具有创造性的推理,通过归纳得到的猜想可作 为进一步研究得起点,帮助人们发现问题和提出问 题。
情景创设1: 从一个传说说起:春秋时代鲁国的公输班 (后人称鲁班,被认为是木匠业的祖师)一次 去林中砍树时被一株齿形的茅草割破了手,这 桩倒霉事却使他发明了锯子. 他的思路是这样的: 茅草是齿形的; 茅草能割破手. 我需要一种能割断木头的工具; 它也可以是齿形的. 这个推理过程是归纳推理吗?
情景创设2:
数学巩固:
1. 观察下列等式,并从中归纳出一般的结论:
(1)
1 1 , 2 2
1 1 2 , 2 6 3
1 1 1 3 , 2 6 12 4

7.1 归纳推理及其方法 课件(共32张PPT)

7.1 归纳推理及其方法 课件(共32张PPT)

金受热后体积膨胀,
3. 意义:
银受热后体积膨胀,
不完全归纳推理在日常生活和科
铜受热后体积膨胀,
学研究中有着重要意义。
铁因受为热金后属体受积热膨后胀分,子的凝聚力它减的弱前,提与结论之间的联系是或
分子运动加速,分子彼此距离然加的大。,我们可以通过考察更多的
从而导致膨胀。
认识对象、分析认识对象与有关
而金、银、铜、铁都是金属,现象之间的因果关系等方法,提
……
③共变法—所—以特,点A与:a“有求因量果联的系变。化”
如果被考察现象a有某些变化,有一个因素A也随之发生一 定的变化,那么,这个相关因素A与被考察的现象a有因果联系。
正确地应用共变法需要注意两点: (①其他因素保持不变; ②不超出共变限度 )
归纳推理的方法
④求同求异并用法——特征:既求同又求异/“两同一异”
归纳推理的方法
例2: 在新疆天山深“求处异一法个”解逻放辑军形哨式所驻地毒蛇很多,经常爬 到房间里来场捣合乱,而当先地行哈情萨况克族人家被里研从究来对没象有发现过蛇。 战士们发现1哈. 萨克族人家A里BC就是比哨所多鹅a,其他居住条件与 哨所一样。2于. 是,战士们-就BC买四只鹅养起来-,哨所里再也没发 现过毒蛇…。… 所以,A与a有因果联系。
新课导入
我们从一个袋子里摸出来的第一个是红玻璃球,第二个 是红玻璃球,甚至第三个、第四个、第五个都是红玻璃球 的时候,我们会立刻出现一种猜想: “是不是这个袋子里的东西全部都是红玻璃球?” 但是,当我们有一次摸出一个白玻璃球的时候,这个猜想 失败了。这时,我们会出现另一种猜想: “是不是袋子里的东西全部都是玻璃球?” 但是,当有一次摸出来的是一个木球的时候,这个猜想又 失败了。这时,我们又会出现第三个猜想: “是不是袋子里的东西都是球?” 这个猜想对不对,还必须继续加以检验,要把袋子里的东 西全部摸出来,才能见个分晓。

归纳推理市公开课一等奖省优质课获奖课件

归纳推理市公开课一等奖省优质课获奖课件

2
1
3
第9页
n=1时, f (1) 1
2
1
3
第10页
n=1时, f (1) 1 n=2时, f (2) 3
2
1
3
第11页
n=1时, f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7
2
1
3
第12页
n=1时, f (1) 1 n=2时, f (2) 3
n=3时, f (3) 3 1 3
1
an an
得:
1
1
1
1
a2 2 , a3 3 , a4 4 , a5 5
归纳:
1 an n
可用数学归纳法证实 这个猜测是正确.
第7页
解法2、结构法
取倒数得: 1 1 1
an1
an
第8页
例2.有三根针和套在一根针上若干金属片.按以下 规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动一个金属片; 2.较大金属片不能放在较小金属片上面. 试推测:把n个金属片从1号针移到3号针,最少需要 移动多少次?
归纳是立足于观察、经验、试验和对有限资料
分析基础上.提出带有规律性结论.
需证实
第5页
归纳推理普通步骤:
试验、观察 概括、推广 猜测普通性结论
第6页
例1.已知数列{an}第1项a1=1,且
an1
an 1 an
(n=1 , 2 , …),试归纳出这个数列通项公式.
分别把n=1,2,3,4代入an1
23
n
f(2)=
3 2
,f(4)>2,f(8)>
5 2
,f(16)>3,f

逻辑学:归纳推理

逻辑学:归纳推理
❖ ……
❖ Sn具有(或不具有)P属性,
❖ S1、S2、S3……Sn是S类思维对象的部分个体,并且在考察中没有发现反 面情况,
❖ 所以,所有S都具有(或不具有)P属性。
❖ 显而易见,简单枚举归纳推理结论所断定的范围超出了前提断定的范围, 因此,前提与结论的联系是或然的。但是,因为它的结论是一般性知识的概 括,揭示出存在于无数现象之间普遍性规律,给人们提供了全新的知识,所 以,与完全归纳推理相比,它更富有探索和创新的价值。它不仅能帮助人们 由个别现象引出普遍结论,而且可以在此基础上帮助人们预测未来的行动。
❖ ②某甲不具备作案时间, ❖ 某乙不具备作案时间, ❖ 某丙不具备作案时间, ❖ 某丁不具备作案时间, ❖ 某甲、某乙、某丙、某丁是某营业所的全部职工 ❖ 所以,某营业所的职工都不具备作案时间。 ❖ 例①在前提中列举了我国刑事诉讼法规定的每一种证据都具有“证明案件真实情况
的事实”的属性.从而推出“我国刑事诉讼法规定的所有证据都是证明案件真实情 况的事实”的一般性知识的结论。例②在前提中列举了某营业所的每—个职工都不 具有“作案时间”的属性,从而推出“营业所的职工都不具有作案时间”这个一般 性知识的结论。这些都是完全归纳推理。 ❖ 完全归纳推理的逻辑形式可以表示为: ❖ S 1具有(或不具有) P属性, ❖ S 2具有(或不具有) P属性, ❖ S3具有(或不具有) P属性, ❖ …… ❖ Sn具有(或不具有) P属性, ❖ S1、S2、S3……Sn是S类的全部对象 ❖ 所以,所有S都具有(或不具有)P属性。 ❖ 完全归纳推理的特点是:前提中考察了某类思维对象的每一个体,结论断定的范围 没有超出前提断定的范围,结论具有必然性。
❖ 三、完全归纳维理的作用
❖ 首先,完全归纳推理的前提是个别性知识,结沦是一般性知识,尽管 其结论知识没有突破前提知识,但它已起到了综合、概括的作用,有助 干人们认识的深化。

归纳推理与类比推理的PPT

归纳推理与类比推理的PPT
类比推理易受主观因素影响
类比推理过程中涉及的主观判断和经验等因素较 多,容易影响推理的客观性和准确性。
05
归纳推理与类比推理的 未来发展
归纳推理的未来发展
人工智能应用
随着人工智能技术的不断发展,归纳推理在自然语言处理、机器学习等领域的应用将更加广泛,有望实现更高效、准 确的推理过程。
跨领域应用
归纳推理不仅在逻辑学和哲学领域有应用,未来还可能拓展到其他领域,如医学、生物学等,为解决复杂问题提供新 的思路和方法。
区别
01
归纳推理是从个别到一般的推理,即从具体事例出发,概括出一般性结论;而 类比推理则是从一般到一般的属性也可能相同。
02
归纳推理的结论范围比前提更广泛,即结论是前提的一个超集;而类比推理的 结论并不一定包含前提的范围,即前提和结论之间不一定有包含关系。
教育与培训应用
类比推理在教育和培训领域具有重要价值,未来将进一步 探索其在培养创新思维、解决问题能力等方面的应用,为 教育和培训提供新的方法和工具。
THANKS FOR WATCHING
感谢您的观看
根据某一类事物的部分成员的特 征,推出该类事物的一般性结论。
基于对事物内在机制的认识,通 过因果关系推导出一般性结论的 推理方法。
归纳推理的应用
科学研究
在科学研究中,归纳推理是常用 的推理方法之一,通过对大量实 验和观察数据的分析,得出科学 规律和理论。
法律审判
在法律审判中,法官根据证据和 事实进行归纳推理,推断出被告 人的罪行和责任。
归纳推理的逻辑不严密
归纳推理的逻辑基础是假设总体具有与样本 相似的特征,但这一假设并不总是成立,因 此归纳推理的逻辑并不严密。
类比推理的局限性

逻辑学 第四章 归纳推理与类比推理幻灯片

逻辑学 第四章   归纳推理与类比推理幻灯片

▪ 【实例】某市发生一起凶杀分尸案,死者被碎尸为几十块。 为查明死者身份,就要死者的特征。法医检尸证明:死者为 萌生智齿的女性。那么,智齿的女性的年龄应为多大呢?公 安机关在该市抽查了50多名已萌生智齿的女性,发现她们的 年龄都在19-21岁之间,逐得出“所有萌生智齿的女性,年 龄都在19-21岁之间”的结论。其中所使用的就是简单枚举 归纳推理,其推理过程如下:
▪ 所以,所有萌生智齿的女性,年龄都在19-21岁之间。 11
简单枚举归纳推理的逻辑形式可表示如下: S 1 是(或不是)P S 2 是(或不是)P S 3 是(或不是)P …… S n 是(或不是)P
(S1 ,S2 ,S3 ……S n是S类的部分对象,枚举中未遇反例)
所以,所有S都是(或不是)P 上式中的S 1 ,S 2 ,S 3 ……S n 可以表
①太平洋已经被污染;大西洋已经被污染;印度洋已经被污染; 北冰洋已经被污染;(太平洋、大西洋、印度洋、北冰洋是 地球上的全部大洋)所以,地球上的所有大洋都已被污染。
②张一不是有出息的;张二不是有出息的;张三不是有出息的; (张一、张二、张三是张老汉仅有的三个孩子)所以,张老 汉的孩子都不是有出息的。
完全归纳推理的要求有三:一是前提所断必须穷 尽一类事物的全部对象;二是前提中的所有判断都 是真实的;三是前提中每一判断的主项与结论的主 项之间必须都是种属关系。
8
第三节 不完全归纳推理
不完全归纳推理,又称“不完全归纳法”,它是
以某类中的部分对象(分子或子类)具有或不具有 某一属性为前提,推出以该类对象全部具有或不具 有该属性为结论的归纳推理。
示S类的个体对象,也可以表示S类的子类。
12
血都红色的”, “天下乌鸦一般黑”, “哺乳动物都是胎生的”

归纳推理优秀课件

归纳推理优秀课件
1.每次只能移动1个金片;
2.较大旳金片不能放在较小旳金片上面. 假如有一天,僧侣们将这64个圆环全部移到另一根针上, 那么世界末日就来临了. 请你试着推测:把 n 个圆环从1号针移到3号针,至少需要 移动多少次?
2
1
3
首页
上页
返回
下页
结束
2
1
3
首页
上页
返回
下页
结束
n=1时, f (1) 1
2 首页
主要内容: 归纳推理、一般模式、一般环节
主要收获:归纳推理所得旳结论虽然未必可靠, 但它由特殊到一般,由详细到抽象旳认识性能, 提供科学旳发觉措施,确实是非常有用旳!
法国数学家拉普拉斯(Laplace ,1749-1827 ) 曾说过:“虽然在数学里,发觉真理旳主要工具 也是归纳和类比!”
首页
上页
返回
首页
上页
返回
下页
结束
一、引例
1.当我们看到乌云密布、燕子低飞、蚂蚁搬家等现 象时,会得到 即将下雨旳判断
2、有一小贩在卖一篮草莓,我先尝了一种,觉得甜, 又尝了一种,也是甜旳,再尝了一种,还是甜旳, 所以我觉得: 这一篮草莓都是甜旳
推理:从一种或几种已知命题得出另一种 新命题旳思维过程
首页
上页
返回
f (3)=32+3+41=53; f(4)=42+4+41=61; f (5)=52+5+41=71; f(6)=62+6+41=83; f(7)=72+7+41=97; f(8)=82+8+41=113; f(9)=92+9+41=131; f(10)=102+10+41=151;

归纳推理与类比推理的PPT

归纳推理与类比推理的PPT
归纳推理与类比推理
目 录
• 引言 • 归纳推理 • 类比推理 • 归纳推理与类比推理的比较 • 实例分析 • 总结与展望
01 引言
主题简介
归纳推理
从个别到一般的推理方式,通过观察一系列特定实例来推断出一般规律或结论。
类比推理
基于两个或多个对象之间的相似性,从一个对象推导出另一个对象的推理方式。
意义
归纳和类比推理是科学研究和日常生活中常用的推理方法,掌握这两种推理方 式有助于提高逻辑思维能力、分析和解决问题的能力,对于个人和职业发展都 具有重要意义。
02 归纳推理
归纳推理的定义
归纳推理是从个别到一般的推理过程, 即从具体事例中总结出一般性规律或 结论。
它通过对大量具体事例的观察和综合, 归纳出其中的共性和本质特征,进而 形成一般性的结论。
综合概括
将分析结果进行综合概括,形成一般性的结 论或规律。
分析数据
对收集到的数据和信息进行整理、分类和比 较,找出其中的共性和差异。
验证结论
通过实践或其他方法验证归纳出的结论或规 律的正确性。
归纳推理的优缺点
优点
能够从具体事例中总结出一般性规律或结论,有助于理解事物的本质和内在联系;能够提供新的知识和见解,推 动科学和技术的发展。
培养专业人才
加强归纳推理与类比推理的教育和培训,培养具备逻辑思维能力的高 素质人才。
THANKS FOR WATCHING
感谢您的观看
深入研究归纳推理与类比推理的内在机制
未来研究可以进一步探讨归纳推理与类比推理的认知过程和神经机制, 以揭示其内在工作原理。
拓展应用领域
除了在哲学和心理学领域,归纳推理与类比推理还可以拓展到其他学 科和应用领域,如人工智能、决策制定等。

归纳推理和类比推理PPT课件

归纳推理和类比推理PPT课件
归纳推理
世界近代三大数学难题之一
哥德巴赫猜想
1742年,哥德巴赫在教学中发现,每个不小 于6的偶数都是两个素数(只能被1和它本身整除 的数)之和。如6=3+3,12=5+7等等。猜想 (a) 任何一个≥6之偶数,都可以表示成两个奇 质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇 质数之和。
1 ( n 2)( n 1) .(用n表示) 2
5 ,当
f (n) f (n 1) n 1 累加得: f (n) f (2) 2 3 4
( n 1)
(2001年上海)已知两个圆①x2+y2=1:与②x2+(y3)2=1,则由①式减去②式可得上述两圆的对称轴方 程.将上述命题在曲线仍然为圆的情况下加以推广, 即要求得到一个更一般的命题,而已知命题应成为 所推广命题的一个特例,推广的命题为:
成等差数列
例1.(2003年新课程)在平面几何里,有勾股定理: “设△ABC的两边AB、AC互相垂直,则 AB2+AC2=BC2.”拓展到空间,类比平面几何的勾 股定理,研究三棱锥的侧面面积与底面面积的关 系,可以得出的正确结论是“设三棱锥A-BCD的 三个侧面 ABC 、 ACD 、 ADB 两两互相垂直, 2 2 2 2 则 SBCD SABC SACD SADB .
an am q
n m
n(a1 an ) na ( q 1) 1 Sn 2 n S 前n项和 a1 (1 q ) n n( n 1) (q 1) na1 d 1 q 2
等差数列 中项
等比数列
任意实数a、b都有等 当且仅当a、b同号时才 差中项 ,为 a b 有等比中项 ,为 ab

1.1.1《归纳推理》课件(北师大版选修2-2)

1.1.1《归纳推理》课件(北师大版选修2-2)

【解析】
7.20世纪60年代,日本数学家角谷发现了一个奇怪现象:一 个自然数,如果它是偶数,就用2除它;如果是奇数,则将它 乘以3后再加1,反复进行这样两种运算,必然会得到一种结果, 试考查几个数并给出这一结果的猜想. 【解析】取自然数6,按角谷的做法有:
6÷2=3,3×3+1=10,10÷2=5,3×5+1=16,16÷2=8,8÷2=4,4÷
此表构成的规则是:第一行是0,1,2,„,999,以后下一 行的数是上一行相邻两数的和. 问:第四行的数中能被999整除的数是什么? 【解析】首先找出第四行数的构成规律,通过观察、分析,可 以看出:第四行的任一个数都和第一行中相应的四个相邻的数 有关,具体关系可以从下表看出:
如果用an表示第四行的第n个数,那么an=8n+4,现在要找出
999的倍数an,设an=999k(k∈N),显然k应是4的倍数,注意到
第四行中最大的数是7 980<999×8,所以k=4,由此求出第四
行中能被999整除的数是999×4=3 996,这是第四行的第
(3 996-4)÷8=499项,即a499=3 996.
2=2,2÷2=1,其过程简记为6→3→10→5→16→8→4→2→1,
若取自然数7,则有
7→22→11→34→17→52→26→13→40→20→10→5→16→8→
4→2→1,
若取自然数100,则有
100→50→25→76→38→19→58→29→88→44→22→11→34→
„→1.
归纳猜想:这样反复运算,必然会得到1.
1.(5分)把1,3,6,10,15,21,„这些数叫做三角形数,
这是因为这些数目的点子可以排成一个正三角形如下图,则第 n个三角形数是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2:数一数图中的凸多面体的面数F、顶
点数V和棱数E,然后用归纳法推理得出它们 之间的关系.
多面体 面数(F) 顶点数(V) 棱数(E)
三棱锥
4
4
6
四棱锥
5
5
8
三棱柱
5
6
9
五棱锥
立方体
正八面体
五棱柱
截角正方体
尖顶塔
多面体 面数(F) 顶点数(V) 棱数(E)
三棱锥
4
4
6
四棱锥
5
5
8
三棱柱
5
6
9
设圆的方程为①(x-a)2+(y-b)2=r2与
②(x-c)2+(y-d)2=r2(a≠c或b≠d),
则由①式减去②式可得上述两圆的对称轴
方程.
小结
1.什么是归纳推理(简称归纳)?
部分
整体
个别
一般
2.归纳推理的一般步骤:
(1)通过观察个别情况发现某些相同性质;
(2)从已知的相同性质中推出一个明确表达的 一般性命题(猜想).
归纳推理
前提 当n=0时,n2-n+11=11
当n=1时,n2-n+11=11 当n=2时,n2-n+11=13 当n=3时,n2-n+11=17 当n=4时,n2-n+11=23
当n=5时,n2-n+11=31
11,11,13,17,23,31都是质数
结论 对于所有的自然数n, n2-n+11的值都是质数
点.若用f(n)表示这n条直线交点的个数,f(4)= 5 ,
当n>4时,f(n)=
f (3) f (2)
1 (n
22
2)(n
1)
.(用n表示)
f (4) f (3) 3
f (5) f (4) 4
LLL
f (n) f (n 1) n 1
累加得: f (n) f (2) 2 3 4 L (n 1)
目前最佳的结果是中国数学家陈景润於 1966年证明的,称为陈氏定理 .“任何充份大 的偶数都是一个质数与一个自然数之和,而後 者仅仅是两个质数的乘积。” 通常都简称这 个结果为大偶数可表示为 “1 + 2 ”的形式。
从个别事实中推演出一般性的结论,称为归纳推理.
归纳推理的几个特点:
1.归纳是依据特殊现象推断一般现象,因而,由归纳 所得的结论超越了前提所包容的范围. 2.归纳是依据若干已知的、没有穷尽的现象推断尚 属未知的现象,因而结论具有猜测性. 3.归纳的前提是特殊的情况,因而归纳是立足于观 察、经验和实验的基础之上.
前提:
4=2+2 6=3+3 6=3+3, 8=3+5, 10=5+5, 12=5+7, 14=7+7, 16=5+11, 18 =7+11, …, 1000=29+971 1002=139+863,

结论:
“任何一个大于2的偶数都可 以表示为两个素数之和”
----歌德巴赫猜想

哥德巴赫猜想 (Goldbach Conjecture)
1 3
+
L
+
1 (n n
Î
N* )计算得
f(2)=
3 2
,f(4)>2,f(8)>
5 2
,f(16)>3,f
(32)
>
7 2
L , 推测当n ³ 2时,有-----------------.
(2001年上海)已知两个圆①x2+y2=1:与②x2+(y3)2=1,则由①式减去②式可得上述两圆的对称轴方 程.将上述命题在曲线仍然为圆的情况下加以推广, 即要求得到一个更一般的命题,而已知命题应成为 所推广命题的一个特例,推广的命题为:
归纳是立足于观察、经验、实验和对有限资料
分析的基础上.提出带有规律性的结论.
需证明
归纳推理的一般步骤:
试验、观察 概括、推广 猜测一般性结论
例1.已知数列{an}的第1项a1=1,且
an1
an 1 an
(n=1 , 2 , …),试归纳出这个数列的通项公式.
分别把n=1,2,3,4代入an1
an 1 an
归纳: f (n) 2n 1
f
(n)
1, 2 f
(n
1)
1,
n1 n2
例3(2004春季上海)根据图中5个图形及相应点的个
数的变化规律,试猜测第n个图形中有 n2 n 1 个
点.
(1) (2) (3)
(4)
(5)
例4(2005年广东)设平面内有n条直线(n≥3),其中有
且仅有两条直线互相平行,任意三条直线不过同一
2
1
3
n=1时, f (1) 1
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3
n=3时, f (3) 3 13
f (2) 1 f (2)
五棱锥
6
6
10
立方体
6
8
12
正八面体
8
6
12
五棱柱
截角正方体
尖顶塔
猜想 F+V-E=2 欧拉公式
多面体 面数(F) 顶点数(V) 棱数(E)
三棱锥
4
4
6
四棱锥
5
5
8
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
正八面体
8
6
12
五棱柱
7
10
15
截角正方体 7
10
15
尖顶塔
9
9
16
练习:f(n)=1+
1+ 2
得:
1
1
1
1
a2 2 , a3 3 , a4 4 , a5 5
归纳:
1 an n
可用数学归纳法证明 这个猜想是正确的.
解法2、构造法
取倒数得: 1 1 1
an1
an
例2.有三根针和套在一根针上的若干金属片.按下 列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动一个金属片; 2.较大的金属片不能放在较小的金属片上面. 试推测:把n个金属片从1号针移到3号针,最少需要 移动多少次?
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7 f (2) 1 f (2)
n=4时, f (4) f (3) 1 f (3) 15
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7 f (2) 1 f (2) n=4时, f (4) 15 f (3) 1 f (3)
作业
2
1.已知数列{an}的前n项和Sn , a1
1 Sn Sn 2 an (n 2).
计算S1 ,
3
S2 ,
,
S3
且 , S4
,
并猜想Sn的表达式.
计算得: S1
2, 3
S2
3, 4
S3
4, 5
5 S4 6
猜想:
n1 Sn n 2
相关文档
最新文档