螺栓强度计算
螺栓联接件强度计算

螺栓联接件强度计算
1.螺栓受力情况
螺栓受力情况见图1所示。
图1 螺栓受力图
1)横截面 11、 22上有作用力,象剪刀一样,试图把螺栓从该截面处剪开, 称F S为剪力(Shear force),引起切应力( Shear stress)。
2)杆段①、②、③受到被联接构件的挤压(Bearing),引起挤压应力(Bearing stress)。
2.失效形式
基于螺栓的受力,预测出螺栓可能的失效形式:
1)在截面 11,22处被剪断;
2)受挤压部分的半圆被“挤扁”(近似半椭圆)。
下图2中的螺栓产生了塑性变形,验证了此种情况。
图2 螺栓受挤压塑性变形
3.其他可能受力情况
1)没有受剪力作用;
2)同螺栓杆段①、②、③对应半圆孔受到螺栓挤压,有可能导致变形过大而失效(变成近似椭圆孔);
3)螺栓挤压,有可能把被联接构件端部豁开(一般将端部设计得充分长,抵御豁开力,因而对此不计算)。
4.强度计算
4.1剪切强度计算
1)剪力 F s = F/2
2)名义切应力
3)强度校核,否则需重新设计。
4.2挤压强度计算
挤压应力计算面积,实际挤压面在垂直挤压力方向上的投影。
螺栓强度计算模板

剪切强度τ=
F
md12
4
F:所受横向载荷(N);m:受剪面个数;d1:螺纹小径(mm)
注:τ≤[τ]
装配情况 紧连接
二:受轴向载荷松螺栓强度(间隙配合)
二类计算方法:主要受力为拉伸力,螺栓主要体现拉伸强度
安全系数Ss
螺栓材料
载荷性质
静载荷
变载荷
碳素钢 合金钢
1.2-1.5
1.2-1.5
碳素钢
松连接
[σ]
d12 Cb Cm
2
应力幅
σa=
2F d12
Cb Cb
C
m
≤[σa]
[σa]=
K t K u 1t
K Sa
注:ε尺寸系数,Ku受力不均匀系数,Kt螺纹制造工艺系数,Kσ缺口应力集中系数,Sa安全系数,σ-1t材料抗压疲劳 极限
尺寸系数ε Kt Ku Kσ
Sa
螺栓直径d/mm ε
螺栓材料σb/MPa Kσ
注:σ≤[σ]
不控制预紧力时安全系数如下表所示:
材料类别
碳钢 合金钢
M6~M16 4~3 5~4
静载荷 M16~M30
3~2 4~2.5
碳素钢螺栓 合金钢螺栓
QP≤(0.6-0.7)σsA σs:材料的屈服极限
A≈ d12
QP≤(0.5-0.6)σsA
4
M30~M60 2~1.3 2.5
M6~M16 10~6.5 7.5~5
变载荷 M16~M30
6.5 5
四:受轴向载荷的紧螺栓连接
螺栓最大拉应 力:
F2=QP+F
Cb Cb Cm
四类计算方法:计算预紧力和工作载荷
注:QP为预紧力,F为受轴向载荷,Cb螺栓的刚度,Cm 被连接件的刚度
螺栓强度计算

建筑常识钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。
螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。
例如,性能等级4.6级的螺栓,其含义是:1、螺栓材质公称抗拉强度达400MPa级;2、螺栓材质的屈强比值为0.6;3、螺栓材质的公称屈服强度达400×0.6=240MPa级性能等级10.9级高强度螺栓,其材料经过热处理后,能达到:1、螺栓材质公称抗拉强度达1000MPa级;2、螺栓材质的屈强比值为0.9;3、螺栓材质的公称屈服强度达1000×0.9=900MPa级螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。
强度等级所谓8.8级和10.9级是指螺栓的抗剪切应力等级为8.8GPa和10.9Gpa8.8 公称抗拉强度800N/MM2 公称屈服强度640N/MM2一般的螺栓是用"X.Y"表示强度的,X*100=此螺栓的抗拉强度,X*100*(Y/10)=此螺栓的屈服强度(因为按标识规定:屈服强度/抗拉强度=Y/10)===============如4.8级则此螺栓的抗拉强度为:400MPa屈服强度为:400*8/10=320MPa=================另:不锈钢螺栓通常标为A4-70,A2-70的样子,意义另有解释度量当今世界上长度计量单位主要有两种,一种为公制,计量单位为米(m)、厘米(cm)、毫米(mm)等,在欧州、我国及日本等东南亚地区使用较多,另一种为英制,计量单位主要为英寸(inch),相当于我国旧制的市寸,在美国、英国等欧美国家使用较多。
1、公制计量:(10进制)1m =100 cm=1000 mm2、英制计量:(8进制)1英寸=8英分1英寸=25.4 mm 3/8¢¢×25.4 =9.523、1/4¢¢以下的产品用番号来表示其称呼径,如:4#,5#,6#,7#,8#,10#,12#螺纹一、螺纹是一种在固体外表面或内表面的截面上,有均匀螺旋线凸起的形状。
联接螺栓强度计算方法

联接螺栓的强度计算方法一.连接螺栓的选用及预紧力:1、已知条件:螺栓的s=730MPa 螺栓的拧紧力矩T=49N.m2、拧紧力矩:为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。
其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2。
装配时可用力矩扳手法控制力矩。
公式:T=T1+T2=K*F* d拧紧扳手力矩T=49N.m其中K为拧紧力矩系数,F为预紧力N d为螺纹公称直径mm其中K为拧紧力矩系数,F为预紧力N d为螺纹公称直径mm摩擦表面状态K值有润滑无润滑精加工表面0.10.12一般工表面0.13-0.150.18-0.21表面氧化0.20.24镀锌0.180.22粗加工表面-0.26-0.3取K=0.28,则预紧力F=T/0.28*10*10-3=17500N3、承受预紧力螺栓的强度计算:螺栓公称应力截面面积As(mm)=58mm2外螺纹小径d1=8.38mm外螺纹中径d2=9.03mm计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。
螺栓的最大拉伸应力σ1(MPa)。
1sF A σ==17500N/58*10-6m 2=302MPa 剪切应力:=0.51σ=151 MPa根据第四强度理论,螺栓在预紧状态下的计算应力: =1.3*302=392.6 MPa强度条件:=392.6≤730*0.8=584预紧力的确定原则:拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。
4、 倾覆力矩倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓()2031tan 216v Td F T W dϕρτπ+== 1.31ca σσ≈[]0211.34F ca d σσπ=≤已拧紧并承受预紧力F 0。
螺栓强度计算

――受力不均匀因数,受压螺母 =1,受拉螺母 =1.5~1.6;
――缺口应力集中因数,按表3查得;
――抗压疲劳极限,按表4查得;
――安全因数,控制预紧力 =1.5~2.5,不控制预紧力 =2.5~5。
表1螺栓连接
一、螺栓受力分析:
螺栓为受轴向载荷紧螺栓连接(动载荷),受轴向载荷紧螺栓连接(动载荷)的基本形式如下图所示:
二、受轴向载荷紧螺栓连接(动载荷)的基本公式:
(1)许用应力计算公式:
(2)强度校核计算公式:
式中:
――轴向载荷,N;
――螺栓小径,mm,查表获得;
――相对刚度,按表1选取;
――尺寸因数,按表2查得;
表3缺口应力集中因数
表4抗压疲劳极限
三、计算内容:
相关参数如下表:
(1)许用应力计算:
(2)强度校核计算:
四、结论:
由上述计算可知,螺栓强度满足要求。
螺栓强度计算方法(附公式)

螺栓强度计算方法详解螺栓强度计算方法详解((附公式附公式))
螺栓强度计算是利用公式对螺栓连接强度进行有效计算,确定螺栓的受力状况。
不同的螺栓强度计算的方法和公式也不相同。
下面,世界泵阀网为大家汇总螺栓强度计算方法公式。
以供学习参考。
螺栓强度计算,主要是根据联接的类型、联接的装配情况(是否预紧)和受载状态等条件,确定螺栓的受力;然后按相应的强度条件计算螺栓危险截面的直径(螺纹小径)或校核其强度。
螺栓强度计算:
承载力=强度 x 面积;
螺栓有螺纹,以M24螺栓为例,其横截面面积不是24直径的圆面积,而是353平方毫米,称之为有效面积。
普通螺栓C 级(4.6和4.8级)抗拉强度是170N/平方毫米。
那么承载力就是:170x353=60010N 。
换算一下,1吨相当于1000KG ,相当于10000N ,那么M24螺栓也就是可以承受约6吨的拉力。
紧螺栓强度校核与设计计算式:
松螺栓强度计算:
危险截面拉伸强度条件为:
d1——螺纹小径,mm; F——螺栓承受的轴向工作载荷,N:;[σ]——松螺栓联接的许用应力,N/m㎡。
螺栓强度计算

三、 普通螺栓连接的受力性能和计算
(一)螺栓连接的受力形式
F N F
A 只受剪力
B 只受拉力
C 剪力和拉 力共同作用
(二)普通螺栓抗剪连接 1.工作性能
N/2 N/2
a b
O
N
N
N
4 3
N
1
2
δ
1)摩擦传力的弹性阶段(0~1段) 2)滑移阶段(1~2段)
N/2
a b
N
N/2
3)栓杆传力的弹性阶段(2~3段) 4)破坏阶段(3~4段)
b Nv
= nv
πd
2 b fv
4
nv—剪切面数目;d—螺栓杆直 径; fvb—螺栓抗剪强度设计值; b b 承压承载力: N c = d ∑ t f c
d
∑t—连接接头一侧承压构件总厚度的较小值。 fcb—螺栓孔壁承压强度设计值;
b b b 单栓抗剪承载力: Nmin = min Nv,Nc
{
}
剪切面数目nv
为防止孔壁的承压破坏,应满足:
2
2
NV
b NV
1
b a
1 Nt Ntb
0
Nv ≤
b Nc
V
3、当有承托承担全部剪 力时,螺栓群按受拉连接计 算。
M
刨平顶紧 承托(板) 连接角焊缝
4.7 高强度螺栓连接计算
由45号、40B和20MnTiB钢加工而成,并经热处理 45号-8.8级; 40B和20MnTiB-10.9级
i =1 i =1
2 N 1Tx
+ N 1F ≤
2
b N min
(三)普通螺栓抗拉连接 1、破坏形式 栓杆被拉断 2、单个普通螺栓的抗拉承载力设计值
螺栓强度计算.doc

15.2.1 单个螺栓连接的强度计算螺纹连接根据载荷性质不同,其失效形式也不同:受静载荷螺栓的失效多为螺纹部分的塑性变形或螺栓被拉断;受变载荷螺栓的失效多为螺栓的疲劳断裂;对于受横向载荷的铰制孔用螺栓连接,其失效形式主要为螺栓杆剪断,栓杆或被连接件孔接触表面挤压破坏;如果螺纹精度低或连接时常装拆,很可能发生滑扣现象。
螺栓与螺母的螺纹牙及其他各部分尺寸是根据等强度原则及使用经验规定的。
采用标准件时,这些部,然后按照标准选定螺纹公称直分都不需要进行强度计算。
所以,螺栓连接的计算主要是确定螺纹小径d1径(大径)d,以及螺母和垫圈等连接零件的尺寸。
1. 受拉松螺栓连接强度计算松螺栓连接装配时不需要把螺母拧紧,在承受工作载荷前,除有关零件的自重(自重一般很小,强度计算时可略去。
)外,连接并不受力。
图15.3所示吊钩尾部的连接是其应用实例。
当螺栓承受轴向工作载荷 F (N)时,其强度条件为(15-6)(15-7)或——螺纹小径,mm;式中: d1[σ]——松连接螺栓的许用拉应力,Mpa。
见表15.6。
图15.32.受拉紧螺栓连接的强度计算根所受拉力不同,紧螺栓连接可分为只受预紧力、受预紧力和静工作拉力及受预紧力和变工作拉力三。
①只受预紧力的紧螺栓连接右图为靠摩擦传递横向力F 的受拉螺栓连接,拧紧螺母后,这时栓杆除受预紧力F`引起的拉应力σ=4 F` /π2 d1外,还受到螺纹力矩T1引起的扭转切应力:对于螺栓故螺栓或式②受预紧力和工作载荷的紧螺栓连接。
图15.5所示压力容器螺栓连接是受预紧力和轴向工作载荷的典型实例。
这种连接拧紧后螺栓受预紧力F`,工作时还受到。
螺栓强度计算

第三章 螺纹联接(含螺旋传动)3—1 基础知识 一、螺纹的主要参数现以圆柱普通螺纹的外螺纹为例说明螺纹的主要几何参数,见图3—1,主要有:1)大径d —-螺纹的最大直径,即与螺纹牙顶重合的假想圆柱面的直径,在标准中定为公称直径.2)小径1d ——螺纹的最小直径,即与螺纹牙底相重合的假想圆柱面的直径,在强度计算中常作为螺杆危险截面的计算直径。
3)中径2d ——通过螺纹轴向界面内牙型上的沟槽和突起宽度相等处的假想圆柱面的直径,近似等于螺纹的平均直径,2d ≈11()2d d +。
中径是确定螺纹几何参数和配合性质的直径。
4)线数n ——螺纹的螺旋线数目。
常用的联接螺纹要求自锁性,故多用单线螺纹;传动螺纹要求传动效率高,故多用双线或三线螺纹。
为了便于制造,一般用线数n ≤4.5)螺距P ——螺纹相邻两个牙型上对应点间的轴向距离。
6)导程S -—螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离。
单线螺纹S =P ,多线螺纹S =nP 。
7)螺纹升角λ-—螺旋线的切线与垂直于螺纹轴线的平面间的夹角。
在螺纹的不同直径处,螺纹升角各不相同.通常按螺纹中径2d 处计算,即22arctanarctan S nP d d λππ== (3—1) 8)牙型角α-—螺纹轴向截面内,螺纹牙型两侧边的夹角。
螺纹牙型的侧边与螺纹轴线的垂直平面的夹角称为牙侧角,对称牙型的牙侧角β=α/2.9)螺纹接触高度h —-内外螺纹旋合后的接触面的径向高度.二、螺纹联接的类型螺纹联接的主要类型有:图3-11、螺栓联接常见的普通螺栓联接如图3—2a所示.这种联接的结构特点是被联接件上的通孔和螺栓杆间留有间隙。
图3-2b是铰制孔用螺栓联接。
这种联接能精确固定被联接件的相对位置,并能承受横向载荷,但孔的加工精度要求较高。
图3-22、双头螺柱联接如图3—3a所示,这种联接适用于结构上不能采用螺栓联接的场合,例如被联接件之一太厚不宜制成通孔,且需要经常拆装时,往往采用双头螺柱联接。
螺栓的计算公式

螺栓的计算公式螺栓在机械领域中可是个相当重要的角色呢!咱们要搞清楚螺栓的计算公式,那得先从它的基本原理和用途说起。
螺栓,这小小的家伙,却有着大大的作用。
就说咱们常见的自行车吧,车把和车架的连接,脚踏板和轴的固定,都离不开螺栓。
我还记得有一次,我自己在家捣鼓修理自行车,结果不小心把一个螺栓给弄滑丝了。
这可把我急坏了,因为这意味着零件没法稳固连接,自行车骑起来会嘎吱嘎吱响,还可能存在安全隐患。
那螺栓的计算公式到底是咋回事呢?咱们先来说说螺栓的抗拉强度计算公式。
螺栓的抗拉强度可以通过材料的抗拉强度乘以螺栓的有效截面积来计算。
这就好比是一个大力士能举起的重量,取决于他本身的力气大小(材料强度)和他双手能抓住的面积(有效截面积)。
再来讲讲螺栓的预紧力计算公式。
预紧力就像是给螺栓提前施加的一个“压力”,让它在工作的时候能够紧紧地拉住两个零件,不让它们松动。
预紧力的计算要考虑到螺栓的材料、直径、摩擦系数等因素。
比如说,在一些需要高精度和高稳定性的机械装置中,预紧力的计算就显得尤为重要。
还有螺栓的屈服强度计算公式。
螺栓的屈服强度就像是它的“底线”,超过这个底线,螺栓就可能会发生永久性的变形,无法正常工作。
这个计算也得综合考虑各种材料和尺寸的参数。
在实际的工程应用中,螺栓的计算公式可不是随便算算就行的。
比如说在汽车制造厂里,工人们在组装发动机的时候,就得精确计算每个螺栓的参数,确保发动机在高速运转的时候,各个部件都能紧密连接,不出差错。
总之,螺栓的计算公式虽然看起来有点复杂,但只要咱们掌握了其中的原理和关键参数,就能让这些小小的螺栓发挥出大大的作用,保障各种机械装置的安全和稳定运行。
就像我那次修自行车,最后费了好大的劲,找了合适的螺栓替换,才让我的自行车重新欢快地跑起来。
所以啊,可别小看这螺栓的计算公式,它可是机械世界里的重要“密码”呢!。
螺栓强度计算

二、螺纹联接的类型
螺纹联接的主要类型有:
1、螺栓联接
常见的普通螺栓联接如图3-2a所示。这种联接的结构特点是被联接件上的通孔和螺栓杆间留有间隙。图3-2b是铰制孔用螺栓联接。这种联接能精确固定被联接件的相对位置,并能承受横向载荷,但孔的加工精度要求较高。
结构简单、使用方便,但由于垫圈的弹力不均在冲击、振动的工作条件下,其防松效果较差,一般用于不甚重要的联接
自锁螺母
螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。
结构简单,防松可靠,可多次装拆而不降低防松性能
机
械
防
松
开口销与六角开槽螺母
六角开槽螺母拧紧后,将开口销穿入螺栓尾部小孔和螺母的槽内,并将开口销尾部掰开与螺母侧面紧贴。也可用普通螺母代替六角开槽螺母,但需拧紧螺母后再配钻销孔。
适用于螺钉组联接,防松可靠,但装拆不便。
还有一些特殊的防松方法,例如在旋合螺纹间涂以液体胶粘剂或在螺母末端镶嵌尼龙环等。
此外,还可以采用铆冲方法防松。螺母拧紧后把螺栓末端伸出部分铆死,或利用冲头在螺栓末端与螺母的旋合缝处打冲,利用冲点防松。这种防松方法可靠,但拆卸后联接件不能重复使用。
五、螺纹联接的强度计算
5)螺距 ——螺纹相邻两个牙型上对应点间的轴向距离。
6)导程 ——螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离。单线螺纹 = ,多线螺纹 = 。
7)螺纹升角 ——螺旋线的切线与垂直于螺纹轴线的平面间的夹角。在螺纹的不同直径处,螺纹升角各不相同。通常按螺纹中径 处计算,即
(3-1)
8)牙型角 ——螺纹轴向截面内,螺纹牙型两侧边的夹角。螺纹牙型的侧边与螺纹轴线的垂直平面的夹角称为牙侧角,对称牙型的牙侧角 = /2。
第三节单个螺栓连接的强度计算ppt课件

Ks为防滑系数,设计中可取Ks =1.1~1.3。
2)铰制孔螺栓连接
假设每个螺栓的受力相等,则单个螺栓所受的横向工作剪力F为:
二、螺栓组连接的受力分析
1、受横向载荷的螺栓组连接
5-5螺栓组连接设计与受力分析
2、受横向扭矩螺栓组连接
1)普通螺栓连接
二、螺栓组连接的受力分析
根据底板的力矩平衡条件得:
2、受横向扭矩螺栓组连接
二、螺栓组连接的受力分析
5-5螺栓组连接设计与受力分析
3、受轴向载荷的螺栓组连接
求每个螺栓的工作载荷
求单个螺栓所受总载荷
强度校核
二、螺栓组连接的受力分析
5-5螺栓组连接设计与受力分析
4、受翻转力矩的螺栓组连接
特点:M在铅直平面内,绕O-O回转,只能用普通螺栓。
F1
F 2
螺栓所受的总拉力:
F2 = F0+ F
?
×
此时,连接中各零件的受力关系属静不定问题
未知力有两个:
F2 — 总拉力
F1 — 残余预紧力
须根据静力平衡方程和变形协调条件求解
三、紧螺栓连接
螺栓预紧时的受力分析
未承受工作载荷时:
F0
F0
F0
F0
F
F
F 2
F″
F″
F 2
δ2
δ1
△δ1
△δ2
T
变形协调条件: △δ1 = △δ2 = △δ
挤压强度条件为:
Lmin——螺栓杆与孔壁接触表面的最小长度
设计时,按上述公式分别计算出d 0 ,取大值
三、紧螺栓连接
3、螺栓承受剪切力(采用铰制孔用螺栓)
螺栓与螺母统计计算公式

螺栓与螺母统计计算公式螺栓和螺母是机械连接中常用的零件,它们的质量和尺寸对于机械设备的安全运行至关重要。
在工程设计中,需要对螺栓和螺母进行统计计算,以确保其符合设计要求并能够承受相应的载荷。
本文将介绍螺栓与螺母的统计计算公式,并探讨其在工程设计中的应用。
螺栓与螺母的统计计算公式主要涉及到其受力分析和强度计算。
在实际工程中,螺栓和螺母通常承受拉力、剪力和扭矩等多种受力形式,因此需要综合考虑各种受力情况下的强度计算。
下面将分别介绍螺栓和螺母的统计计算公式。
螺栓的统计计算公式:1. 拉力计算公式。
螺栓在受拉力作用下,其拉力计算公式为:F = P / A。
其中,F为螺栓的拉力,P为受力,A为螺栓的横截面积。
根据受力情况和螺栓的材料性能,可以确定螺栓的横截面积A,从而计算出螺栓的拉力。
2. 剪力计算公式。
螺栓在受剪力作用下,其剪力计算公式为:V = T / (d π)。
其中,V为螺栓的剪力,T为受力,d为螺栓的直径,π为圆周率。
根据受力情况和螺栓的材料性能,可以确定螺栓的直径d,从而计算出螺栓的剪力。
3. 扭矩计算公式。
螺栓在受扭矩作用下,其扭矩计算公式为:T = F r。
其中,T为螺栓的扭矩,F为螺栓的拉力,r为螺栓的臂长。
根据受力情况和螺栓的材料性能,可以确定螺栓的臂长r,从而计算出螺栓的扭矩。
螺母的统计计算公式:1. 拉力计算公式。
螺母在受拉力作用下,其拉力计算公式与螺栓相似,为:F = P / A。
其中,F为螺母的拉力,P为受力,A为螺母的横截面积。
根据受力情况和螺母的材料性能,可以确定螺母的横截面积A,从而计算出螺母的拉力。
2. 剪力计算公式。
螺母在受剪力作用下,其剪力计算公式与螺栓相似,为:V = T / (d π)。
其中,V为螺母的剪力,T为受力,d为螺母的直径,π为圆周率。
根据受力情况和螺母的材料性能,可以确定螺母的直径d,从而计算出螺母的剪力。
3. 扭矩计算公式。
螺母在受扭矩作用下,其扭矩计算公式与螺栓相似,为:T = F r。
螺栓强度计算公式

螺纹的强度计算 机械工学便览篇螺纹的许用拧紧力矩T=(Q/2)*(d2*μ/cosβ+d2*tanα+μn*d n)Q=σq*Aμ: 螺纹表面摩擦系数β:螺纹牙型半角、因为是公制螺纹所以是30ºd2: 螺纹有效直径的标准尺寸d3: 外螺纹内径的标准尺寸 d3=d-1.226869*Sα:螺纹升角 tanα=S/(π*d2) (rad)S: 螺纹的牙距μn: 螺母座面的摩擦系数d n: 螺母座面的平均直径 例1:当螺母座面是以B为直径的圆的情况 d n=(2/3)*(B3-d n3)/(B2-d h2) d h:螺栓孔径 例2: 当螺母座面是以B为对边宽度的六边形的情况 dn=(0.608*B3-0.524*d h3)/(0.866*B2-0.785*d h2)A: 螺纹的有效截面积 A=(π/4)*d32σq: 螺纹的许用拉伸应力ρ=螺纹接触面的摩擦角=tan-1(μ) (rad)内螺纹螺牙的剪切应力Q=√2*π*Z*(d-AB*sinΨ)*AB*τn*cosβ*cosρΨ=0.7854+ρ-β…螺纹剪切面的角度 (rad) Yn:内螺纹螺栓外径位置的螺牙根部宽度Yn=0.875*SAB:内螺纹剪切长度AB=Yn*cosβ/cos(β-Ψ)Z=(螺母高度/S)-1 …同时接触的牙数、 取理论值-1。
外螺纹螺牙的剪切应力Q=√2*π*Z*(d - 2*h + CD*sinψ)*CD*τs*cosβ*cosρΨ=0.7854+ρ-β…螺纹剪切面的角度 (rad)Ys:外螺纹螺牙根部宽度Ys=(0.125+0.625*ε)*Sε: 螺纹结合比,通常取1。
CD: 外螺纹剪切长度CD=Ys*cosβ/cos(β-Ψ)h: 外螺纹螺牙高度,通常 h=H1=0.541226*SS: 螺纹牙距。
螺栓连接的构件强度计算

普通螺栓和高强度螺栓连接的构件强度计算
普通螺栓或承压型和受拉型高强度螺栓连接的轴心受拉构件,其连接处的强 度应按下式计算:
n
A N =σ ≤f 其中: N ——作用于构件的轴心拉力;
n A ——构件净截面面积,可按下列情况确定:
(1) 并列布置时,构件在截面I-I 处受力最大,其净截面面积
为()10n A b n d t =−;
(2) 错列布置时,构件可能沿截面Ⅱ-Ⅱ或锯齿形截面Ⅲ-Ⅲ破
坏,此时净截面面积取按下列公式计算结果中之较小者:
()10n A b n d t =−
(2333021n A e n n d t =+−−
其中:
b ——被连接构件的板宽;
1n 、2n 、3n ——分别是截面Ⅰ-Ⅰ、Ⅱ-Ⅱ、Ⅲ-Ⅲ上
的螺栓数目;
0d ——螺栓的孔径;
t ——被连接构件的板厚;
1e 、3e ——分别为在垂直作用力N 方向的螺栓边距
和中距;
2e ——错列布置的螺栓列距。
图(钢结构节点连接手册P30) 摩擦型高强度螺栓连接的轴心受拉构件,其连接处的强度应按下列公式计算
n s A N n n
−=5.01σ≤f ;A N =σ≤f
式中:
n——所计算截面(最外列螺栓处)上高强度螺栓的数目;
s
n——在节点或拼接处,构件一侧连接的高强度螺栓数目;
A——构件的净截面面积;
n
A——构件的毛截面面积。
螺栓连接的强度计算

强度条件验算公式:
设计公式:
分析:由上式可知,当f=0.2,i=1,KS=1则QP=5R,说明这种联接螺栓直径大,且在冲击振动变载下工作极不可靠
为增加可靠性,减小直径,简化结构,提高承载能力
可采用如下减载装置: 减载销 减载套筒 减载键
2、铰制孔螺栓联接——防滑动
特点:螺杆与孔间紧密配合,无间隙,由光杆直接承受挤压和剪切来传递外载荷R进行工作
1、防松目的
01
开槽螺母与开口销,圆螺母与止动垫圈,弹簧垫片,轴用带翅垫片,止动垫片,串联钢丝等
2)机械防松:
自锁螺母——螺母一端做成非圆形收口或开峰后径面收口,螺母拧紧后收口涨开,利用收口的弹力使旋合螺纹间压紧
弹簧垫圈
01
02
开槽螺母
与开口销
永久防松:端铆、冲点、点焊
化学防松——粘合 圆螺母 与止动垫圈 串联钢丝
扳手拧紧力矩——T=FH·L,
拧紧时螺母:T=T1+T2 T——拧紧力矩 T1——螺纹摩擦阻力矩 T2——螺母端环形面与被联接件间的摩擦力矩
FH—作用于手柄上的力,L——力臂
一般 K=0.1~0.3
——拧紧力矩系数
由于直径过小的螺栓,容易在拧紧时过载拉断,所以对于重要的联接不宜小于M10~M14
材料 螺栓级别: 点后数字为 螺母级别:
螺母、螺栓强度级别:
1)根据机械性能,把栓母分级并以数字表示,此乃强度级别
带点数字表示 , 点前数字为 注意:选择对螺母的强度级别应低于螺栓材料的强度级别,螺母的硬度稍低于螺栓的硬度(均低于20~40HB)
2)所依据机械性能为抗拉强度极限σBmin和屈服极限σSmin
作图,为了更明确以简化计算(受力变形图) 设:材料变形在弹性极限内,力与变形成正比
(整理)联接螺栓强度计算方法

联接螺栓的强度计算方法一.连接螺栓的选用及预紧力:1、已知条件:螺栓的 s=730MPa 螺栓的拧紧力矩T=49N.m2、拧紧力矩:为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。
其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2。
装配时可用力矩扳手法控制力矩。
公式:T=T1+T2=K*F* d拧紧扳手力矩T=49N.m其中K为拧紧力矩系数,F为预紧力N d为螺纹公称直径mm其中K为拧紧力矩系数,F为预紧力N d为螺纹公称直径mm取K=0.28,则预紧力F=T/0.28*10*10-3=17500N3、承受预紧力螺栓的强度计算:螺栓公称应力截面面积As(mm)=58mm2外螺纹小径d1=8.38mm外螺纹中径d2=9.03mm计算直径d3=8.16mm螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。
螺栓的最大拉伸应力σ1(MPa)。
1sF A σ==17500N/58*10-6m 2=302MPa 剪切应力:=0.51σ=151 MPa根据第四强度理论,螺栓在预紧状态下的计算应力: =1.3*302=392.6 MPa强度条件:=392.6≤730*0.8=584预紧力的确定原则:拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。
4、 倾覆力矩倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓已拧紧并承受预紧力F 0。
作用在底板两侧的合力矩与倾覆力矩M 平衡。
()2031tan 216v Td F T W dϕρτπ+== 1.31ca σσ≈[]0211.34F ca d σσπ=≤已知条件:电机及支架总重W1=190Kg ,叶轮组总重W2=36Kg ,假定机壳固定,电机及支架、叶轮组重心到机壳左侧结合面L=194mm. 考虑冲击载荷,倾翻力矩M 为:M=W1*(1+6.7)*0.22-W2*(1+6.7)*0.118=190*7.7*0.22-36*7.7*0.118=319.64N.m L1=0.258m L2=0.238m L3=0.166 L4=0.099m螺栓最大工作载荷:12222112233442222ML Fa i L i L i L i L =+++ 2222319.64x0.2582x1x0.2582x2x0.2382x2x0.1662x2x0.099Fa =+++ =167.26N式中:M ……螺栓组承受的总倾覆力矩(N.m ) i ……每行螺栓数量L ……螺栓到接合面对称轴到距离(m); z ……螺栓数量;5、 承受预紧力和工作载荷联合作用螺栓的强度计算: 螺栓的最大拉力F=0F (1/12)c c c Fa ++=17500+0.3*167.26=17550N螺栓的最大拉伸应力σ2(MPa)。
螺栓强度计算

第三章 螺纹联接(含螺旋传动)3-1 基础知识 一、螺纹的主要参数现以圆柱普通螺纹的外螺纹为例说明螺纹的主要几何参数,见图3-1,主要有:1)大径d ——螺纹的最大直径,即与螺纹牙顶重合的假想圆柱面的直径,在标准中定为公称直径。
2)小径1d ——螺纹的最小直径,即与螺纹牙底相重合的假想圆柱面的直径,在强度计算中常作为螺杆危险截面的计算直径。
3)中径2d ——通过螺纹轴向界面内牙型上的沟槽和突起宽度相等处的假想圆柱面的直径,近似等于螺纹的平均直径,2d ≈11()2d d +。
中径是确定螺纹几何参数和配合性质的直径。
4)线数n ——螺纹的螺旋线数目。
常用的联接螺纹要求自锁性,故多用单线螺纹;传动螺纹要求传动效率高,故多用双线或三线螺纹。
为了便于制造,一般用线数n ≤4。
5)螺距P ——螺纹相邻两个牙型上对应点间的轴向距离。
6)导程S ——螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离。
单线螺纹S =P ,多线螺纹S =nP 。
7)螺纹升角λ——螺旋线的切线与垂直于螺纹轴线的平面间的夹角。
在螺纹的不同直径处,螺纹升角各不相同。
通常按螺纹中径2d 处计算,即22arctanarctan S nP d d λππ== (3-1) 8)牙型角α——螺纹轴向截面内,螺纹牙型两侧边的夹角。
螺纹牙型的侧边与螺纹轴线的垂直平面的夹角称为牙侧角,对称牙型的牙侧角β=α/2。
9)螺纹接触高度h ——内外螺纹旋合后的接触面的径向高度。
二、螺纹联接的类型螺纹联接的主要类型有:图3-11、螺栓联接常见的普通螺栓联接如图3-2a所示。
这种联接的结构特点是被联接件上的通孔和螺栓杆间留有间隙。
图3-2b是铰制孔用螺栓联接。
这种联接能精确固定被联接件的相对位置,并能承受横向载荷,但孔的加工精度要求较高。
图3-22、双头螺柱联接如图3-3a所示,这种联接适用于结构上不能采用螺栓联接的场合,例如被联接件之一太厚不宜制成通孔,且需要经常拆装时,往往采用双头螺柱联接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺栓强度计算
螺栓联接的强度计算,主要是根据联接的类型、联接的装配情况(是否预紧)和受载状
态等条件,确定螺栓的受力;然后按相应的强度条件计算螺栓危险截面的直径(螺纹小径)或校核其强度。
3.4.1 普通螺栓联接的强度计算 1.松螺栓联接松螺栓联接
松螺栓联接在装配时不需要把螺母拧紧,在承受工作载荷之前螺栓并不受力,所以
螺栓所受到的工作拉力就是工作载荷 F,故
螺栓危险截面拉伸强度条件为:
设计公式:
——螺纹小径,mm;F——螺栓承受的轴向工作载荷,N;[σ]——松螺栓联接的许
用应力,N/ ,
许用应力及安全系数见表 3-4-1。
2.紧螺栓联接紧螺栓联接紧螺栓联接有预紧力F′,按所受工作载荷的方向分为两种情况:(1)受横向工作载荷的紧螺栓联接受横向
工作载荷的紧螺栓联接
普通螺栓联接
铰制孔用螺栓
(a)普通螺栓联接普通螺栓联接:左图为通螺栓联接,被联接件承受垂直于轴线的横
向载荷。
因螺栓普通螺栓联接杆与螺栓孔间有间隙,故螺纹不直接承受横向载荷,
而是预先拧紧螺栓,使被联接零件表面间产生压力,从而使被联接件接合面间产生的摩
擦力来承受横向载荷。
如摩擦力之总和大于或等于横向载荷,被联接件间不会相互滑移,故可达到联接的目的。
(b)铰制孔用螺栓铰制孔用螺栓:承受横向载荷时,不仅可采用
普通螺栓联接,也可采用铰制孔用螺铰制孔用螺栓栓联接。
此时,螺栓孔为铰制孔,与
螺栓杆(直径处)之间为过渡配合,螺栓杆直接承受剪切,如上图所示。
在受横向载荷
的铰制孔螺栓联接中,载荷是靠螺杆的剪切以及螺杆和被联接件间的挤压来传递的。
这
种联接的失效形式有两种:螺杆受剪面的塑性变形或剪断;① ② 螺杆与被联接件中较
弱者的挤压面被压溃。
故需同时验算其挤压强度和剪切强度条件:
剪切强度条件:
挤压强度条件:
(2)受轴向工作载荷的紧螺栓联接受轴向工作载荷的紧螺栓联接现实生活中,螺栓
所受外载荷与螺栓轴线平行的情况很多,如左图所示的汽缸盖螺栓联接,即为承受轴向
外载荷的联接。
右图其受力分析图,在工作载荷作用前,螺栓只受预紧力,接合面受压
力由减为;工作时,在轴向工作载荷作用下,接合面有分离趋势,该处压力应为
,称为残余预紧力,与残余预紧力
同时也作用于螺栓,因此,螺栓所受总拉力 = + .
轴向工作载荷
之和,即
压力容器端盖螺栓联接图受轴向载荷的普通螺栓联接工作载荷作用前后受力图
所以螺栓的强度校核与设计计算式分别为:
注意:注意:当轴向工作载荷在 0~F 之间变化时,螺栓所受的总拉力将在
对于受轴向变载荷螺栓的粗略计算可按总拉力 3.螺栓与被联接件的受力与变形关系螺栓与被联接件的受力与变形关系
~
之间变化。
进行,其强度条件仍为上式。