第五讲插值与拟合

合集下载

数值计算方法插值与拟合

数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。

插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。

本文将介绍插值和拟合的基本概念和常见的方法。

一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。

插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。

二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。

2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。

3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。

三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。

2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。

3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。

四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。

五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。

六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。

插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。

数学建模~插值与拟合(课件ppt)

数学建模~插值与拟合(课件ppt)

• 代数多项式插值是最常用的插值方式,其内容也 是最丰富的,它又可分为以下几种插值方式: (1)非等距节点插值,包括拉格朗日插值、利用 均差的牛顿插值和埃特金插值; (2)非等距节点插值,包括利用差分的牛顿插值 和高斯插值等; (3)在插值中增加了导数的Hermite(埃尔米特) 插值; (4)分段插值,包括分段线性插值、分段Hermite (埃尔米特)插值和样条函数插值; (5)反插值。 • 按被插值函数的变量个数还可把插值法分为一元 插值和多元插值。
引言2---插值和拟合的联系与区别
联系:二者都是函数逼近的主要方法
• 区别: •运算过程上的区别:
– 拟合:是将数据点用最恰当的曲线描述出来,以反映问题的规律, 是特殊到一般的过程。 – 插值:是在知道曲线的形状后得出某些具体点的性质的过程,是 从一般到特殊。
•求解误差上的区别:
– 拟合:考虑观察值的误差(误差不可避免时)。以偏差的某种最 小为拟合标准
n n ik
0 i k 而: lk xi 1 i k
22
例1
x1 1, x2 2, x3 4, f ( x1 ) 8, f ( x2 ) 1, f ( x3 ) 5
求二次插值多项式。
解:
按拉格朗日方法,有:
L( x) y1l1 x y2l2 x y3l3 x ( x 2)( x 4) ( x 1)( x 4) ( x 1)( x 2) 8 1 5 (1 2)(1 4) (2 1)(2 4) (4 1)(4 2) 3x 2 16 x 21
4.2 插值方法 选用不同类型的插值函数,逼近的效 果就不同,一般有: (1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值。

计算方法PPT课件第五章 插值与拟合

计算方法PPT课件第五章 插值与拟合

因此
li (x)

(x x0 )(x x1 ) (xi x0 )(xi x1 )
(x ( xi
xi1 )(x xi1 ) ( x xi1 )( xi xi1 ) ( xi
xn ) xn
)
n x x j . j0 xi x j ji
5.2.2 拉格朗日插值多项式
设用试验或观测方法得到函数 的如下函数y 值f表(x)
xi x0 , x1, , xn
yi y 0 , y1 , , y n
(5.11)
其中:yi f (xi )(i 0,1,..., n).我们用插值基函数li (x)(i 0, 1,..., n)的线性组合来构造满足式(5.11)的插值多项式,令
2020年1月26日星期日
主讲 韩光朋
17
(2) 将x 2.5代入,得L2 (2.5) 1.2625,因此
f (2.5) L2 (2.5) 1.2625.
(3)
f
(x)

ln(1
x), 求出f
''' ( x)

2 (1 x)3
,
从而max f ''' ( x) 1 .
1 x3
Rn (x)
f (n1) ( )
(n 1)!

n1
(
x)
,
(5.6)
其中: (a,b)且依赖于x,而x [a,b].
证明(见P111)略
2020年1月26日星期日
主讲 韩光朋
9
在实际插值问题中,由 于一般不知道,且实
际插值中f (x)一般较复杂或者未知, 因此用余项公 式(5.6)求误差是较困难的, 只能对其进行估计。 若

第5章 插值与拟合

第5章 插值与拟合

第5章 插值与拟合大多数数学建模问题都是从实际工程或生活中提炼出来的,往往带有大量的离散的实验观测数据,要对这类问题进行建模求解,就必须对这些数据进行处理。

其目的是为了从大量的数据中寻找它们反映出来的规律。

用数学语言来讲,就是要找出与这些数据相应的变量之间的近似关系。

对于非确定性关系,一般用统计分析的方法来研究,如回归分析的方法。

对于确定性的关系,即变量间的函数关系,一般可用数据插值与拟合的方法来研究。

本章学习数据插值与拟和的基本方法和相关的MATLAB 命令。

5.1 引例简单地讲,插值是对于给定的n 组离散数据,寻找一个函数,使该函数的图象能严格通过这些数据对应的点。

拟合并不要求函数图象通过这些点,但要求在某种准则下,该函数在这些点处的函数值与给定的这些值能最接近。

例1:对于下面给定的4组数据,求在110=x 处y 的值。

这就是一个插值问题。

我们可以先确定插值函数,再利用所得的函数来求110=x 处y 的近似值。

需要说明的是这4组数据事实上已经反映出x 与y 的函数关系为:x y =,当数据量较大时,这种函数关系是不明显的。

也就是说,插值方法在处理数据时,不论数据本身对应的被插值函数)(x f y =是否已知,它都要找到一个通过这些点的插值函数,此函数是被插值函数的一个近似,从而通过插值函数来计算被插值函数在未知点处的近似值。

对于所构造的插值函数要求相对简单,便于计算,一般选用多项式函数来逼近。

例2:观测物体的直线运动,得以下数据,求物体的运动方程。

这是一个拟合问题,其明显的特征是与数据对应的函数未知,要找到一个函数来比较准确地表述这些数据蕴藏的规律。

显然,我们找出的函数不一定会通过这些点,也没有必要,因为观测数据本身并不是完全准确的。

5.2 理论基础:数据插值与拟合5.2.1插值问题的原理与方法以一维多项式插值方法为例。

一般地,对于给定的n +1组数据),,2,1,0(),(n i y x i i =,),,2,1,0(n i x i =互不相等,确定一个n 次多项式)(x P n ,使),,2,1,0()(n i y x P i i n ==。

《插值与拟合》课件

《插值与拟合》课件

拟合的方法
1
最小二乘法
通过最小化残差平方和,找到与数据最匹配的函数。
2
局部加权回归
给予附近数据点更高的权重,拟合接近局部数据点的函数。
3
多项式拟合
用多项式函数逼近数据,通过选择合适的次数实现拟合。
插值与拟合的误差分析
插值和拟合都会引入近似误差,需要评估误差范围和影响因素。
插值与拟合在数据处理与分析中的应用
数据分析
通过插值和拟合方法对数据进 行探索和分析。
数据处理
在数据处理过程中使用插值和 拟合技术来填充缺失值和平滑 数据。
数据建模
利用插值和拟合模型对数据特 征进行捕捉和预测分析。
插值与拟合的推广和发展前景
随着数据科学和人工智能的不断发展,插值和拟合在各个领域的应用前景越 来越广阔。
插值与拟合的应用范围
科学研究
用于数据分析、信号优化设计、近似计算和 效能提升。
经济金融
用于市场分析、预测模型和 风险评估。
插值的方法
1
拉格朗日插值
基于多项式插值公式,用拉格朗日多项式逼近函数。
2
牛顿插值
基于差商的概念,用多项式逼近函数的值。
3
分段插值
将插值区间划分为多个子区间,并在每个子区间上进行插值。
《插值与拟合》PPT课件
插值与拟合是数值计算和数据分析中重要的概念。
插值与拟合的概念
插值
通过已知值的推算,计算在未知点的近似值。
拟合
通过曲线或曲面拟合已知数据,以描述和预 测未知数据。
插值与拟合的区别与联系
1 区别
2 联系
插值重点关注已知点的准确性,而拟合则 着重于整体形状的拟合。
插值和拟合都通过数学模型逼近离散数据, 以实现数据的补全和预测。

插值与拟合方法

插值与拟合方法

插值与拟合方法在实际中,常常要处理由实验或测量所得到的一批离散数据.插值与拟合方法就是要通过这些数据去确定某一类已知函数的参数或寻找某个近似函数,使所得到的近似函数与已知数据有较高的拟合精度.插值问题:要求这个近似函数(曲线或曲面)经过所已知的所有数据点.通常插值方法一般用于数据较少的情况.数据拟合:不要求近似函数通过所有数据点,而是要求它能较好地反映数据的整体变化趋势。

共同点:插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数的方法,由于对近似要求的准则不同,因此二者在数学方法上有很大的差异.插值问题的一般提法:已知某函数)(x f y =(未知)的一组观测(或试验)数据),,2,1)(,(n i y x ii⋅⋅⋅=,要寻求一个函数)(x φ,使iiy x =)(φ),,2,1(n i ⋅⋅⋅=,则)()(x f x ≈φ.实际中,常常在不知道函数)(x f y =的具体表达式的情况下,对于i x x =有实验测量值iy y =),,2,1,0(n i ⋅⋅⋅=,寻求另一函数)(x φ使满足:)()(i i i x f y x ==φ),,2,1,0(n i ⋅⋅⋅=称此问题为插值问题,并称函数)(x φ为)(x f 的插值函数,nx x x x ,,,,21⋅⋅⋅称为插值节点,),,2,1,0()(n i y x ii⋅⋅⋅==φ称为插值条件,即)()(iiix f y x ==φ),,2,1,0(n i ⋅⋅⋅=,则)()(x f x ≈φ.(1) 拉格朗日(Lagrange )插值设函数)(x f y =在1+n 个相异点nx x x x ,,,,21⋅⋅⋅上的函数值为ny y y y ,,,,21⋅⋅⋅,要求一个次数不超过n 的代数多项式nnnx a x a x a a x P +⋅⋅⋅+++=221)(使在节点i x 上有),,2,1,0()(n i y x P ii n ⋅⋅⋅==成立,称之为n 次代数插值问题,)(x P n称为插值多项式.可以证明n 次代数插值是唯一的.事实上: 可以得到j n j n i i j in y x x xx x P j i ∑∏==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=≠00)()( 当1=n 时,有二点一次(线性)插值多项式:101001011)(y x x x x y x x x x x P --+--=当n =2时,有三点二次(抛物线)插值多项式:2120210121012002010212))(())(())(())(())(())(()(y x x x x x x x x y x x x x x x x x y x x x x x x x x x P ----+----+----=(2)牛顿(Newton ) 插值牛顿插值的基本思想:由于)(x f y =关于二节点10,x x 的线性插值为)()()()()()()()()(00101000010101x x x x x f x f x p x x x x x f x f x f x p ---+=---+= 假设满足插值条件)2,1,0()()(2===i x p y x f iii的二次插值多项式一般形式为))(()()(1212x x x x c x x c c x p --+-+= 由插值条件可得⎪⎩⎪⎨⎧=--+-+=-+=)())(()()()()(21202202101011000x f x x x x c x x c c x f x x c c x f c 可以解出⎪⎪⎪⎩⎪⎪⎪⎨⎧------=--==020101121220101100)()()()()()(),(x x x x x f x f x x x f x f c x x x f x f c x f c所以))(()())(()()(10211020102x x x x c x p x x x x c x x c c x p --+=--+-+=类似的方法,可以得到三次插值多项式等,按这种思想可以得到一般的牛顿插值公式.函数的差商及其性质对于给定的函数)(x f ,用),,,(10n x x x f ⋅⋅⋅表示关于节点nx x x ,,,1⋅⋅⋅的n 阶差商,则有一阶差商:01011)()(),(x x x f x f x x f --=,121221)()(),(x x x f x f x x f --= 二阶差商:021021210),(),(),,(x x x x f x x f xx x f --=n 阶差商:0110211),,,(),,,(),,,(x x x x x f x x x f x x x f n n n n -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-差商有下列性质:(1)差商的分加性:∑∏=≠=-=⋅⋅⋅nk nk j j j kk n x xx f xx x f 0)(01)()(),,,(.(2)差商的对称性:在),,,(1nx x x f ⋅⋅⋅中任意调换jix x ,的次序其值不变.牛顿插值公式: 一次插值公式为))(,()()(01001x x x x f x f x p -+=二次插值公式为))()(,,()())()(,,())(,()()(1021011021001002x x x x x x x f x p x x x x x x x f x x x x f x f x p --+=--+-+=于是有一般的牛顿插值公式为)())()(,,,()()())()(,,,())()(,,())(,()()(11010111010102100100----⋅⋅⋅--⋅⋅⋅+=-⋅⋅⋅--⋅⋅⋅+⋅⋅⋅+--+-+=n n n n n n x x x x x x x x x f x p x x x x x x x x x f x x x x x x x f x x x x f x f x p可以证明:其余项为))(())()(,,,,()(11010n n n x x x x x x x x x x x x f x R --⋅⋅⋅--⋅⋅⋅=-实际上,牛顿插值公式是拉格朗日插值公式的一种变形,二者是等价的.另外还有著名的埃尔米特(Hermite )插值等.(3)样条函数插值方法样条,实质上就是由分段多项式光滑连接而成的函数,一般称为多项式样条.由于样条函数的特殊性质,决定了样条函数在实际中有着重要的应用.样条函数的一般概念定义 设给定区间],[b a 的一个分划b x x x a n=<⋅⋅⋅<<=∆1:,如果函数)(x s 满足条件:(1) 在每个子区间),,2,1](,[1n i x x ii ⋅⋅⋅=-上是k 次多项式; (2) )(x s 及直到k -1阶的导数在],[b a 上连续.则称)(x s 是关于分划△的一个k 次多项式样条函数,nx x x ,,,1⋅⋅⋅称为样条节点,121,,,-⋅⋅⋅n x x x 称为内节点,nx x ,0称为边界节点,这类样条函数的全体记作),(k S P∆,称为k 次样条函数空间.若),()(k S x s P∆∈,则)(x s 是关于分划△的k 次多项式样条函数.k 次多项式样条函数的一般形式为∑∑=-=+-+=ki n j k j jii k x x k i x x s 011)(!!)(βα其中),,1,0(k i i=α和)1,,2,1(-=n j jβ均为任意常数,而)1,,2,1(,0,)()(-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x jj kj kj在实际中最常用的是2=k 和3的情况,即为二次样条函数和三次样条函数. 二次样条函数:对于],[b a 上的分划b x x x a n=<⋅⋅⋅<<=∆1:,则)2,()(!2!2)(11222102∆βαααP n j j jS x x x x x s ∈-+++=∑-=+其中)1,2,1(,0,)()(22-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x j j j j . 三次样条函数:对于],[b a 上的分划b x x xa n =<⋅⋅⋅<<=∆10:,则)3,()(!3!3!2)(1133322103∆βααααP n j j jS x x x x x x s ∈-++++=∑-=+其中)1,2,1(,0,)()(33-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x jjj j .1 二次样条函数插值)2,()(2∆∈P S x s 中含有2+n 个待定常数,故应需要2+n 个插值条件,因此,二次样条插值问题可分为两类:问题(1):已知插值节点ix 和相应的函数值),,2,1,0(n i y i⋅⋅⋅=,以及端点0x (或n x )处的导数值0'y (或ny '),求)2,()(2∆∈PS x s 使得⎩⎨⎧'=''='⋅⋅⋅==))(()(),,2,1,0()(20022n n i i y x s y x s n i y x s 或(5.1)问题(2):已知插值节点ix 和相应的导数值),,2,1,0(n i y i⋅⋅⋅=',以及端点0x (或n x )处的函数值0y (或ny ),求)2,()(2∆∈P S x s 使得⎩⎨⎧==⋅⋅⋅='='))(()(),,2,1,0()(20022n n i i y x s y x s n i y x s 或(5.2)事实上,可以证明这两类插值问题都是唯一可解的.对于问题(1),由条件(5.1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=+='==-+++==++==++=∑-=00210211222102121211112020201002)(,,3,2,)(2121)(21)(21)(y x x s n j y x x x x x s yx x x s y x x x s j j i i j i jj j ααβααααααααα 引入记号T n ),,,,,(11210-=ββααα X 为未知向量,T nn y y y y ),,,,(10'= C 为已知向量, ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=-0010)(21)(21211)(212110211211021212212222211200x x x x x x x x x x x x x x x n n n n n A 于是,问题转化为求方程组C AX =的解Tn ),,,,,(1121-=ββααα X 的问题,即可得到二次样条函数的)(2x s 的表达式.对于问题(2)的情况类似.2.三次样条函数插值由于)3,()(3∆∈P S x s 中含有3+n 个待定系数,故应需要3+n 个插值条件,因此可将三次样条插值问题分为三类: 问题(1):已知插值节点jx 和相应的函数值),,2,1,0(n j y j⋅⋅⋅=,以及两个端点0x ,n x 处的导数值0'y ,ny ',求)3,()(3∆∈PS x s 使满足条件⎪⎩⎪⎨⎧='='⋅⋅⋅==),0()(),,1,0()(33n j y x s n j y x s j j j j(5.3)问题(2):已知插值节点jx 和相应的函数值),,2,1,0(n j y j⋅⋅⋅=,以及两个端点0x ,nx 处的二阶导数值0y '',n y '',求)3,()(3∆∈PS x s 使满足条件⎪⎩⎪⎨⎧=''=''⋅⋅⋅==),0()(),,1,0()(33n j y x s n j y x s j j j j(5.4)问题(3):类似地,求)3,()(3∆∈PSx s 使满足条件⎪⎩⎪⎨⎧=+=-==)2,1,0)(0()0(),,1,0()(0)(3)(33k x s x s n j y x s k n k j j(5.5)这三类插值问题的条件都是3+n 个,可以证明其解都是唯一的〔8〕.一般的求解方法可以仿照二次样条的情况处理方法,在这里给出一种更简单的方法.仅依问题(1)为例,问题(2)和问题(3)的情况类似处理.由于在)3,()(3∆PS x s ∈区间],[b a 上是一个分段光滑,且具有二阶连续导数的三次多项式,则在子区间],[1+j jx x 上)(3x s ''是线性函数,记),,,1,0)((3n j x s d jj =''=为待定常数.由拉格朗日插值公式可得nj x x h h x x d h x x d x s j j j jj j jj j ,,1,0,,)(1113=-=-+-=''+++显然jjj h d dx s -='''+13)(在],[1+j jx x上为常数.于是在],[1+j j x x 上有31233)(6)(2))(()(j jjj j j j j j x x h d d x x d x x x s y x s --+-+-'+=+(5.6)则当1+=j x x 时,由(5.6)式和问题(1)的条件得121231362)()(+++=-++'+=j j jj j j j j j j y h d d h d h x s y x s故可解得)2(6)(113+++--='j j j jjj j d d h h y y x s(5.7)将(5.7)式代入(5.6)式得)1,,1,0](,[,)(6)(2)()2(6)(1312113-=∈--+-+-⎥⎥⎦⎤⎢⎢⎣⎡+--+=++++n j x x x x x h d d x x d x x d d h h y y y x s j j j jj j j jj j j j j j j j(5.8) 在],[1j j x x-上同样的有),,2,1](,[,)(6)(2)()2(6)(131112111111113n j x x x x x h d d x x d x x d d h h y y y x s j j j j j j j j j j j j j j j j =∈--+-+-⎥⎥⎦⎤⎢⎢⎣⎡+--+=------------(5.9) 根据)(3x s的一阶导数连续性,由(5.9)式得)()2(6)0(311113j j j j j j j j x s d d h h y y x s '=++-=-'---- 结合(5.7)式整理得⎪⎪⎭⎫ ⎝⎛---+=++++--+-+----11111111162j j j j j j j j j j j j j j j j j h y y h y y h h d h h h d d h h h 引入记号⎪⎪⎭⎫ ⎝⎛---+=+=--+--111116,j j j j j j j j j j j j j h y y h y y h h c h h h a ,111--+=-j j j j h h h a .则)1,,2,1(,2)1(11-==++-+-n j c d a d d a j j j j j j(5.10)再由边界条件:nny x s y x s '=''=')(,)(33得⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--'=+⎪⎪⎭⎫ ⎝⎛'--=+----111100010106262n n n n n n n h y y y h d d y h y y h d d(5.11)联立(5.10),(5.11)式得方程组C D A =⋅(5.12)其中⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=----2121212112112200n n n n a a a a a aA ,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-n n d d d d 110 D ,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--'⎪⎪⎭⎫ ⎝⎛'--=----111110001066n n n n n n hy y y h c c y h y y h C 由方程组(6.12)可以唯一解出),,1,0(n j d j=,代入(5.8)式就可以得三次样条函数)(3x s 的表达式.B样条函数插值方法磨光函数实际中的许多问题,往往是既要求近似函数(曲线或曲面)有足够的光滑性,又要求与实际函数有相同的凹凸性,一般插值函数和样条函数都不具有这种性质.如果对于一个特殊函数进行磨光处理生成磨光函数(多项式),则用磨光函数构造出样条函数作为插值函数,既有足够的光滑性,而且也具有较好的保凹凸性,因此磨光函数在一维插值(曲线)和二维插值(曲面)问题中有着广泛的应用.由积分理论可知,对于可积函数通过积分会提高函数的光滑度,因此,我们可以利用积分方法对函数进行磨光处理.定义 若)(x f 为可积函数,对于0>h ,则称积分⎰+-=22,1)(1)(hx h x h dt t f h x f为)(x f 的一次磨光函数,h 称为磨光宽度.同样的,可以定义)(x f 的k 次磨光函数为)1()(1)(22,1,>=⎰+--k dt t f h x f hx h x h k h k事实上,磨光函数)(,x f h k 比)(x f 的光滑程度要高,且当磨光宽度h 很小时)(,x f h k 很接近于)(x f .等距B样条函数对于任意的函数)(x f ,定义其步长为1的中心差分算子δ如下:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=2121)(x f x f x f δ在此取0)(+=x x f ,则002121+++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=x x x δ是一个单位方波函数(如图5-1),记0)(+=Ωx x δ.并取1=h ,对)(0x Ω进行一次磨光得++++-+++-+++--+-+=-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+==⎰⎰⎰⎰)1(2)1(2121)()(11212100212101x x x dt t dt t dt t t dt t x x xx x x x x x ΩΩ显然)(1x Ω是连续的(如图5-2).)(1x Ωo1-1/2 0 1/2 x -1 0 1 x 图5-1图5-2类似地可得到k 次磨光函数为kk j jk j k j k x k C x ++=+⎪⎭⎫ ⎝⎛-++-=Ω∑21!)1()(11 实际上,可以证明:)(x kΩ是分段k 次多项式,且具有1-k 阶连续导数,其k 阶导数有2+k个间断点,记为)1,,2,1,0(21+⋅⋅⋅=+-=k j k j x j.从而可知)(x kΩ是对应于分划+∞<<⋅⋅⋅<<<-∞∆+110:k x x x 的k 次多项式样条函数,称之为基本样条函数,简称为k 次B样条.由于样条节点为)1,,2,1,0(21+⋅⋅⋅=+-=k j k j xj是等距的,故)(x k Ω又称为k 次等距B样条函数.对于任意函数)(x f 的k 次磨光函数,由归纳法可以得到 [4,8] :⎪⎭⎫⎝⎛+≤≤--Ω=⎰∞+∞--22)()(1)(1,h x t h x dt t f htx h x f k h k 特别地,当1)(=x f 时,有1)(11⎰+∞∞--=-dt htx hk Ω,从而1)(⎰+∞∞-=dx x k Ω,且当k ≥1时有递推关系⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-Ω⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛+Ω⎪⎭⎫ ⎝⎛++=Ω--212121211)(11x x k x k x k x k k k一维等距B样条函数插值等距B样条函数与通常的样条如下的关系: 定理设有区间],[b a 的均匀分划nab h n j jh x x j -=⋅⋅⋅=+=),,,1,0(:0∆,则对任意 k 次样条函数),()(k S x S p k ∆∈都可以表示为B样条函数族1021-=-=⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛+---n j k j k k j h x x Ω的线性组合[14].根据定理 5.1,如果已知曲线上一组点()jjy x ,,其中),,1,0,0(0n j h jh x x j⋅⋅⋅=>+=,则可以构造出一条样条磨光曲线(即为B样条函数族的线性组合)⎪⎭⎫⎝⎛--=∑--=j h x x c x S n kj k j k 01)(Ω 其中)1,,1,(-⋅⋅⋅+--=n k k j c j为待定常数.用它来逼近曲线,既有较好的精度,又有良好的保凸性.实际中,最常用的是3=k 的情况,即一般形式为⎪⎭⎫ ⎝⎛--=∑+-=j h x x c x S n j j 01133)(Ω 其中3+n 个待定系数)1,,0,1(+⋅⋅⋅-=n j c j可以由三类插值条件确定.由插值条件(5.3)得()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=-'='==-='=-'='∑∑∑+-=+-=+-=n n j j n i n j j i n j j y j n c h x S ni y j i c x S y j c h x S 113311330113031)(,,1,0,)(1)(ΩΩΩ(5.13)注意到)(3x Ω的局部非零性及其函数值:61)1(,32)0(33=±=ΩΩ,当2≥x 时0)(3=x Ω;且由)21()21()(223--+='x x x ΩΩΩ知,21)1(,0)0(33=±'='ΩΩ,当2≥x 时0)(3='x Ω.则(5.13)中的每一个方程中只有三个非零系数,具体的为⎪⎩⎪⎨⎧'=+-==++'=+-+-+--n n n i i i i y h c c n i y c c c y h c c 2,,1,0,6421111011(5.14)由方程组(5.14)容易求解出)1,,0,1(+⋅⋅⋅-=n j c j,即可得到三次样条函数)(3x S 表达式.类似地,由插值条件(5.4)得待定系数的)1,,0,1(+⋅⋅⋅-=n j c j所满足的方程组为⎪⎩⎪⎨⎧''=+-==++''=+-+-+--nn n n i i i i y h c c c n i y c c c y h c c c 21111021012,,1,0,642(5.15)由插值条件(5.5)得待定系数的)1,,0,1(+⋅⋅⋅-=n j cj所满足的方程组为⎪⎪⎩⎪⎪⎨⎧==++=-+---=-++-=-+-+-+-+--+--+--ni y c c c c c c c c c c c c c c c c c c c i i i i n n n n n n n n ,,1,0,640)()(2)(0)(0)(0)()(4)(1111011111111011(5.16)方程组(5.15),(5.16)也都是容易求解的.注:上述等距B样条插值公式也适用于近似等距的情形,但在端点0x 和n x 处误差可能较大,实际应用时,为了提高在端点0x 和nx 处的精度,可以适当向左右延拓几个节点.二维等距B样条函数插值设有空间曲面),(y x f z =(未知),如果已知二维等距节点()()τj y ih x y x ji++=0,,)0,(>τh 上的值为),,2,1,0;,,2,1,0(m j n i z ij⋅⋅⋅=⋅⋅⋅=,则相应的B样条磨光曲面的一般形式为⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛--=∑∑--=--=j y y i h x x c y x s l m lj k ij n ki τΩΩ0011),( 其中),,2,1,0;,,2,1,0(m j n i c ij⋅⋅⋅=⋅⋅⋅=为待定常数,l k ,可以取不同值,常用的也是2,=l k 和3的情形.这是一种具有良好保凸性的光滑曲面(函数),在工程设计中是常用的,但只能使用于均匀分划或近似均匀分划的情况.(4) 最小二乘拟合方法最小二乘拟合方法的思想:由于一般插值问题并不总是可解的(即当插值条件多于待定系数的个数时,其问题无解),同时,问题的插值条件本身一般是近似的,为此,只要求在节点上近似地满足插值条件,并使它们的整体误差最小,这就是最小二乘拟合法.最小二乘拟合方法可以分为线性最小二乘拟合方法和非线性最小二乘拟合方法.线性最小二乘拟合方法设{}m k kx 0)(=φ是一个线性无关的函数系,则称线性组合∑==mk k k x a x 0)()(φφ为广义多项式.如三角多项式:∑∑==+=mk k mk kkx b kx ax 0sin cos )(φ.设由给定的一组测量数据),(iiy x 和一组正数),,2,1(n i w i⋅⋅⋅=,求一个广义多项式∑==mk k k x a x 0)()(φφ使得目标函数[]21)(∑=-=ni i i i y x w S φ(5.17)达到最小,则称函数)(x φ为数据),,2,1)(,(n i y x ii⋅⋅⋅=关于权系数),,2,1(n i w i⋅⋅⋅=的最小二乘拟合函数,由于)(x φ关于待定系数ia 是线性的,故此问题又称为线性最小二乘问题. 注意:这里{}m k kx 0)(=φ可根据实际来选择,权系数iw 的选取更是灵活多变的,有时可选取1=i w ,或nw i 1=,对于nw i1=,则相应问题称为均方差的极小化问题.最小二乘拟合函数的求解要使最小二乘问题的目标函数(5.17)达到最小,则由多元函数取得极值的必要条件得),,2,1,0(0m k a Sk==∂∂ 即),,2,1,0(0)()(10m k x y x a w i k ni i m k i k k i ⋅⋅⋅⋅==⎥⎦⎤⎢⎣⎡-∑∑==φφ 亦即),,2,1,0()()()(001m k x y w a x x w n i i k i i j mj n i i k i j i ⋅⋅⋅⋅==⎥⎦⎤⎢⎣⎡∑∑∑===φφφ(5.18)是未知量为ma a a a ,,,,21⋅⋅⋅的线性方程组,称(5.18)式为正规方程组.实际中可适当选择函数系{}m k kx 0)(=φ,由正规方程组解出ma a a a ,,,,210⋅⋅⋅,于是可得最小二乘拟合函数∑==mk kk x a x 0)()(φφ.一般线性最小二乘拟合方法将上面一元函数的最小二乘拟合问题推广到多元函数,即为多维线性最小二乘拟合问题.假设已知多元函数),,,(21nx x x f y ⋅⋅⋅=的一组测量数据);,,,(21iniiiy x x x ⋅⋅⋅),,2,1(m i ⋅⋅⋅=和一组线性无关的函数系{}N k nk x x x 021),,,(=⋅⋅⋅φ,求函数∑=⋅⋅⋅=⋅⋅⋅Nk n k k n x x x a x xx 02121),,,(),,,(φφ对于一组正数mw w w ,,,21⋅⋅⋅,使得目标函数[]2121),,,(∑=⋅⋅⋅-=mi ni i i i i x x x y w S φ达到最小.其中待定系数N a a a a,,,,210⋅⋅⋅由正规方程组),,2,1,0(),(),(0N k y a Nj k j k j⋅⋅⋅==∑=φφφ确定,此处ini i i k mi i k ni i i k mi ni i i j i k j y x x x w y x x x x x x w ),,,(),(),,,(),,,(),(21121121⋅⋅⋅=⋅⋅⋅⋅⋅⋅=∑∑==φφφφφφ注:上面的函数φ关于ia 都是线性的,这就是线性最小二乘拟合问题,对于这类问题的正规组总是容易求解的.如果φ关于ia 是非线性的,则相应的问题称为非线性最小二乘拟合问题.非线性最小二乘拟合方法假设已知多元函数),,,(21nx x x f y ⋅⋅⋅=的一组测量数据);,,,(21iniiiy x x x ⋅⋅⋅),,2,1(m i ⋅⋅⋅=,要求一个关于参数),,2,1,0(N j a j⋅⋅⋅=是非线性的函数),,,;,,,(1021Nn a a a x x x ⋅⋅⋅⋅⋅⋅=φφ对一组正数mw w w ,,,21⋅⋅⋅使得目标函数[]21102110),,,;,,,(),,,(∑=⋅⋅⋅⋅⋅⋅-=⋅⋅⋅mi N ni i i i i N a a a x x x y w a a a S φ达到最小,则称之为非线性最小二乘问题.这类问题属于无约束的最优化问题,一般问题的求解是很复杂的,通常情况下,可以采用共轭梯度法、最速下降法、拟牛顿法和变尺度法等方法求解.实例:黄河小浪底调水调沙问题问题的提出2004年6月至7月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功.整个试验期为20多天,小浪底从6月19日开始预泄放水,直到7月13日恢复正常供水结束.小浪底水利工程按设计拦沙量为75.5亿立方米,在这之前,小浪底共积泥沙达14.15亿吨.这次调水调试验一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙.在小浪底水库开闸泄洪以后,从6月27日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7月3日达到最大流量2700立方米/每秒,使小浪底水库的排沙量也不断地增加.下面是由小浪底观测站从6月29日到7月10日检测到的试验数据:表5-1: 试验观测数据单位:水流为立方米/每秒,含沙量为公斤/立方米·84··85·注:以上数据主要是根据媒体公开报道的结果整理而成的,不一定与真实数据完全相符.现在,根据试验数据建立数学模型研究下面的问题:(1) 给出估算任意时刻的排沙量及总排沙量的方法;(2) 确定排沙量与水流量的变化关系.模型的建立与求解对于问题(1),根据所给问题的试验数据,要计算任意时刻的排沙量,就要确定出排沙量随时间变化的规律,可以通过插值来实现.考虑到实际中排沙量应该是随时间连续变化的,为了提高精度,我们采用三次B样条函数进行插值.下面构造三次B样条函数)(x S y =.由试验数据,时间是每天的早8点和晚8点,间隔都是12个小时,共24个点)24,,2,1(⋅⋅⋅=i t i.为了计算方便,令)23,,,1,0(122128⋅⋅⋅=+⎥⎦⎤⎢⎣⎡⋅+-=i i t x i i(5.19)则it 对应于)23,,1,0(1⋅⋅⋅=+=i i x i.于是以)23,,1,0(⋅⋅⋅=i x i为插值节点(等距),步长1=h .其相应的排沙量为)23,,1,0(⋅⋅⋅=i y i 对应关系如下表:·86·表5-2: 插值数据对应关系单位:排沙量为公斤函数)(x S y =所满足的条件为 (1)23,,1,0,)(⋅⋅⋅==i y x S ii;(2) 3500)(,56400)(2223222323231212-=--≈'='=--≈'='x x y y x S y x xy yx S y .取)(x S 的三次B样条函数一般形式为∑-=⎪⎭⎫⎝⎛--=24103)(j j j h x x c x S Ω·87·其中)24,,1,0,1(⋅⋅⋅-=j cj为待定常数,1=h .在这里⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<+-+-≤+-=Ω2,021,342611,3221)(23233x x x x x x x x x且易知⎪⎪⎪⎩⎪⎪⎪⎨⎧≥±===Ω2,01,610,32)(3x x x x和⎪⎪⎩⎪⎪⎨⎧≥±===Ω'2,01,210,0)(3x x x x 根据B样条函数的性质,)(x S ''在[]23,x x 上连续,则有()∑-=--'='='2413)(j jj xx c x S y Ω由插值条件(1),(2)可得到下列方程组()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=-'=''=-'='⋅⋅⋅==-=∑∑∑-=-=-=23241323024130241323)()(23,,1,0,)(y j c x S y j c x S i y j i c x S j j j j i j j i ΩΩΩ 即⎪⎩⎪⎨⎧'=+-'=+-⋅⋅⋅==++-+-23242311112223,,1,0,64y c c y c c i y c c c i i i i 将232324112,2y c c y c c '+='-=-代入前24个方程中的第一个和最后一个,便可得到方程组F AC =,其中·88·⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅=⨯232102424,421410141014124c c c c C A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡'-'+=3400048000684000458400266626232322100 y y y y y y F显然A 为满秩阵,方程组F AC =一定有解,用消元法求解可得问题的解为56044.39830=c , 4117111.2031=c , 2159510.7882=c , 9189845.6433=c ,1203106.6364=c , 8239727.8115=c ,8249182.1166=c , 1263543.7217=c ,9287842.9988=c , 2302284.2839=c ,4317419.86810=c , 1304836.24311=c ,3307635.15912=c ,6305423.11913=c ,2270672.36214=c ,4240287.43115=c ,0154177.91216=c ,4103000.92017=c ,99818.406218=c , 43725.454719=c ,49279.775020=c ,32155.445221=c , 2098.444222=c ,7450.777923=c ,-450.777924311.2034,2232324011='+=='-=-y c c y c c . 将)24,,1,0,1(⋅⋅⋅-=j c j代入()∑-=--==24131)(j jj x c x S y Ω(5.20)即得排沙量的变化规律.由(5.19)和(5.20)式可得到第i 时间段(12小时为一段)内,任意时刻]12,0[∈t 的排沙量.则总的排沙量为()dt j t c dx x S Y j j⎰∑⎰-=--Ω==284824132411)(经计算可得1110844.1⨯=Y 吨,即从6月29日至7月10日小浪底水库排沙总量大约为1.844亿吨,此与媒体报道的排沙量基本相符.对于问题(2),研究排沙量与水量的关系,从试验数据可以看出,开始排沙量是随着水流量的增加而增长,而后是随着水流量的减少而减少.显然,变化规律并非是线性的关系,为此,我们问题分为两部分,从开始水流量增加到最大值2720立方米/每秒(即增长的过程)为一段,从水流量的最大值到结束为第二段,分别来研究水流量与排沙量的关系.具体数据如表5-3和5-4.表5-3: 第一阶段试验观测数据 单位:水流为立方米/每秒,含沙量为公斤/立方米表5-4: 第二阶段试验观测数据单位:水流为立方米/每秒,含沙量为公斤/立方米对于第一阶段,由表5-3用Matlab作图(如图5-3)可以看出其变化趋势,我们用多项式作最小二乘拟合.·90··91·图5-3设拟合函数为∑==mk kk x a x 1)(φ确定待定常数),,1,0(m k ak=使得211111102])([∑∑∑===⎥⎦⎤⎢⎣⎡-=-=i i i m k k i k i i y x a y x S φ有最小值.于是可以得到正规方程组为m k x y a x mj i k i i j i j k i ,,1,0,0111111 ==⎪⎭⎫⎝⎛∑∑∑===+ 当3=m 时,即取三次多项式拟合,则3,2,1,0,1113111321112111110111==⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑∑∑∑==+=+=+=k x y a x a x a x a x i k i i i k i i k i i k i i k i求解可得73321108423.1,103172.1,3.1784,-2492.9318--⨯=⨯-===a a a a .于是可得拟合多项式为332213)(x a x a x a a x +++=φ,最小误差为847.72=S ,拟合效果如图所示.·92·图:三次拟合效果,带*号的为拟合曲线.类似地,当4=m 时,即取四次多项式拟合,则正规方程组为4,3,2,1,0111411143111321112111110111==⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑∑∑∑∑==+=+=+=+=k x y a x a x a x a x a x i ki i i k i i k i i k i i k i i k i求解可得104633210109312.1,1094.1,102626.7,12.0624,-7434.6557---⨯-=⨯=⨯-===a a a a a 于是可得拟合多项式为443322104)(x a x a x a x a a x ++++=φ,最小误差为102.66=S ,拟合效果如图5-5所示.图5-5:四次拟合效果,带*号的为拟合曲线.从上面的三次多项式拟合和四次多项拟合效果来看,差别不大.基本可以看出排沙量与水流量的关系.图5-6:第二段三·93··94· 次多项式拟合效果对于第二阶段,由表5-4可以类似地处理.我们用线性最小二乘法作三次和四多项式拟合.拟合效果如图5-6和5-7所示,最小误差分别为5.459=S 和1.236=S . 从拟合效果来看,显然四次多项式拟合要比三次多项式拟合好的多.图5-7:第二段四次多项式拟合效果。

《数值分析》第5章 曲线拟合与函数插值

《数值分析》第5章 曲线拟合与函数插值

例如用函数
y Aebx
(5.8)
去拟合一组给定的数据,其中 A和 b是待定参这数时. ,可以在 (5.8) 式两端取
对数,得
ln y ln A bx
记 y ln y,a ln A,则上式可写成 y a b. x这样,仍可用最小二乘法解出
和 a (从而b 也就确定了 和 A) ,于b 是得到拟合函数
区间 [a,b]上是存在的,但往往不知道其具体的解析表达式,只能通过观察、
测量或实验得到一些离散点上的函数值.
我们希望对这种理论上存在的函数用一个比较简单的表达式近似地给出整体 上的描述.
此外,有些函数虽然有明确的解析表达式,但却过于复杂而不便于进行理论 分析和数值计算,我们同样希望构造一个既能反映函数特性又便于计算的简 单函数,近似替代原来的函数.
图5-1 人口增长的线性模型
5.1.1 最小二乘问题
设人口 y 与年份 x之间的函数关系为
y a bx
(5.1)
其中 a和 b 是待定参数. 由图5-1可知, (xi , yi并) 不是严格地落在一条直线上,
因此,不论怎样选择 和 a,都b不可能使所有的数据点
(x均i ,满yi )足关系
式 (5.1) .
s0 10, s1 545, s2 29785, u0 18.09, u1 987.78
于是正规方程组为
10 545 a 18.09 545 29785 b 987.78
5.1.2 最小二乘拟合多项式
解得 a 0.570,4 b 0.02,27于是 A ea 1.76,90所求拟合函数为
21 91
441
a1
163
91 441 2275 a2 777
解得 a0 26.8,a1 14.08,57 a2 ,2因此所求拟合多项式为

第5章 多项式、插值与数据拟合

第5章  多项式、插值与数据拟合

两个多项式的和与差:
ya a1x a2 x
m n
m1 n1

am x am1 bn x bn1
yb b1x b2 x
命令poly_add:求两个多项式的和,其调用格式为: c= poly_add(a,b) 多项式a减去b,可表示为: c= poly_add(a,-b)
例: y ( x 1)6 x6 6x5 15x4 20x3 15x2 6x 1
>> r=roots([1 -6 15 -20 15 -6 1]) r= 1.0048 + 0.0000i 1.0024 + 0.0042i 1.0024 - 0.0042i 0.9976 + 0.0042i 0.9976 - 0.0042i 0.9952 + 0.0000i 舍入误差的影响,与计算精度有关。
>> x=[0.3:0.005:0.35];y=hermite(x0,y0,y1,x); >> plot(x,y) >> y2=sin(x); hold on >> plot(x,y2,'--r')
5.2.3 Runge现象
• 问题的提出:根据区间[a,b]上给出的节点做 插值多项式p(x)的近似值,一般总认为p(x)的 次数越高则逼近f(x)的精度就越好,但事实并 非如此。 1 f ( x) • 反例: 1 x2 在区间[-5,5]上的各阶导数存在,但在此 区间上取n个节点所构成的Lagrange插值多项 式在全区间内并非都收敛。 • 取n=10,用Lagrange插值法进行插值计算。



• 算例:对给定数据,试构造Hermite多项式求出 sin0.34的近似值。 >> x0=[0.3,0.32,0.35]; >> y0=[0.29552,0.31457,0.34290]; >> y1=[0.95534,0.94924,0.93937]; >> format long; y=hermite(x0,y0,y1,0.34) y= 0.333488890074074 >> sin(0.34) %与精确值比较 ans = 0.333487092140814

第五章插值法与曲线拟合插值法精品PPT课件

第五章插值法与曲线拟合插值法精品PPT课件

f (n1) (x
(n 1)!
)
wn1(x)
,
x (a,b)
n
Ln(x) f (xi)li(x)
i0
其中
li(x ) (( x x i x x 0 0 ))(( x x i x x ii 1 1 ) )( (x x i x x ii 1 1 ) )
(x x n ) ,i
(x i x n )
计算各阶差分可按如下差分表进行.
向前差分表
xi fi fi 2 fi 3 fi
n fi
x0 f0 x1 f1 f0 x2 f2 f1 2 f0 x3 f3 f2 2 f1 3 f0
xn fn fn1 2 fn2 3 fn3
n f0
差分具有如下性质:
.
性质1(差分与函数值的关系) 各阶差分均可表示为函值
(1)
使满足
cn(xx0)(xx1)(xx2) (xxn 1)
N n (x i) f(x i), i 0 ,1 , n
(2)
为了使 N n ( x ) 的形式得到简化,引入如下记号
0(x)1
i(x)(xxi1)i1(x)
(3)
(xx0)(xx1) (xxi1), i1,2, n
定义 由式(3)定义的n+1个多项式 0(x),1(x), ,n(x)
表示f(x)在x0及x1两点的一阶差商. 用记号 f[x0,x1,x2]f[x0,xx10 ] xf2[x1,x2]
表示f(x)在x0,x1,x2三点的二阶差商. 一般地,有了k-1阶差商之后, 可以定义f(x)在x0,x1,..,xk的k阶差商
f[x 0 ,x 1 ,
,x k] f[x 0 ,x 1 ,
2 f (xi ) (f (xi )) ( f (xi h) f (xi )) f (xi h) f (xi ) f (xi 2h) 2 f (xi h) f (xi )

5、插值与数据拟合

5、插值与数据拟合

则有:L2 ( x) l0 ( x) y0 l1 ( x) y1 l2 ( x) y2
问题:为什么上述L2(x) 是所求的插值多项式?
不妨先求l0(x) ,由于l0(x)在x1, x2处函数值为0,显然应包括 x-x1 , x-x2这两个因子;又因它的次数不能超过2,则: l0(x)=A(x-x1) (x-x2) ,而l0(x)在x0处函数值为1,故A可求。
L(x) f(x)
x0
x1
x2
x
x3
x4
6
第二节
一、线性插值
Lagrange插值多项式
已知两点 ( x0 , y0 ), ( x1 , y1 ) , 过这两点的1次多项式可表示为:
L1 ( x) y0 ( y1 y0 ) ( x x0 ) ( x1 x0 )
点斜式
( x x0 ) ( x x1 ) y0 y1 ( x0 x1 ) ( x1 x0 )
( x x0 )( x x1 )( x x3 ) ( x x0 )( x x1 )( x x2 ) y2 y3 ( x2 x0 )( x2 x1 )( x2 x3 ) ( x3 x0 )( x3 x1 )( x3 x2 )
分别将 x 0.20, x0 0.10, x1 0.15, x2 0.25, x3 0.30 代入
可得
L3 (0.20) 0.818730
与准确结果 e 0.20 0.8187308 相比,误差 105 .
15 上一页 下一页 返回
例2 已知 100 10,121 11 144 12, 分别用线性插值和抛物 = = , = 插值求
125 的近似值. = , = 为插值节点 则 , 解: 用线性插值. 选择x0 100 x1 121

第4、5讲插值与拟合作业参考答案

第4、5讲插值与拟合作业参考答案

第4、5讲插值与拟合作业参考答案第四、五讲作业题参考答案⼀、填空题1、拉格朗⽇插值基函数在节点上的取值是( 0或1 )。

2、当1,1,2x =-,时()034f x =-,,,则()f x 的⼆次插值多项式为(2527633x x +- )。

3、由下列数据所确定的唯⼀插值多项式的次数为( 2次)。

4、根据插值的定义,函数()x f x e -=在[0,1]上的近似⼀次多项式1()P x =( 1(1)1e x --+ ),误差估计为( 18 )。

5、在做曲线拟合时,对于拟合函数x y ax b =+,引⼊变量变换y =( 1y),x =(1x)来线性化数据点后,做线性拟合y a bx =+。

6、在做曲线拟合时,对于拟合函数Ax y Ce =,引⼊变量变换( ln()Y y = )、X x =和B C e =来线性化数据点后,做线性拟合Y AX B =+。

7、设3()1f x x x =+-,则差商[0,1,2,3]f =( 1 )。

8、在做曲线拟合时,对于拟合函数()A f x Cx =,可使⽤变量变换(ln Y y =)(ln X x = )和B C e =来线性化数据点后,做线性拟合Y AX B =+。

9、设(1)1,(0)0,(1)1,(2)5,()f f f f f x -====则的三次⽜顿插值多项式为( 321166x x x +-),其误差估计式为(4()(1)(1)(2),(1,2)24f x x x x ξξ+--∈-) 10、三次样条插值函数()S x 满⾜:()S x 在区间[,]a b 内⼆阶连续可导,(),,0,1,2,,,k k k k S x y x y k n ==(已知)且满⾜()S x 在每⼀个⼦区间1[,]k k x x +上是(三次多项式)。

11、1()[a,b]()f x L x =函数在上的⼀次(线性)插值函数(公式)( ()()x b x af a f b a b b a--+-- ),1()R x =( 1()()(),2f x a x b a b ξξ''--≤≤ )。

第五章插值与拟合方法

第五章插值与拟合方法

已知一室模型快速静脉注射下的血药浓度数据(t=0注射300mg) t (h) 0.25 0.5 1 1.5 2 3 4 6 8
c (g/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01
作半对数坐标系(semilogy)下的图形
2
10
101
0
回多项式的降幂系数。当k>n-2时,该命令实现多 项式插值 ✓ 一元插值 yi=interp1(x,y,xi):根据数据(x,y)给出在xi的分段线性 插值结果yi yi=interp1(x,y,xi,’spline’):使用三次样条插值 yi=interp1(x,y,xi,’cubic’):使用分段三次插值 ✓ 二元插值 zi=interp2(x,y,z,xi,yi,’method’):二维插值
根据一组(二组)数据,即平面上的若干点, 确定一个一元函数,即曲线,使这些节点与曲线总 体来说尽量接近,这就是曲线拟合。
函数插值与曲线拟合都是要根据一组数据构造 一个函 数作为近似,由于近似的要求不同,二者的 数学方法是完全不同的。
数据插值拟合MATLAB命令
✓ 多项式插值和拟合 p=polyfit(x,y,k): 用k次多项式拟合向量数据(x,y),返
求血药浓度随时间的变化规律c(t).
x=[0.25 0.5 1 1.5 2 3 4 6 8]; y=[19.21 18.15 15.36 14.
10 12.89 9.32 7.45 5.24 3.01];
plotc(x,y,'--o') c2
c(t) c0ekt c, k为待定系数
c1
0
算术坐标系统:就是普通的笛卡儿坐标,横纵的刻 度都是是等距的

数学建模讲座(五)插值和拟合

数学建模讲座(五)插值和拟合

Lagrange插值法的缺点 插值法的缺点
多数情况下,Lagrange插值法效果是不错的, 但随着节点数n的增大,Lagrange多项式的次 数也会升高,可能造成插值函数的收敛性和 稳定性变差。如龙格(Runge)现象。 在[-1,1]上用n+1个等距节点作插值多项式 Ln(x),使得它在节点处的值与函数y = 1/(1+25x2) 在对应节点的值相等,当n增大时,插值多项 式在区间的中间部分趋于y(x),但对于满足条 件0.728<|x|<1的x, Ln(x)并不趋于y(x)在对应 点的值,产生了Runge现象。 现象。 现象
三次样条
即 Si(x)=aix3+bix2+cix+di i=0,1,…,n xi-1≤x ≤xi (4n个变量) 需要4n个方程 (n+1个方程) S(xi) = yi i=0,1,…,n Si(xi)= Si+1(xi) i=1,…,n-1 在xi连续 (n-1个方程) Si/(xi)= Si+1/(xi) i=1,…,n-1 在xi连续(n-1个方程) Si//(xi)= Si+1 //(xi) i=1,…,n-1 在xi连续(n-1个方程) 再加两个条件 S//(x0)= S //(xn)=0 自然边界条件(2个方程) 可以证明:满足上述 个线性方程组有唯一解 满足上述4n个线性方程组有唯一解 满足上述 个线性方程组有唯一解。
n I (x) = ∑ y l (x) n ii i =0
可以证明:In(x) →f(x)
1.3 三次样条
设在区间[a,b]上,已给n+1个互不相同的节点 a=x0<x1<…<xn=b 而函数y = f(x)在这些节点的值f(xi)=yi,i=0,1,…,n.如 果分段函数S(x)满足下列条件,就称S(x)为f(x)在点x0, x1,…,xn的三次样条插值函数. (1) S(x)在子区间[xi,xi+1]的表达式Si(x)都是次数 为3的多项式; (2)S(xi) = yi; (3) S(x)在区间[a,b]上有连续的二阶导数。

《讲插值与拟合》课件

《讲插值与拟合》课件

3
定义和概念
局部插值和拟合是一种在局部范围内 进行插值和拟合的方法,以提高数据 拟合的精度。
局部插值和拟合方法的优缺点
局部插值和拟合方法可以提高数据拟 合的精度,但在边界处可能存在一定 的误差。
五、总结与应用
插值与拟合的区别和联系插值和拟合都是通过构建近似函数来拟合数据,但 插值是通过通过已知数据点构造函数,并且在这些点上精确匹配,而拟合是 通过最小化误差来选择最佳的近似函数。 选择合适的方法进行插值和拟合在 实际应用中,根据数据特点和需求选择适当的插值和拟合方法,以达到最佳 的效果。 应用实例及其结果分析我们将会提供一些实际应用实例,探讨不同 方法在实际问题中的应用效果,并进行结果分析和讨论。
可以使用线性回归、多项式拟 合等方法进行最小二乘拟合。
三、样条插值和拟合
样条插值和拟合方法常用的样条插值和拟合方法包括自然样条、三次样条等,它们可以更好地逼近复杂 曲线和曲面。
四、局部插值和拟合
1
局部插值和拟合的基本思想
2
基本思想是通过选择局部区域的数据
点来构建插值或拟合函数,以适应局
部数据的特征。
《讲插值与拟合》PPT课 件
欢迎参加本次关于插值与拟合的课程!在这个课件中,我们将深入探讨插值 和拟合的概念、方法和应用,帮助您在实践中提升问题分析和解决能力。

一、插值方法概述
定义和概念
插值是根据已知数据点构造一个函数,该函数在已知数据点上具有与原函数相同的值。
插值方法的种类
常用插值方法包括拉格朗日插值、牛顿插值等。
六、课程总结
从理论到实践,系统 学习插值与拟合知识
通过本课程,您将系统学 习插值与拟合的理论和实 践,获取全面的知识和技 能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种常用的多项式插值
拉格朗日插值:
pn(x)
nn
[
j0 i0
( xxi xj xi
)]yj
ij
牛顿插值 Hermite插值
2、样条插值方法
设给定区间[a,b]的一个分化: a=x0<x1<…<xn=b,
如果函数s(x)满足条件:在每个子区间[xi-1,xi] 上是k次多项式,且具有直到k-1阶的连续导 数,则称s(x)为一个k次多项式样条。
拟合问题引例一 电阻问题
已知热敏电阻电阻值与温度的数据: 温度t(0C) 20.5 32.7 51.0 73.0 95.7
电阻R() 765 826 873 942 1032
求600C时的电阻R。
1100
设 R=at+b
1000
a,b为待定系数
900
800
700
解答
20
40
60
80
100
拟合问题引例二 给药问题
输出拟合多项式系数 a=[a1, …am , am+1] (数组)
输入同长度 的数组X,Y
拟合多项 式次数
2. 对超定方程组 R n m a m 1yn 1(m n ),用 aR\ y
可得最小二乘意义下的解。 3.多项式在x处的值y可用以下命令计算:
y=polyval(a,x)
用MATLAB作非线性最小二乘拟合
已知一室模型快速静脉注射下的血药浓度数据(t=0注射300mg) t (h) 0.25 0.5 1 1.5 2 3 4 6 8
c (g/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01
求血药浓度随时间的变化规律c(t).
作半对数坐标系(semilogy)下的图形 MATLAB(aa1)
广泛使用的样条函数
(1)二次样条 (2)三次样条 (3)B样条。
二次样条的定义
设[a,b] 的一个划分:a=x0<x1, x2 , ..., xn= b, 函数f ( x )各节点的值分别为:
f ( xi )=yi (i=1,2,...,n) 如果二次样条函数:
满足: S ( xi )=yi (i=1,2,...,n)
三次样条函数的定义
设[a,b] 的一个划分:a=x0<x1, x2 , ..., xn= b, 函数f ( x )各节点的值分别为:
f ( xi )=yi (i=1,2,...,n) 如果三次样条函数:
3
满足: S ( xi )=yi (i=1,2,...,n)
数据的拟合
1.拟合问题引例 2.拟合的基本原理 3.用MATLAB求解拟合问 题4.应用举例 5.插值与拟合的比较
ydata=(ydata1,ydata2,…,ydatan) lsqcurvefit用以求含参量x(向量)的向量值函数
F(x,xdata)=(F(x,xdata1),…,F(x,xdatan))T 中的参变量x(向量),使得
n
2
(F(x,xdai)taydai)ta最小
i1
输入格式为: (1) x = lsqcurvefit (‘fun’,x0,xdata,ydata); (2) x =lsqcurvefit (‘fun’,x0,xdata,ydata,options); (3) x = lsqcurvefit (‘fun’,x0,xdata,ydata,options,’grad’); (4) [x, options] = lsqcurvefit (‘fun’,x0,xdata,ydata,…);
线性最小二乘拟合 f(x)=a1r1(x)+ …+amrm(x)中 函数{r1(x), …rm(x)}的选取
1. 通过机理分析建立数学模型来确定 f(x); 2. 将数据 (xi,yi) i=1, …n 作图,通过直观判断确定 f(x):
f=a1+a2x +
++
++
f=a1+a2x+a3x2 +
+
+ +
+
f=a1+a2x+a3x2
++ +
+ +
f=a1+a2/x +
+++ +
f=aebx
+
+
++ +
+ f=ae-bx + + ++
用MATLAB解拟合问题
1、线性最小二乘拟合 2、非线性最小二乘拟合
用MATLAB作线性最小二乘拟合
1. 作多项式f(x)=a1xm+ …+amx+am+1拟合,可利用已有程序: a=polyfit(x,y,m)
第二步: 确定a1,a2, …am 的准则(最小二乘准则):
使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。
n
n
记 J(a1,a2,am)
2 i
[f(xi)yi]2
i1
i1
nm
[ akrk(xi)yi]2 i1 k1
(2)
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
102
c(t) c0ekt
101
c, k为待定系数
0
10
解答
0
2
4
6
8
曲线拟合问题的提法
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…n, 寻求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所有 数据点最为接近,即曲线拟合得最好。
y
+
+
+
+
+ (xi +i,yi)
线性最小二,实际上就是求以下 超定方程组的最小二乘解的问题。
Ra=y
r11 r12 r1m
a1
y1
其中
R , a ,
y
rn1 rn2 rnm
am
yn
定理:当RTR可逆时,超定方程组 Ra=y 存在最小二乘解,且其解可表示为下列形式: a=(RTR)-1RTy a=R\y
+
+
y=f(x) +
x i 为点(xi,yi) 与曲线 y=f(x) 的距离
曲线拟合问题最常用的解法——线性最小二乘法的基本思路
第一步:先选定一组函数 r1(x), r2(x), …rm(x), m<n, 令
f(x)=a1r1(x)+a2r2(x)+ …+amrm(x)
(1)
其中 a1,a2, …am 为待定系数。
Matlab的提供了两个求非线性最小二乘拟合的函数: lsqcurvefit和lsqnonlin。两个命令都要先建立M-文件fun.m, 在其中定义函数f(x),但两者定义f(x)的方式是不同的,可参 考例题.
1. lsqcurvefit
已知数据点: xdata=(xdata1,xdata2,…,xdatan),
相关文档
最新文档