东北大学 数值分析 06(研)数值分析

合集下载

东北大学数值分析实验报告

东北大学数值分析实验报告

数值分析实验班级 姓名 学号实验环境: MATLAB实验一 解线性方程组的迭代法(1)一、实验题目 对以下方程组分别采用Jacobi 迭代法, Gaaus-Seidel 迭代法求解和SOR 迭代法求解。

(2)线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------13682438141202913726422123417911101610352431205362177586832337616244911315120130123122400105635680000121324⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125 (2)对称正定线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------------1924336021411035204111443343104221812334161206538114140231212200420424⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡87654321x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---4515221123660(3)三对角线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------4100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----5541412621357 二、实验要求(1)应用迭代法求线性方程组, 并与直接法作比较。

2012数值分析试题及答案

2012数值分析试题及答案


aii
(bi

n
aij
x
(k j
)
)
,
j 1
i 1,2,, n
(1) 求此迭代法的迭代矩阵 M ;
(2) 证明:当 A 是严格对角占优矩阵, 0.5 时,此迭代格式收敛.
解:迭代法的矩阵形式为:
x(k1) x(k) D 1 (b Ax (k) ) D 1 (D A)x(k) D 1b
x2 3/5
).
线 …
8.对离散数据 xi yi
1 0 1 2 的拟合曲线 y 5 x 2 的均方差为( 2.5 1.58 ).
2 1 1 3
6



9.设求积公式
2
f (x)dx
1
A0 f (1) A1 f (0) A2 f (1) 是插值型求积公式,则积分系
… 数 A0 3/ 4 , A1 0 , A2 9 / 4 .
2
2
2
2
2
2
R[ f ] 0 f (x)dx 0 p1 (x)dx 0 f (x)dx 0 H 3 (x)dx 0 H 3 (x)dx 0 p1(x)dx
2 f (4) ( x ) (x 1 )2 (x 1 )2 dx f (4) () 2 (x2 1)2 dx

四、(10 分)利用复化 Simpson 公式 S2 计算定积分 I
2
cos
xdx
的近似值,并估
0
… 计误差。
… …
解:
I

S2

1 [cos0 6
cos2

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

东北大学数值分析考试题解析

东北大学数值分析考试题解析

数值分析提供了许多实用的算法, 这些算法可以解决各种实际问题, 如线性方程组、微分方程、积分 方程等。这些算法在科学计算、 工程仿真、数据分析等领域都有 广泛的应用。
数值分析在解决实际问题时具有 高效、精确和可靠的特点。通过 数值分析,我们可以快速地得到 问题的近似解,并且可以通过误 差分析来控制解的精度。这使得 数值分析成为解决实际问题的重 要工具。
详细描述
数值分析是一门应用广泛的学科,它通过数学方法将实际问题转 化为可计算的数学模型,并寻求高效的数值计算方法来求解这些 问题。数值分析在科学计算、工程、经济、金融等领域中发挥着 重要的作用,为实际问题的解决提供了有效的工具。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程、经济、金融等。
非线性方程组的求解精度和速 度取决于所选择的方法和初值 条件。
非线性方程组的求解在科学计 算、工程技术和计算机图形学 等领域有广泛应用。
最优化方法
最优化方法是寻找使某个 函数达到最小或最大的参 数值的方法。
最优化方法的效率和精度 取决于所选择的算法和初 始参数值。
常用的最优化方法包括梯 度下降法、牛顿法和拟牛 顿法等。
数值分析在人工智能领域的应用
总结词
数值分析在人工智能领域的应用关键,涉及深度学习、神经 网络等领域。
详细描述
数值分析为人工智能提供了理论基础和算法支持,特别是在 深度学习和神经网络方面。通过数值分析的方法,可以优化 神经网络的参数和结构,提高人工智能的性能和准确性。
数值分析在金融领域的应用
总结词
常见的迭代法有雅可比迭代法 、高斯-赛德尔迭代法等。
牛顿法
牛顿法是一种基于泰勒级数 的迭代方法,用于求解非线 性方程的根。

《数值分析》所有参考答案

《数值分析》所有参考答案
解:
等价三角方程组
, ,
11.设计算机具有4位字长。分别用Gauss消去法和列主元Gauss消去法解下列方程组,并比较所得的结果。
解:Gauss消去法
回代
列主元Gauss消去
15.用列主元三角分解法求解方程组。其中
A= ,
解:
等价三角方程组
回代得
, , ,
16.已知 ,求 , , 。
解:
, ,
17.设 。证明
,(II)

当 时
当 时
迭代格式(II)对任意 均收敛
3) ,
构造迭代格式 (III)

当 时
当 时
迭代格式(III)对任意 均收敛
4)
取格式(III)
, , ,
4.用简单迭代格式求方程 的所有实根,精确至有3位有效数。
解:
当 时, ,
1 2
当 时


, ,
1)
迭代格式 ,
,
当 时, ,
任取 迭代格式收敛于
是中的一种向量范数。
解:
当 时存在 使得

,
所给 为 上的一个范数
18.设 。证明
(1) ;
(2) ;
(3) 。
解:(1)
(2)
(3)
19.设
A=
求 , , 及 , 。
解: ,
Newton迭代格式
,
20.设 为 上任意两种矩阵(算子)范数,证明存在常数
, 使得
对一切 均成立。
解:由向量范数的等价性知道存在正常数 使得
,
=0.187622
[23.015625 , 23.015625+0.187622]

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

东北大学数值分析答案

东北大学数值分析答案

第一周解答:π=0.31415926×10M=1|π-3.141|=0.0005926<1/2 ×10m−n=0.5 ×101−n≤0.5×10−2所以n=3|π-3.142|=0.0004074<1/2 ×10m−n=0.5 ×101−n≤0.5×10−3所以n=4即3.141作为π的近似值具有3位有效数字3.142 有4位解答:√3=1.73205081…=0.173205081…M=1|√3−x|≤0.5×101−n|n=2时0.5×101−n=0.051.73205-x≤0.05x≥1.68205x=1.68205|√3−x|≤0.5×101−n|n=3时0.5×101−n=0.0051.73205-x≤0.005x≥1.72705x=1.72705解答:2256=2128×2128=264×264×2128=232×232×264×2128=216×216×232×264×2128=2×2×22×24×28×216×232×264×2128共计算8次乘法第二周解答:因为在n取一定位数时,1/n过于小导致系统计算为0.因此计算机求和在一定位数以后其余的数字都是0,结果为一常数解答:由于y0=28没有误差,可见误差是由√783引起的,设x=27.982σ=x-√783利用已知的递推算法,y n=y n−1−√783100和实际计算中的递推公式Y n=Y n−1−x/100(Y0=y0)两公式相减,e(Y n)=Y n−y n=Y n−1−y n−1−x−√783100e(Y n)= e(Y n−1)- σ/100此为绝对误差因为σ=x-√783数值恒定不变,因此该递推过程稳定解答:(1)原式=2x2(1−2x)(1−x)(2)e x 在x=0处的泰勒展开式可得: e x =1+x +12!x 2+⋯1n!x 2+R n (x) 所以1−e x x=x+12!x 2+⋯1n!x2x=1+12!x 2+⋯1n!x n−1第三周解答:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡61-12001-101-1131-11-301-101-11101112-2-211-11消元消元回代得解,;3,2,2321===x x x解答:1. 使用条件:当系数矩阵 A 的各阶顺序主子式非零时,顺序高斯消去法可以顺利进行;而一般只要系数矩阵 A 的行列式非零,列主元高斯消去法就可以顺利进行。

2011数值分析试题及答案

2011数值分析试题及答案
122446
由于f(x)二si nx的4阶导数在[0,二]上的最大值为:M4=1,所以
5
误差为:|I-S2|::——44=0.006641
2880x24
6.求解初值问题」y=sin(x+2y),0兰x兰2的改进Euler方法是否收敛?为什
.y(0) = 1
么?
解:由于|sin(x 2y)-sin(x 2y)|二| 2cos(x 2 )(y-y) 2 | y-y |
5.设f(x) = 4x33x-5,求差商f[0,1], f[1,2,3,4]和f[1,2,3,4,5]。
f(D…f(0)
解:f[0,1]==2-(-5) = 7
1-0
f [1,2,3,4^4,f[1,2,3,4,5]=0
3.解线性方程组丿X1-2忑=2的Jacobi迭代法是否收敛,为什么?
+9x2=3
即,函数f(x, y)二sin(x•2y)连续,且关于变量y满足Lipschitz条件,所以,改 进Euler方法收敛。
所以,a=0, b=5/6,拟合曲线为:y=5/6x2
3.求满足条件f(0)=1,f(1)=2,f(2) =0,f(1)=0的三次插值多项式Ha(x)
的表达式。
解:设H3(x)二(^2)(ax2bx c),则有:
1213
所以,H3(x) (x-2)(x2x 1) (x-3x-2)。
22
11
4.确定求积公式Jf(x)dx痒三f(-1)+Af(0)+A2f(1)中的待定系数,使其代数精 度尽可能高,并问此公式是不是插值型求积公式.
解:令公式对f(x) = 1,x都精确成立,得:A,・A2= 3/2, A2= 1/2,
o
• • •

研究生数值分析高斯-赛德尔(Gauss-Seidel)迭代法

研究生数值分析高斯-赛德尔(Gauss-Seidel)迭代法

迭代法的发展趋势和未来研究方向
非线性问题
将高斯-赛德尔迭代法应用于非线性问题是一个具有挑战性的方 向,也是未来研究的重要课题。
理论分析
深入分析高斯-赛德尔迭代法的收敛性和误差估计,为算法改进 提供理论支持。
应用领域拓展
将高斯-赛德尔迭代法应用于更多领域,如工程、物理、经济等, 解决实际问题。
谢谢观看
05
高斯-赛德尔迭代法的应 用
在线性方程组求解中的应用
01
02
03
线性方程组求解是高斯赛德尔迭代法的重要应用 之一。对于给定的线性方 程组Ax=b,高斯-赛德尔 迭代法可以用来求解x的
值。
通过迭代的方式,高斯赛德尔迭代法不断逼近 方程的解,直到满足一
定的收敛条件。
该方法在数值分析中广 泛应用于解决线性方程 组问题,具有较高的稳
高斯-赛德尔迭代法是一种直观且易 于理解的迭代方法,计算过程相对简 单,易于编程实现。
收敛速度快
对于某些问题,高斯-赛德尔迭代法可 能比其他迭代方法具有更快的收敛速 度。
高斯-赛德尔迭代法的优缺点
• 适用于多种线性系统:该方法适用于多种线性系统,包括 稀疏矩阵和稠密矩阵。
高斯-赛德尔迭代法的优缺点
松弛法(SOR方法)
总结词
松弛法是一种改进的高斯-赛德尔迭代法,通过引入松弛参数,使得迭代过程更 加灵活,提高了收敛速度。
详细描述
松弛法(SOR方法)是在高斯-赛德尔迭代法的基础上,引入了一个松弛参数,使得 迭代过程中每一步的解不仅依赖于前一步的解,还与前几步的解有关。这种方法 能够更好地处理非严格对角占优的线性系技巧通过优化迭代过程中的参数或采用其他方法, 加速高斯-赛德尔迭代法的收敛速度。

东北大学-数值分析-课后习题详细解析

东北大学-数值分析-课后习题详细解析

1.01
1.01
1.01
1
0.66
0.995
0.66
1.17
2
0.67
1.17
0.553333
1.223333
3
0.553333
1.165
0.517778
1.241111
4
0.556667
1.223333
0.505926
1.247037
5
0.517778
1.221667
0.501975
1.249012
解 a.x=-1/-0.99=1.010101,y=-0.98/-0.99=0.989899
b.用Gauss消元法
7
10 2 x y 1
x
y
2
回代得解: y=1, x=0.
再用列主元Gauss消元法
10 2 x y 1
100 y 100
10 2 x y 1
x
y
2
回代得解: y=1, x=1.
x(k 1
x(k 2
1) 1)
3
2
x(k 2
)
2 1.5x1(k1)
G-S法x1(k)
1.01 0.98 1.94 4.82 13.46 39.38 117.14
G-S法x2(k)
1.01 0.53 -0.91 -5.23 -18.19 -57.07 17 -173.71
可见,J迭代法和G-S迭代法均不收敛. 实际上, (B)=31/2>1 ,(G)=3>1.
10
2-11.设•为一向量范数,P为非奇异矩阵,定义xp= Px, 证明xp 也是一种向量范数.
证明 (1)xp=Px0,而且Px=0Px=0x=0 (2)xp=P(x)=Px=||Px=||xp (3)x+yp=P(x+y)=Px+PyPx+Py=xp+yp 所以xp是一种向量范数. 2-12.设A为对称正定矩,阵证,明定义•Ax是A一= 种向x量T A范x数.

数值分析

数值分析

二 数值分析(一) 数值分析的背景随着计算机技术的发展和科学技术的进步, 计算数学的理论与基本方法已影响到许多学科, 并在生产、管理以及科学研究中得到了广泛应用。

数值分析作为计算数学的主要部分, 它是研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现, 是一门与计算机使用密切结合的实用性和实践性很强的数学课程, 是应用数学专业、信息与计算科学专业及很多理工科专业的核心课程。

数值分析除了具备数学高度抽象性与严密科学性的特点外, 有其自身的特点, 其理论体系构建、算法设计等的思维方式具有鲜明特征, 与其它数学课程相比, 更加注重方法和解决实际问题的工程思想, 特别注意在方法的精确性和有效性之间平衡。

[11] (二)误差来源利用数值方法求解得到的数值解是解析解的近似结果,因而误差是不可避免的。

误差的来源是多方面的,产生误差的原因主要有以下几个方面:1.模型误差:数学模型——对实际问题的仅是刻画:基于对实际问题近似描述的数学模型进行数值计算,例如利用函数的n 阶Taylor 展式()()()()()()()()()()2000000002!!n nnf x fx f x f x f x x x x x x x x x n ο'''=+-+-++-+-计算函数值;2.观测误差:数学模型或计算公式中通常包含若干参数,这些参数往往是通过观测或实验得到的,这样得到的参数与其真值之间有一定的差异即所谓的观测误差,例如描述弹簧受迫振动的二阶线性常系数微分方程()22d x dx mkx f t dtdtω++=中的质量m 、阻尼系数ω和弹性系数k 等。

更一般地:对物体的长宽高、电压、温度、速度的量测等。

3.截断误差:许多数学运算是通过极限过程定义的,如微分、积分以及无穷级数求和等,由于计算机只能完成有限的算术预算和逻辑运算,所以在利用计算机进行计算是需要把无限的计算过程用有限的计算过程代替,由此产生的误差成为截断误差;4.舍入误差:实际计算时只能按有限位进行,特别是里用计算机计算,由于计算机的有限位的限制,对参与运算的数据以及运算结果往往要进行舍入,例如利用公式2A R π=计算圆的面积时,π需用有限的小数代替,由此产生的误差成为舍入误差。

研究生考试数值分析试题

研究生考试数值分析试题

研究生2002级数值分析一(12分)、对于积分⎰=+1,2,1,0,999n dx x x n。

(1)试推导递推公式 ,2,1,19991=+-=-n nI I n n ;(2)分析上述算法的数值稳定性;(3)若上面算法不稳定,请选择合适的算法,并分析其稳定性。

二(12分)、解方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00001.8800001.626221x x 和⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00002.8800001.626221x x ,就所观察到的现象进行分析。

三(12分)、设方程组⎪⎩⎪⎨⎧=--=+-=+-7989783212121x x x x x x x ;(1)适当调整方程的排列顺序,使得用Gauss-Seidel 迭代法求解时收敛?说明收敛原因。

(2)取初始向量()()Tx0,0,00=,用Gauss-Seidel 迭代求近似解()2x ,并求其()()k k x x -+1误差。

四(12分)、(1)已知函数()4xe xf =,在[0,1]内三点0,1/2,1的函数值,求其二次插值的余项;(2)三个节点如何安排能使其余项达最小,此时人余项为多少?五(12分)、对于方程()02ln =+-x x ,若求[-1.9,-1]内的根,分别选取迭代方程()2ln +=x x 和2-=x e x ,它们的收敛性如何?再写出牛顿迭代公式。

六(10分)、设()⎩⎨⎧=>+-='100,5y x x y y ,解析解x e x y -+-=25262515,分别取45.0,4.0,2.0,1.0=h ,利用Euler 方法计算得y(10)的近似值分别为1.96,1.96,5.2851,142.8863,对此现象进行分析。

七(10分)、设()xe xf =,分别取步长0001.0,01.0,5.0=h ,用中心差商公式计算()0f '的近似值并求出误差,对结果作分析比较。

数值分析实验报告

数值分析实验报告

数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。

本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。

二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。

实验所依赖的主要库包括 NumPy、Matplotlib 等。

三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。

2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。

(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。

2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。

(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。

2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。

(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。

2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。

四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。

根据给定的数据点和待求点,计算插值多项式的值。

输出插值结果,并与真实值进行比较。

2、牛顿插值法计算差商表。

构建牛顿插值多项式。

进行插值计算和结果分析。

(二)数值积分1、梯形公式定义积分区间和被积函数。

按照梯形公式计算积分近似值。

分析误差。

2、辛普森公式同样定义积分区间和被积函数。

运用辛普森公式计算积分近似值。

比较与梯形公式的精度差异。

(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。

进行消元操作。

回代求解方程。

输出解向量。

2、 LU 分解法对系数矩阵进行 LU 分解。

工程数值分析实验报告(3篇)

工程数值分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。

通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。

二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。

而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。

2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。

幂法在处理大型稀疏矩阵时表现出较好的性能。

3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。

拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。

(汇总)东北大学-数值分析--考试题解析.ppt

(汇总)东北大学-数值分析--考试题解析.ppt

构造函数(t)=(t)-H3(t)-C(x)t(t-1)2(t-2) 于是,存在x,使(4)(x)=0,即(4)(x)-4!C(x)=0
R(x) f (4) ( x ) x(x 1)2 (x 2)
4!
五、(12分)试确定参数A,B,C及,使数值积分公式
2
2
f
(x)dx
Af
( )
Bf
(0)
Cf
( )
有尽可能高的代数精度,并问代数精度是多少?它是否是
Gauss公式?
解 令公式对(x)=1,x,x2,x3,x4都精确成立,则有 4=A+B+C, 0=A-C, 16/3=A2+C2, 0=A3-C3 64/5=A4+C4 ,解得:A=C=1精0品/文9档,B=16/9,=(12/5)1/2 7
令2(x)=cx(x-1)2,可得2(x)=0.5x(x-1)2;
令1(x)=cx(x-1)(x-2),可得1(x)=-x(x-1)(x-2),
于是
H3(x)==-x(3x--21.)5x2(2x+-22.)5-x3+x2(精x品-2文)档+2.5x(x-1)2
–0.5x(x-1)(x-2) 6
由于,R(0)=R(1)=R(2)=R(1)=0, 故可设 R(x)=C(x)x(x-1)2(x-2)
(3)因为0<</2,所以() cos / 2 1 sin 0
故,此迭代法线性收敛(收敛阶为1).
三、(14分)设线性方程组
4x1 x2 2x3 1 x1 5x2 x3 2 2x1 x2 6x3 3
(1)写出Jacobi法和SOR法的迭代格式(分量形式);
(2)讨论这两种迭代法的收敛性.

东北大学06年(研)数值分析

东北大学06年(研)数值分析

数值分析试题 2006.12一、计算下列各题:(每题5分,共50分)1.给出用3.141近似π的绝对误差限、相对误差限和有效数字。

2.设⎪⎪⎭⎫ ⎝⎛=3421A ,求)(A ρ和∞)(A Cond 。

3.设⎪⎪⎭⎫ ⎝⎛=104b a A ,问b a ,取何值时存在分解式T GG A =?并求出2==b a 时的分解式。

4.已知2.7是e (自然对数的底)的近似值,用Newdon 迭代法求e 具有8位有效数字的近似值。

5.设]2,0[)(4C x f y ∈=,且0)1(,0)2(,1)1(,2)0(='=-==f f f f ,试求)(x f 的三次插值多项式)(3x H ,并写出余项)()()(33x H x f x R -=。

6试求形如2bx a y +=的拟合曲线。

7.求区间[-1,1]上权函数为2)(x x =ρ的正交多项式)(0x p ,)(1x p 和)(2x p 。

8.确定参数210,,A x A ,使求积公式⎰'++≈10210)0()(31)0()(f A x f f A dx x f 具有尽可能高的代数精度,并问代数精度是多少?9.已知函数)(x f 在区间[0,3]上满足条件1)0(=f ,0)1(=f ,2)2(=f ,1)3(=f ,6)0(-=''f ,66)3(-=''f 的三次样条插值函数)(x S 在区间[0,1]上为13323++-x x x ,求)(x S 在区间[1,2]上的表达式。

10.求解初值问题⎩⎨⎧=≤≤='2)1(21sin y x x y y 的改进Euler 方法是否收敛?为什么?二、(13分)已知线性方程组⎪⎩⎪⎨⎧=+-=++-=++032221321321321x x x x x x x x x(1)写出SOR 法迭代格式;(2)讨论SOR 法(1=ω)的收敛性;三、(12分)证明方程2=+x e x 有唯一正根α,并建立一个收敛的简单迭代法(,...2,1,0,)(1==+k x x k k ϕ),说明收敛性和收敛阶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析试题 2006.12
一、计算下列各题:(每题5分,共50分)
1.给出用3.141近似π的绝对误差限、相对误差限和有效数字。

2.设⎪⎪⎭
⎫ ⎝⎛=3421A ,求)(A ρ和∞)(A Cond 。

3.设⎪⎪⎭
⎫ ⎝⎛=104b a A ,问b a ,取何值时存在分解式T GG A =?并求出2==b a 时的分解式。

4.已知2.7是e (自然对数的底)的近似值,用Newdon 迭代法求e 具有8位有效数字的近似值。

5.设]2,0[)(4C x f y ∈=,且0)1(,0)2(,1)1(,2)0(='=-==f f f f ,试求)(x f 的三次插值多项式)(3x H ,并写出余项)()()(33x H x f x R -=。

6
试求形如2bx a y +=的拟合曲线。

7.求区间[-1,1]上权函数为2)(x x =ρ的正交多项式)(0x p ,)(1x p 和)(2x p 。

8.确定参数210,,A x A ,使求积公式⎰'++≈10210)0()(3
1)0()(f A x f f A dx x f 具有尽可能高的代数精度,并问代数精度是多少?
9.已知函数)(x f 在区间[0,3]上满足条件1)0(=f ,0)1(=f ,2)2(=f ,1)3(=f ,6)0(-=''f ,66)3(-=''f 的三次样条插值函数)(x S 在区间[0,1]上为13323++-x x x ,求)(x S 在区间[1,2]上的表达式。

10.求解初值问题⎩⎨⎧=≤≤='2
)1(21sin y x x y y 的改进Euler 方法是否收敛?为什么?
二、(13分)已知线性方程组
⎪⎩⎪⎨⎧=+-=++-=++032221321321321x x x x x x x x x
(1)写出SOR 法迭代格式;
(2)讨论SOR 法(1=ω)的收敛性;
三、(12分)证明方程2=+x e x 有唯一正根α,并建立一个收敛的简单迭代法(,...2,1,0,)(1==+k x x k k ϕ),说明收敛性和收敛阶。

四、(13分)利用2=n 的复化Simpson 公式计算计算定积分⎰20cos xdx ,并估计误差][f R 。

(取四位有效数字)
五、(12分)试确定参数γβα,,,使求解常微分方程初值问题
⎩⎨⎧=≤≤='α
)(),(a y b y a y x f y
的差分公式 ),(),(111--+++=n n n n n n y x hf y x hf y y γβα
有尽可能高的阶,并给出局部截断误差主项。

数值分析试题(参考答案)
一、
1.绝对误差限:0.000593;相对误差限:0.0189%;有效数位:3位。

2.)(A ρ=5;∞)(A Cond =7。

3.102102<=<-b a 时存在分解式T GG A =;2==b a 时⎪⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=30123102G 。

4.对方程01ln =-x 建立Newton 迭代公式)ln 2(1k x k x x x -=+,取0x =2.7可得:
718281828
.223==x x 。

由于82310-<-x x ,所以取718281828.23==x α。

5.275)13)(2()(2323+-+-=-+--=x x x x x x x H ;
)2()1(!
4)()()()(2)4(33--=-=x x x f x H x f x R x ξ。

6.正则方程组⎩⎨⎧=+=+1
186264b a b a ,拟合曲线:22222.0833.09265x x y -=-=。

7.区间[-1,1]上2)(x x =ρ的正交多项式:1)(0=x p ,x x p =)(1,5
3)(22-=x x p 。

8.210=A ,11=x ,6
12=A ;代数精度是2。

9.)(x S 在区间[1,2]上应满足:0)1(=f ,2)2(=f ,0)1(='f ,0)1(=''f , 所以在区间[1,2]上有:3)1(2)(-=x x S 。

10.求解初值问题⎩⎨⎧=≤≤='2)1(21sin y x x y y 的改进Euler 方法为:
)]sin(sin )sin((sin [2
1h x x h h x x y h y y n n n n n n n +++++=+ 对应增量函数为:)]sin(sin )sin((sin [2
1),,(h x x h h x x y h y x ++++=Φ,显然关于y 满足Lipschitz 条件,所以改进Euler 方法收敛。

注:也可直接利用结论:x y y x f sin ),(=关于y 满足Lipschitz 条件,所以改进Euler 方法收敛。

二、(1)SOR 法迭代格式为:
,....2,1,0,]32[3/]22[2/]1[)(3)1(2)1(1)(3)1(3
)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1=⎪⎩⎪⎨⎧-+-+=+---+=----+=++++++k x x x x x x x x x x x x x x x k k k k k k k k k k k k k k k ωωω (2)令0321211)(=-=--λ
λλλλλλU L D 可得:01=λ,212=λ,323=λ,所以13
2)(<=G ρ,故SOR 法(1=ω)收敛。

三、记2)(-+=x e x x f ,由于01)(>+='x e x f ,所以)(x f 是严格单调增函数,又由于01)0(<-=f ,021)1(>-+=e f ,所以方程0)(=x f 有唯一正根α,且在区间(0,1)内。

将方程改写为:)2ln(x x -=可建立迭代格式: ,...2,1,0,)2ln(1=-=+k x x k k ,且迭代函数为:)2ln()(x x -=ϕ。

由于
)1,0(,121)(∈<-=
'αααϕ,所以,此迭代法收敛。

又由于021)(≠--='ααϕ,故此迭代法是线性收敛的,即收敛阶为1。

四、9096.0]2cos 23cos 421cos 41cos 20[cos 61cos 221=++++=≈⎰S xdx 由于4)4(1cos )(cos M x x =≤=,所以0006944.02
2880)02()(445=⨯-≤M f R 。

五、21,23,1-===γβα,局部截断误差主项为)(1253n x y h '''。

相关文档
最新文档