苏教版高一数学必修一函数定义域和值域
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)求 在 上的最大值、最小值。
6、奇偶性
例.判断函数奇偶性:
(1) ;
(2) ;
(3)
(4)
练习:
判断函数的奇偶性:
(1) ;
(2) ;
(3) ;
(4) ;
(5)
例.奇偶性的应用
1.已知 是奇函数,且 。
(1)数 的值;
(2)判断函数 在 上的单调性,并加以证明。
2.已知函数 ,则当 为何值时, 是奇函数?
7.理解掌握判断函数的奇偶性的方法
了解映射的定义,明确函数与映射的异同之处
教学容
1.函数概念是如何定义的,什么是映射?举例说明函数、映射以及它们之间的区别
2.思考:对于不同的函数如:① ② ③ ④ ⑤
的定义域如何确定
3.通常表示函数的方法有:
4. 的定义域为 。函数是增函数,函数是减函数,
函数是奇函数,函数是偶函数。
二:函数的定义域
注:确定函数定义域的主要方法
(1)若 为整式,则定义域为R.
(2)若 是分式,则其定义域是分母不为0的实数集合
(3)若 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合;
(4)若 是由几部分组成的,其定义域是使各部分都有意义的实数的集合;
(5)实际问题中,确定定义域要考虑实际问题
课 题
函数的概念和图像
授课日期及时段
教学目的
1.理解函数及其定义域、值域的概念,并能求函数的定义域、值域
2.能用描点法画函数的图像
3.了解函数的表示方法,重点掌握函数的解析法
4.了解分段函数的概念,掌握分段函数的解析式表达形式和图像的画法
5.理解函数的单调性,掌握判断函数单调性和求函数最值的方法
6.能画单调函数的图像并根据图像判断函数的增减性,求函数的最值
注:定义域相同时:
增
增
增
减
减
减
增
增
增
减
减
增
增
减
减
减
增
减
例:已知函数 , ,试求 的单调区间。
练习:
1.确定函数 的单调性。
2.试判断函数 ( 且 )在区间 上的单调性。
3.已知 在Leabharlann Baidu间 上的最小值为-3,数 的值。
单调性的应用
例:1.已知函数 对任意的 ,总有 ,且当 时,
(1)求证: 在R上是减函数;
4、函数解析式:
例1、已知 ,求 的解析式。(换元法)
例2.设二次函数 的最小值等于4,且 ,求 的解析式。(待定系数法)
例3.甲同学家到乙同学家的途中有一个公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家。如图,表示甲从出发到乙家为止经过的路程 与时间 的关系。试写出 的函数表达式。
例1、求下列函数的值域:(观察法)
(1) (2)
例2.求函数 的值域(反解法)
例3.求函数 的值域(配方换元法)
例4.求函数 的值域(不等式法)
例5.画出函数 的图像,并根据其图像写出该函数的值域。(图像法)
练习:
1.求下列函数的值域:
(1) (2)
(3) (4)
2.求下列函数的值域:
(1) (2) (3)
练习:
1.已知 ,求 。
2、已知 是一次函数,且 ,求 的解析式。
3、设 是R上的函数,且满足 ,并且对任意实数 ,有 ,求 的表达式。
4、求函数 的值域。
5、单调性:
例1.证明: 在 上是减函数。(定义法)
2.证明:函数 在 上是减函数
例2.画出函数 的图像,并由图像写出函数 的单调区间。
3、复合函数
讲授新课:
1、函数的判断
例1.<1>下列对应是函数的是
注:检验函数的方法(对于定义域每一值值域是否存在唯一的值与它对应)
① ②
<2>下列函数中,表示同一个函数的是:( )
注:定义域和对应法则必须都相同时,函数是同一函数
A. B.
C. D.
练习:
1.设有函数组:① ② ③ ④
⑤ ⑥
其中表示同一函数的是。
例:1.求下列函数的定义域:
(1) (2)
(3) (4)
(5) (6)t是时间,距离
2.已知函数 的定义域是[-3,0],求函数 的定义域。
3.若函数 的定义域是R,求 的取值围。
练习:
1.求下列函数的定义域:
(1) ; (2)
(3) ; (4)
2.已知 的定义域为 ,求函数 的定义域。
3、函数值和函数的值域
6、奇偶性
例.判断函数奇偶性:
(1) ;
(2) ;
(3)
(4)
练习:
判断函数的奇偶性:
(1) ;
(2) ;
(3) ;
(4) ;
(5)
例.奇偶性的应用
1.已知 是奇函数,且 。
(1)数 的值;
(2)判断函数 在 上的单调性,并加以证明。
2.已知函数 ,则当 为何值时, 是奇函数?
7.理解掌握判断函数的奇偶性的方法
了解映射的定义,明确函数与映射的异同之处
教学容
1.函数概念是如何定义的,什么是映射?举例说明函数、映射以及它们之间的区别
2.思考:对于不同的函数如:① ② ③ ④ ⑤
的定义域如何确定
3.通常表示函数的方法有:
4. 的定义域为 。函数是增函数,函数是减函数,
函数是奇函数,函数是偶函数。
二:函数的定义域
注:确定函数定义域的主要方法
(1)若 为整式,则定义域为R.
(2)若 是分式,则其定义域是分母不为0的实数集合
(3)若 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合;
(4)若 是由几部分组成的,其定义域是使各部分都有意义的实数的集合;
(5)实际问题中,确定定义域要考虑实际问题
课 题
函数的概念和图像
授课日期及时段
教学目的
1.理解函数及其定义域、值域的概念,并能求函数的定义域、值域
2.能用描点法画函数的图像
3.了解函数的表示方法,重点掌握函数的解析法
4.了解分段函数的概念,掌握分段函数的解析式表达形式和图像的画法
5.理解函数的单调性,掌握判断函数单调性和求函数最值的方法
6.能画单调函数的图像并根据图像判断函数的增减性,求函数的最值
注:定义域相同时:
增
增
增
减
减
减
增
增
增
减
减
增
增
减
减
减
增
减
例:已知函数 , ,试求 的单调区间。
练习:
1.确定函数 的单调性。
2.试判断函数 ( 且 )在区间 上的单调性。
3.已知 在Leabharlann Baidu间 上的最小值为-3,数 的值。
单调性的应用
例:1.已知函数 对任意的 ,总有 ,且当 时,
(1)求证: 在R上是减函数;
4、函数解析式:
例1、已知 ,求 的解析式。(换元法)
例2.设二次函数 的最小值等于4,且 ,求 的解析式。(待定系数法)
例3.甲同学家到乙同学家的途中有一个公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家。如图,表示甲从出发到乙家为止经过的路程 与时间 的关系。试写出 的函数表达式。
例1、求下列函数的值域:(观察法)
(1) (2)
例2.求函数 的值域(反解法)
例3.求函数 的值域(配方换元法)
例4.求函数 的值域(不等式法)
例5.画出函数 的图像,并根据其图像写出该函数的值域。(图像法)
练习:
1.求下列函数的值域:
(1) (2)
(3) (4)
2.求下列函数的值域:
(1) (2) (3)
练习:
1.已知 ,求 。
2、已知 是一次函数,且 ,求 的解析式。
3、设 是R上的函数,且满足 ,并且对任意实数 ,有 ,求 的表达式。
4、求函数 的值域。
5、单调性:
例1.证明: 在 上是减函数。(定义法)
2.证明:函数 在 上是减函数
例2.画出函数 的图像,并由图像写出函数 的单调区间。
3、复合函数
讲授新课:
1、函数的判断
例1.<1>下列对应是函数的是
注:检验函数的方法(对于定义域每一值值域是否存在唯一的值与它对应)
① ②
<2>下列函数中,表示同一个函数的是:( )
注:定义域和对应法则必须都相同时,函数是同一函数
A. B.
C. D.
练习:
1.设有函数组:① ② ③ ④
⑤ ⑥
其中表示同一函数的是。
例:1.求下列函数的定义域:
(1) (2)
(3) (4)
(5) (6)t是时间,距离
2.已知函数 的定义域是[-3,0],求函数 的定义域。
3.若函数 的定义域是R,求 的取值围。
练习:
1.求下列函数的定义域:
(1) ; (2)
(3) ; (4)
2.已知 的定义域为 ,求函数 的定义域。
3、函数值和函数的值域