2019精品第三章飞机的结构与系统语文

合集下载

第三节 飞机的基本结构PPT课件

第三节 飞机的基本结构PPT课件
You Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
4.收放机构
收放动作筒——液压动作筒 收放位置锁 舱门机构及协调机构 收放信号装置 地面安全装置 应急放下装置
5.减震装置
轮胎
低压、中压、高压
减震器
弹簧减震器 油气减震器
油气减震器
冲击能量-转换为-热能
6.制动装置
刹车片 “点刹”-防抱死(ABS)
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
增升装置
3.后缘
副翼
用来操纵飞机侧倾,偏转较大
襟翼
增升作用
4.翼尖
扰流板
机翼的结构
二、机身
两头小中间大的流线体 驾驶舱、客舱/货舱 连接机翼、尾翼
三、尾翼
1.水平尾翼 2.垂直尾翼
作用:保证飞机在三个轴的方向稳定性和操纵性
1.水平尾翼
水平安定面 升降舵
第三节 飞机的基本结构 -机体
机体
机身 机翼 尾翼 起落架
一、机翼
翼根 前缘 后缘 翼尖
1.翼根
机翼和机身结合部分 机翼受力最大的部位(结构强度最强)
机翼升力vs机身重力
1)机翼在机身的位置
上单翼 中单翼 下单翼
上单翼
优点
干扰阻力小 向下视野好 发动机离地高 侧向稳定性好

飞机结构与系统(第三章飞机翼面结构)

飞机结构与系统(第三章飞机翼面结构)

一些力学基本概念
按外力是否随时间变化分为:静载荷和动载荷。
静载荷:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静载荷。 动载荷:载荷随时间变化,可分为交变载荷和冲击载荷。
一些力学基本概念
内力、截面法和应力的概念 内力: 由于变形引起的物体内部的附加力。 物体受外力作用后,由于变形,其内部各点均会发生相对位移,因而产生相互作用力。
一些力学基本概念
材料力学中对变形固体的三个基本假设:
1.连续性假设:
2.均匀性假设:
3.小变形假设:
一些力学基本概念
外力及其分类:
外力是外部物体对构件的作用力,包括外加载荷和约束反力。 按外力的作用方式分为:表面力和体积力。 表面力:作用于物体表面的力,又可分为分 布力和集中力 体积力:连续分布于物体内部各点上的力。如物体的重力和惯性力。
机翼、尾翼功用、设计要求及外载特点
机翼、尾翼功用、设计要求及外载特点
3)机翼总体内力:
剪力 Q:Qn, Qh; 弯矩 M:Mn, Mh; 扭矩 Mt ;
机翼的外载特点
机翼、尾翼功用、设计要求及外载特点
机翼的外载特点
3)机翼总体内力:
由于阻力相对升力很小,其引起的剪力、弯矩常常可以忽略。
机翼、尾翼功用、设计要求及外载特点
翼面结构典型构件及受力特点
翼面结构的典型构件
机翼结构: 蒙皮 纵向骨架: 翼梁(缘条、腹板) 纵墙 桁条 横向骨架: 翼肋(普通肋、加强肋)
翼面结构典型构件及受力特点
机翼结构: 蒙皮 纵向骨架: 翼梁(缘条、腹板) 纵墙 桁条 横向骨架: 翼肋(普通肋、加强肋)
翼面结构的典型构件 机翼典型结构构件剖面
三、机翼的外载特点

飞机结构与系统(起落架系统)课件

飞机结构与系统(起落架系统)课件

03
起落架系统的关键技术与设计
起落架的材料与制造工艺
要点一
总结词
起落架材料需具备高强度、耐腐蚀、轻质等特点,常用的 材料包括铝合金、钛合金和复合材料等。制造工艺涉及精 密铸造、机械加工、焊接和复合材料成型等多种技术。
Hale Waihona Puke 要点二详细描述起落架是飞机的重要承力结构,需要承受飞机的重量和着 陆时的冲击载荷,因此要求材料具备高强度和耐腐蚀性。 铝合金、钛合金和复合材料等是目前广泛应用的起落架材 料。在制造过程中,精密铸造和机械加工技术用于形成复 杂形状的起落架部件,焊接技术用于将各个部件连接在一 起,而复合材料成型技术则用于制造复合材料起落架。
起落架系统的分类
01
02
03
按收放方式
前三点式起落架、后三点 式起落架。
按支柱结构
构架式起落架、支柱式起 落架。
按轮组布置
单轮式起落架、多轮式起 落架。
02
起落架系统的工作原理
起落架的收放
正常收起
当飞机准备起飞时,起落架通过液压 作动筒和机械连杆等机构,从机翼下 伸出到机腹下,支撑着飞机并承受着 飞机的重量。
起落架的疲劳寿命分析
总结词
考虑到飞机起落架承受循环载荷的特点,疲劳寿命分析是评估起落架可靠性的重要环节 。通过疲劳试验和损伤容限分析等方法,可以预测起落架的使用寿命并制定相应的维护
策略。
详细描述
飞机起落架在服役期间会承受大量的循环载荷,这种载荷会导致起落架材料的疲劳损伤 。为了评估起落架的可靠性,疲劳寿命分析是必不可少的环节。通过疲劳试验和损伤容 限分析等方法,可以了解起落架在不同循环载荷下的性能退化规律,预测其使用寿命,
起落架的刹车与滑行

飞机结构与系统(飞行操纵系统)课件

飞机结构与系统(飞行操纵系统)课件
器、控制器和作动器等电子设备实现飞行员输入的信号转换和翼面控制。
飞行操纵系统的历史与发展
历史
早期的飞机采用简单的机械式操纵系统,通过钢索、连杆等机械部件实现飞行员对翼面和舵面的直接控制。随着 技术的发展,液压式操纵系统和电传式操纵系统逐渐取代了机械式操纵系统。电传式操纵系统是目前最先进的飞 行操纵系统,具有更高的可靠性和灵活性。
可靠性预计与分配
根据系统各组成部分的可靠性数据,预计整个飞行操纵系统的可靠性,并根据需要将可靠 性指标分配给各个组件。这有助于确保系统整体性能达到预期要求。
可靠性试验与验证
通过进行各种可靠性试验和验证,如环境试验、寿命试验和功能试验等,评估飞行操纵系 统的可靠性。这些试验有助于发现潜在的问题和改进空间,从而提高系统的可靠性。
飞行操纵系统
飞机上用于传输飞行员操纵指令 并驱动飞行操纵面运动的整套装 置,包括机械、液压或电动系统 。
飞行操纵的力学原理
力矩平衡
飞机受到重力和气动力作用,通过调 整飞行操纵面,使飞机获得所需的俯 仰、偏航和滚转力矩,以保持或改变 飞行姿态。
稳定性与操纵性
飞机具有稳定性,即受到扰动后能够 恢复原姿态的趋势;同时具有操纵性 ,即通过操纵指令改变飞行姿态的能 力。
构;执行机构包括各翼面和舵面,根据传动机构的运动改变飞行姿态和轨迹。
分类
根据设计理念和实现方式的不同,飞行操纵系统可分为机械式操纵系统、液压式操纵系 统和电传式操纵系统。机械式操纵系统通过钢索、连杆等机械部件传递飞行员输入的力 或运动;液压式操纵系统通过液压传动方式传递力或运动;电传式操纵系统则通过传感
飞机结构与系统(飞行操纵系 统)课件
• 飞行操纵系统概述 • 飞行操纵系统的基本原理 • 现代飞行操纵系统的技术特点 • 飞行操纵系统的维护与检修 • 飞行操纵系统的安全与可靠性

三章节飞机结构与系统-PPT课件

三章节飞机结构与系统-PPT课件

第一节 飞机的机体
第一节 飞机的机体
第一节 飞机的机体
根据机翼在机身上安装的部位和形式,可以把 机翼分为下单翼、中单翼、上单翼。 而民航飞机采用下单翼布局最多。 优点:1、机翼离地面近,起落架相应的就短,减轻 重量。重心低,稳。 2、迫降时,机翼吸收大部分冲击能量 3、便于维护和使用。 缺点: 机身离地面高,人货的上下不方便,需要使 用廊桥和梯车;发动机离地面近,使用时会吸入 跑道表面的沙石冰雪。
第二节 飞机的动力装置

同时,由于螺旋桨的迎风面积较大,带来的阻力 也较大,而且,随着飞行高度的上升,大气变稀 薄,活塞式发动机的功率也会急剧下降。这几个 因素合在一起,决定了活塞式发动机+螺旋桨的 推进模式已经走到了尽头,要想进一步提高飞行 性能,必须采用全新的推进模式,喷气发动机应 运而生。 根据牛顿第三定律,作用在物体上的力都有大 小相等方向相反的反作用力。喷气发动机在工作 时,从前端吸入大量的空气,燃烧后高速喷出, 在此过程中,发动机向气体施加力,使之向后加 速,气体也给发动机一个反作用力,推动飞机前 进。事实上,这一原理很早就被应用于实践中, 我们玩过的爆竹,就是依靠尾部喷出火药气体的 反作用力飞上天空的。

第二节 飞机的动力装置
• 2、螺旋桨
第二节 飞机的动力装置

到了二战中,由于战争的需要,飞机的性能 得到了迅猛的发展,飞行速度达到700-800公里 每小时,高度达到了10000米以上,但人们突然 发现,螺旋桨飞机似乎达到了极限,尽管工程师 们将发动机的功率越提越高,从1000千瓦,到 2000千瓦甚至3000千瓦,但飞机的速度仍没有明 显的提高,发动机明显感到“有劲使不上”。 问题就出在螺旋桨上,当飞机的速度达这种跨音速流场的直 接后果就是螺旋桨的效率急剧下降,推力下降,

飞机结构与系统

飞机结构与系统

飞机机构与系统飞机结构1.分布载荷:载荷作用在结构的某一范围内集中载荷:载荷作用在结构的某一部位静载荷:载荷逐渐增加到飞机结构上,或者说大小和方向不变或变化很小动载荷:载荷突然增加到飞机上,或者说大小和方向有明显变化2.过载:作用在飞机某方向的除重力之外的外载荷与飞机重量的比值,称为飞机在该方向上的飞机重心过载。

机动,突风,部件过载。

立轴:对飞机影响较大的过载3.飞机结构的适航性要求:结构的强度,刚度,稳定性和疲劳性能。

起落架减震支柱—梁元件。

4.载荷下的5中变形:拉压剪弯扭;飞机结构基本元件:杆,梁,板件。

5.铆接的常见形式:对接,搭接和角接。

6.在外场,涂阿洛丁修复损坏的氧化膜。

7.飞机机体站位编码:机身站位(沿机身各点的站位编号是该点到基准面的水平距离的英寸数,位于基准面前为负值,后为正,基准面为0).8.飞机校装检查技术资料来源于:飞机的型号合格证数据单;飞机的维护手册。

飞机校装的项目包括:水平尾翼检查,垂直尾翼检查,发动机校验,飞机外形对称性检查,机翼上反角,安装角检查。

9.机翼的功用和组成:主要产生升力,并使飞机获得横向稳定性和操作性,还可用于安装起落架,发动机和储存燃油。

由(翼梁,纵墙,绗条)——机翼的纵向构件,(翼肋和蒙皮)——横向构件等典型构件组成。

翼梁功用:承受机翼的弯矩和剪力蒙皮功用:形成机翼外形,承受局部气动力和参与总体受力。

现代飞机使用整体式翼梁。

翼肋按构造形式分为腹板式和构架式;按功能分为普通和加强翼肋。

现代飞机的燃油箱:结构油箱。

10.构件的密封形式:缝内和缝外密封。

11.飞机增升装置的主要类型:梁式机翼,单块式机翼12.机身的功用:主要用来装载机组人员,乘客,货物和设备等。

组成:蒙皮,绗条,绗梁和隔框(普通和加强);现代飞机机身结构形式:半硬壳式。

机身受力:弯矩,剪力,扭矩(中后部)。

13.机身构造类型:构架式,硬壳式和半硬壳式(绗梁式,绗条式机身)大开口:主起落架舱开口;大货仓开口等(民航飞机登机门,机身窗户都是比较大的开口)民航飞机窗户玻璃分三层(中间层玻璃可承受正常压力的1.5倍)现代飞机尾翼形式:多纵墙的单块结构机翼机身连接方式:空心销喷气式发动机位置:机翼吊舱;机尾;后机身吊舱。

飞机结构与系统

飞机结构与系统
换向阀的工作原理:利用阀芯相对阀体的相对位移来时油路发生变化
溢流阀工作原理:利用液流压力和预定弹簧压力向平衡的原理实现压力控制
减压阀的工作原理:利用阀口节流降压
卸荷阀的工作原理:依靠降低定量泵的出口压力来实现卸荷
执行元件分为:旋转运动型(液压马达或液动机)和往复运动型(往复直线运动型(作动筒)、往复摇摆运动型(摆动缸))
绝对粘度分:动力粘度 和运动粘度
动力粘度:面积各为1m2并相距1m的2层流体,以1m/s的速度作相对运动时所产生的内摩擦力
泵分为定量泵和变量泵
齿轮泵是定量泵,分为外啮合式和内啮合式
柱塞泵是变量泵,分为轴向式(直轴式和斜轴式)和径向式
液压控制元件分为:方向控制元件、压力控制元件、流量控制元件
方向控制元件分为:单向阀(锥阀式和钢球式)、换向阀
(矿物油系工作液的润滑性好、腐蚀性小、化学安全性较好
不燃或难燃性油系分:水基液压油和合成液压油)
工作液的最主要的特性是:润滑性、粘度、容积弹性模数和其防火特性
液体的粘度是液体在单位速度梯度下流动时产生的剪切应力。它是液体抵抗液层之间发生剪切变形的能力,是衡量液体粘性的指标
粘度分为:绝对粘度和相对粘度
气源空气来自外涵道
空调空气来自外界大气
温度控制包括制冷和加温
制冷系统的形式:空气循环制冷系统(简单式、升压式、三轮式)、蒸发循环制冷系统
简单式空气循环制冷系统的工作原理:由发动机或座舱增压器引出的高温高压空气,先经过初级热交换器和第二级热交换器冷却,然后在涡轮中膨胀降温,供向座舱。在系统中,涡轮、初级和第二级热交换器串联在一条主供气管道上,而第二级热交换器又与风扇串联在一条冲压空气管道上,涡轮所驱动的风扇抽吸热交换器的冷却空气

飞机结构飞机结构与系统PPT课件

飞机结构飞机结构与系统PPT课件
24
限制
❖ CCAR25部中规定: ❖ 正限制机动超载:2.5~3.8 ❖ 负限制机动超载:绝对值≥1.0
25
小速度、大迎角飞行
大速度、小迎角飞行
26
限制
q最大最大
1 2
V最2 大 最 大
最大允许速压 1.2 使用限制速压
27
机动飞行包线
28
突风超载飞行包线
29
飞机在地面上的使用限制
21
影响起落架侧向载荷的因素
❖ 飞机侧滑着陆。 ❖ 地面滑行转弯。 ❖ 单主轮先着陆。 ❖ 在滑行中使飞机有侧向运动趋势的各种原因。
22
飞机结构承载能力
❖ 飞机结构承载能力表现在对飞机使用限制和 飞机结构承载余量两个方面。
23
飞机使用限制
ny使用最小 ny ny使用最大 q q最大最大 ny使用最小 为 预 期 的 最 大 负 过 载 ; ny使用最大 为 预 期 的 最 大 正 过 载 ; q最大最大 为 预 期 的 最 大 速 压 。
必须表明结构符合“结构的损伤容限和疲劳评定的要求”。 飞机在整个使用寿命期间将避免由于疲劳、腐蚀或意外损伤引起的
灾难性破坏。 对可能引起灾难性的每一部分(机翼、尾翼、操纵面及其系统、机
身、发动机架、起落架以及上述各部分有关的主要连接)必须进行 损伤容限(破损安全和离散源)评定。 对损伤容限不适用的某些特定结构必须进行疲劳(安全寿命)评定。 对涡轮喷气飞机可能引起灾难性破坏的部分要进行声疲劳评定。
❖ 应力和应变
正应力和正应变
P A
ΔL L
41
飞机结构受力基本概念
❖ 应力和应变
剪应力和剪应变
Q A
ΔS h
42
飞机结构受力基本概念

《飞机结构与系统》课件

《飞机结构与系统》课件

尾翼结构
01
尾翼是飞机的重要部件之一,其主要功能是提供方向控制和稳定性。
02
尾翼通常由垂直安定面、水平安定面和升降舵等组成,其结构设计需 要考虑到气动性能、强度和刚度等多个因素。
03
尾翼的形状和尺寸需要根据飞机的总体设计要求进行选择和优化,以 确保尾翼能够满足气动性能和结构性能的要求。
04
尾翼的结构设计还需要考虑到制造工艺和维修要求,以确保尾翼易于 制造、维修和使用。
飞机结构的设计要求
强度和刚度
满足飞行过程中的各种载荷要 求,保证飞机的安全性和稳定
性。
耐腐蚀性
能够承受各种环境因素,如大 气、水和化学物质等的影响。
重量和成本
尽可能减轻重量并降低成本, 以提高飞机的经济性和市场竞 争力。
可维护性和安全性
便于维护和检修,同时保证乘 客和机组人员的安全。
02
飞机机体结构
05
飞机安全性与可靠性
飞机安全性设计
安全性设计原则
应急设施设计
确保飞机在正常和异常情况下都能保 障乘员安全,遵循国际民航组织的安 全标准和建议。
为应对紧急情况,飞机上应配备紧急 出口、救生设施和氧气面罩等,以确 保乘员在紧急情况下能够迅速撤离。
结构安全设计
对飞机结构进行详细分析,确保其能 够承受飞行过程中的各种载荷和应力 ,防止因结构失效而引发安全事故。
机身结构
机身是飞机的主体结构,其主 要功能是装载乘客、货物和燃 料等,并承受飞机的各种载荷

机身通常由筒体、框架、蒙皮 等组成,其结构设计需要考虑 到强度、刚度和疲劳等多个因
素。
机身的形状和尺寸需要根据飞 机的总体设计要求进行选择和 优化,以确保机身能够满足气 动性能和结构性能的要求。

飞机结构与系统(起落架系统)课件

飞机结构与系统(起落架系统)课件

04
飞机起落架系统的发展趋 势
轻量化设计
总结词
随着航空工业的发展,轻量化设计已成 为飞机起落架系统的重要趋势。
VS
详细描述
轻量化设计有助于减少飞机重量,降低油 耗,提高飞行效率。起落架系统作为飞机 的重要部分,其轻量化设计对于整个飞机 的性能提升具有重要意义。目前,采用先 进的材料和结构设计技术是实现起落架系 统轻量化的主要手段。
起落架的刹车原理
起落架的刹车系统用于在飞机着陆后减速和停机。
刹车系统通常由多组刹车盘组成,当飞行员踩下刹车踏板时,液压系统会向刹车盘施加压力,使刹车 盘与跑道产生摩擦力,从而使飞机减速。为了提高制动效果,现代飞机还配备了反推装置,通过改变 发动机气流方向来产生反向推力。
起落架的转向原理
起落架的转向系统使飞机能够在滑行道和跑道上灵活转向。
详细描述
绿色环保设计主要表现在对材料的选择和回 收再利用上。采用可再生、可回收材料,减 少对环境的污染,同时降低能源消耗,是起 落架系统未来的重要发展方向。此外,减少 飞机起降过程中的噪音和排放也是绿色环保 设计的重要内容。
05
飞机起落架系统的应用实 例
波音737起落架系统应用实例
波音737起落架系统采用了液压刹车和防滑装置,以确保在各种系统的各项功能 进行测试,确保其正常工 作并符合适航要求。
起落架系统的故障排除
故障诊断
通过分析飞行数据和检查系统部 件,确定起落架系统故障的原因

修复与更换
对故障部件进行修复或更换,以恢 复起落架系统的正常功能。
测试与验证
在完成修复后,对起落架系统进行 测试和验证,确保其性能达到预期 标准。
空客A320起落架系统还包括了 自动展开装置,可在着陆时自 动展开起落架,提高着陆稳定 性。

飞机结构飞机结构与系统PPT课件

飞机结构飞机结构与系统PPT课件
飞机结构
1
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
2
飞机外载荷
❖ 按作用形式分为
集中载荷
分布载荷
3
飞机外载荷
❖ 按作用性质分为
静载荷 动载荷
4
飞机外载荷
❖ 按飞机所处的状态分为
飞行时 起飞、着陆、地面运动时
5
21
影响起落架侧向载荷的因素
❖ 飞机侧滑着陆。 ❖ 地面滑行转弯。 ❖ 单主轮先着陆。 ❖ 在滑行中使飞机有侧向运动趋势的各种原因。
22
飞机结构承载能力
❖ 飞机结构承载能力表现在对飞机使用限制和 飞机结构承载余量两个方面。
23
飞机使用限制
ny使用最小 ny ny使用最大 q q最大最大 ny使用最小 为 预 期 的 最 大 负 过 载 ; ny使用最大 为 预 期 的 最 大 正 过 载 ; q最大最大 为 预 期 的 最 大 速 压 。
❖ 起落架受载的特殊性:多数受载情况为垂直 载荷、水平载荷和侧向载荷的不同组合。
❖ CCAR-25部对各种组合和相应的限制载荷系数 都有具体规定。
30
飞机结构承载余量
❖ 安全系数
设计载荷与使用载荷之比。表示飞机在使用中结构不会 破坏而又有一定强度储备的的系数。
CCAR-25部规定:除非另有规定,必须采用安全系数1.5。
36
飞机结构件的分类
❖ 重要结构项目 ❖ 一般结构项目
37
飞机结构受力基本概念
❖ 变形
38
飞机结构受力基本概念
❖ 内力
内力的基本形式有:拉力、压力、剪力、弯矩和 扭矩。

《飞机结构与系统》课件

《飞机结构与系统》课件

起落架系统及设计
1 起落架的类型
主起落架、前轮起落架和 尾轮起落架
2 组成部分
弹簧支柱、车轮排列、零 件等。
3 参数选择与设计
轮距、轮胎类型、制动系 统与制动控制、传动系统 比例等因素的合理搭配。
动力系统及设计
发动机系统设计
可靠性 耐久性 性能卓越
推进系统的设计
螺旋桨 喷气式引擎 燃气涡轮推进器
机身结构与设计
材料选择
机身是飞机的主体部分,其材料 应该具有强度高、刚度大、轻质 等优点,材料的选用影响到飞机 的性能。
客舱设计
机身的客舱设计直接关系到乘客 的舒适度和安全性,应该充分考 虑空气流通、材料和人机工程等 方面。
布局规划
机身的布局是根据功能要求,合 理布置机载全套设备及其电子导 航系统,兼顾内部空间利用率和 人员保护性。
《飞机结构与系统》PPT 课件
本课件将生动介绍飞机结构和系统的相关知识,帮助大家更好地了解这一激 动人心的主题。
航空器结构简介
结构原理
飞机结构是由多种材料按照一定的设计构成的,如 何达到最佳的强度、刚度和尺寸重量的组合是一个 关键问题。
受力分析
受力分析是飞机结构设计的基础,它通过有限元等 手段对飞机受力特点进行研究,最终得到合理的结 构设计方案。
飞机综合控制系统介绍
飞行控制系统
飞机的飞行控制包括机动控制和静态控制两个主 要部分,常见的操纵杆、踏板、方向盘都有其理 论和技术基础。
导航系统
常用的导航系统包括VOR、DME、GPS、ILS等, 通过信号传输和数据计算,为机组提供导航辅助 信息。
通信系统
用于飞机与地面站或者航空公司之间的交互通信, 包括语音和数据通信。

机舱设备飞机结构与系统.课件

机舱设备飞机结构与系统.课件
为确保防冰与除冰系统的正常运行,需要定期检查加热元件和电源线 路的完好性,以及进行除冰实验等。
04
飞机维护与安全
定期维护与检查
01
02
03
日常检查
每天对飞机进行例行检查 ,确保各项设备正常工作 。
定期维护
按照制造商的推荐,定期 对飞机进行深度维护和检 查,包括更换部件、润滑 等。
维修记录
详细记录每次维护和检查 的情况,方便追踪和管理 。
防冰与除冰系统
防冰与除冰系统概述
防冰与除冰系统用于防止和去除飞机机翼和尾翼上的冰层,以确保飞 机的安全飞行。
防冰与除冰系统的组成
防冰与除冰系统包括热空气防冰系统和电热防冰系统等。
防冰与除冰系统的工作原理
通过向机翼和尾翼的表面加热或通电,使冰层融化或脱落,以保持飞 机的气动外形。
防冰与除冰系统的维护与检查
液压系统的组成
液压系统包括液压油箱、液压泵、油滤、管道和各种控制 阀等组件。
液压系统Байду номын сангаас工作原理
通过液压泵将油箱中的液压油抽出,经过滤清器过滤后, 通过管道和控制阀传输到各个执行机构,以驱动飞机起落 架、襟翼等部件的运动。
液压系统的维护与检查
为确保液压系统的正常运行,需要定期检查液压油的油量 、清洁度和密封性,以及更换滤清器和密封件等。
现代飞机座椅的设计已经越来越注重人体工程学和舒适性,如可调节的靠背、可折叠的小桌板、更宽敞的腿部空 间等。未来,座椅设计还将进一步优化,如采用更柔软的材质、具备按摩功能、提供个性化调节等,以满足不同 乘客的需求,提高乘客的飞行舒适度。
更先进的通讯设备
总结词
随着无线通讯技术的发展,飞机上的通讯设备也在不断升级,以满足乘客在飞行过程中的通讯需求。

飞机系统与结构

飞机系统与结构

飞机系统与结构班级:94060109学号:2009040601336姓名:李应昊飞机系统与结构随着科学的发展,在21世纪天空已经逐渐成为人类的焦点和对象,飞机也在军事、运输、经济中逐渐的扮演了越来越重要的角色,这也让人们认识到飞行器的学习和维修是一个非常重要的项目。

经过这个学期的飞机系统这门课程,我对飞行器有了我进一步的认识。

飞机主要由机翼、机身、动力装置、起落装置、操纵系统等部件组成。

(一)机翼机翼是为飞机飞行提供举力的部件。

飞机在平衡飞行时,受到四个力的作用:举力、阻力、拉(推)力与重力。

这些外力称为"外载荷",它们会使飞机的某些部件产生变形,而飞机内部会产生一种抵抗变形的内力。

这些载荷加到机翼上,会使机翼产生弯曲、扭转、剪切、拉伸和压缩五种变形。

因此,要求构件必须有足够的强度、刚度和抗疲劳能力来抵抗这种变形以保证空气动力外形的精确度。

(二)机身飞机机身的主要功能是装载人员、货物、燃油、武器、各种装备和其它物资。

除此以外,它还用于连接机翼、尾翼、起落架和其它有关构件。

根据机身的功能,其构造首先要具有尽可能大的空间以便使单位体积利用率最高;其次是连接必须安全可靠;第三是要有良好的通风加温、隔音设备,视界广阔,利于飞机起落;第四是在气动方面要求尽可能减少阻力,如迎风面积尽可能小、表面尽可能光滑;形状流线化等;五是在保证强度、刚度、抗疲劳能力的条件下重量尽可能轻。

(三)动力装置除气球外所有航空器和航天器都需要动力。

从本世纪二十年代飞机开始应用以来,人们一直在致力于改进航空发动机性能。

1903年第一架飞机飞行的动力来自一台12马力的活塞式发动机。

直到四十年代飞机飞行速度接近和达到音速时,这一类发动机在航空领域的独占地位才被涡轮喷气式发动机所取代。

活塞式发动机是以汽油作燃料的一种四冲程内燃机。

按冷却方式,活塞式发动机可分为液冷式和气冷式两种。

活塞发动机的气缸数目最多可达28个或更多,最大功率近4000马力。

飞机结构与系统(飞机机身结构)通用课件

飞机结构与系统(飞机机身结构)通用课件

铝合金飞机机身结构中最常材料 之一,因其具较高比强度、耐腐
蚀性易加工等特点。
铝合金可变形铝合金铸造铝合金 ,广泛应飞机大梁、机身蒙皮、
翼肋等部件。
铝合金缺点疲劳性能较差,易发 生疲劳裂纹,因此设计时需进行
疲劳强度析试验。
复合材料
复合材料由两种或多种材料组成新型材料,具高强度、高刚性、抗疲劳等优点。
热稳定性析
评估机身高温环境稳定性,保证结构 因温度变化而发生变形或失效。
05
机身结构损伤容限与疲劳寿命
损伤容限设计
01
损伤容限设计指飞机结构受损伤后仍能保持一定承载能力设计方 法。它通过合理设计结构细节、选择适当材料工艺,提高结构抗
损伤能力。
02
损伤容限设计包括结构进行强度析、疲劳析损伤评估,确保预期 服役期内,结构能够承受各种载荷环境条件影响。
中段
包括机身中部后部,主承 载着机身纵向横向受力, 并连接机翼行稳定性,发动 机吊舱则安装固定发动机 。
机身结构设计求
01
02
03
04
强度求
机身结构必须能够承受飞行过 程中各种载荷,包括气动载荷
、惯性载荷重力载荷等。
刚度求
机身结构必须具一定刚度,确 保飞机飞行过程中稳定性舒适
焊接工艺
总结词
焊接工艺飞机机身结构制造中重连接方式,通过熔融金属将 两零件连接一起。
详细描述
焊接工艺具强度高、密封性好、重量轻等特点,广泛应飞机 机身结构制造中。焊接工艺可电弧焊、激光焊、等离子焊等 多种方式,根据同材料连接求选择合适焊接工艺。
铆接工艺
总结词
铆接工艺飞机机身结构制造中传统连 接方式,通过铆钉将两零件连接一起 。
参数优化

民航概论电子课件第三章飞机结构及飞行原理

民航概论电子课件第三章飞机结构及飞行原理
三类。远程飞机的航程为4 800千米以上,可以完成中途不着陆的洲际 跨洋飞行,中程飞机的航程为2 400~4 800千米,近程飞机的航程一般 在2 400千米以下。近程飞机一般用于支线,因此又称支线飞机。中、 远程飞机一般用于国内干线和国际航线,因此又称干线飞机。
10 第 三 章 飞 机 结 构 及 飞 行 原 理
滑翔机
6 第三章 飞机结构及飞行原理
直升机
二、飞机的分类
1.按照飞机用途分类 按照用途不同,飞机可以分为军用飞机和民用飞机两类。军用飞机
依据不同的用途又可分为战斗机、轰炸机、攻击机、舰载飞机、军用运 输机、教练机、侦察机、预警机等。
7 第三章 飞机结构及飞行原理
2.按发动机类型分类 按照发动机类型不同,飞机可以分为螺旋桨式飞机和喷气式飞机两
14 第 三 章 飞 机 结 构 及 飞 行 原 理
机身的主要结构
2.机翼 机翼是飞机的重要部件之一,安装在机
身上,用于产生升力,也起到一定的稳定和 操纵作用。机翼的一些部位(主要是前缘和 后缘)可以活动,飞行员操纵这些部位控制 机翼升力或阻力的分布,以达到增加升力或 改变飞机姿态的目的。
(1)机翼上的操纵面
32 第 三 章 飞 机 结 构 及 飞 行 原 理
4.燃料舱 空中客车A380飞机的燃料舱
(即油箱)设置与其他空中客车飞 机类似,主油箱设置在机翼内,机 身上设置有副油箱,其最大载油量 约为250吨,续航约12000千米。
33 第 三 章 飞 机 结 构 及 飞 行 原 理
空中客车A380飞机油箱位置图
41 第 三 章 飞 机 结 构 及 飞 行 原 理
飞机起飞过程示意图
4.飞行控制 (2)巡航 巡航阶段是指飞机完成起

飞机结构讲解介绍课件

飞机结构讲解介绍课件
详细描述
起落架内部通常装减震器,吸收着陆 时冲击力,保护机体受损坏。此外, 起落架还装刹车系统,通过刹车片与 轮毂之间摩擦力实现飞机减速。
起落架结构材料技术
总结词
起落架结构材料主包括钢、铝合金复合材料等,制造技术包括焊接、机械加工热处理等。
详细描述
传统起落架结构材料主包括钢铝合金,些材料具较高强度耐腐蚀性。随着复合材料技术发展,一些先进起落架也 开始采复合装材制造,减轻重量提高结构效率。制造起落架涉及技术包括焊接、机械加工热处理等,些技术能够 确保起落架结构强度稳定性。
按发动机类型类
可活塞式发动机飞机、喷气式 发动机飞机螺旋桨式发动机飞
机等。
飞机结构重性
安全可靠性
飞机结构必须能够承受飞行过 程中各种载荷应力,保证飞行
安全可靠性。
经济性
飞机结构设计制造需考虑成本 经济效益,降低飞机制造成本 使成本。
舒适性
飞机结构设计还需考虑乘客舒 适性,如机身振动噪音等。
环保性
现代飞机结构设计还需考虑环 保求,如减排降噪等。
总结词
尾翼内部结构包括骨架、蒙皮操纵机构等部 些部协同工作实现尾翼功能。
详细描述
尾翼骨架通常由金属材料制成,如铝合金或 复合材料,支撑蒙皮并提供必刚度。蒙皮则 覆盖骨架提供尾翼外观气动性能。操纵机构 则连接飞行控制舵面与机身舵机,通过舵机 转动改变尾翼角度,进而控制飞机方向姿态

尾翼结构材料技术
总结词
详细描述
机翼内部主梁主承力结构,承受飞行中各种应力。主梁附桁条,加强机翼结构强 度。蒙皮则紧密附着桁条形成机翼外表面。些内部结构共同支撑机翼形状,确保 其能够承受飞行中各种应力。
机翼材料技术
总结词
现代飞机机翼通常采复合材料或铝合金制造,提高强度、减轻重量并满足各种飞行条件性能求。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 飞机的结构与系统
第一节 飞机的机体 第二节 飞机的动力装置 第三节 飞机的操纵系统 第四节 飞机的电子仪表系统
第一节 飞机的机体
一、飞机的机体 飞机的组成部分包括机身、机翼、尾翼、起落
架、动力装置和仪表设备等,飞机机体指的是构 成飞机外部形状的部分和承受飞机的主要受力结 构,分为机身、机翼、尾翼、起落架。 1、机翼 翼展:机翼翼尖两点之间的距离。 翼型:机翼的剖面。 机翼分为四部分:翼根、前缘、后缘、翼尖
第三节 飞机的操纵系统
• 2、电传操纵系统 • 自动控制和微电子技术的发展,为取消机械
传动装置创造了条件,可用电信号综合传感器信 号和驾驶员的操纵指令,对飞机进行有效的操纵。 如果在电传操纵系统之外,还保留机械操纵系统作 为备用,则称为准电传操纵系统。电传操纵系统 的关键是系统的可靠性问题,它的可靠性至少不 能低于机械操纵系统。为此需要采用余度技术, 对于关键部件和线路采用多重布置的原则,以提 高系统的可靠性。
• 其他还有火箭发动机、脉冲发动机和航空电动
机。火箭发动机的推进剂全部由自身携带。脉冲 发动机主要用于低速靶机和航空模型飞机。由太 阳电池驱动的航空电动机仅用于轻型飞机,尚处 在试验阶段。
第二节 飞机的动力装置
• 涡轮螺旋桨发动机也广泛用于中小型亚音速飞 机上。活塞式发动机只用于低速轻型飞机,如农 业飞机、运动机和游览机。固体和液体火箭发动 机仅作为起飞加速器短时间使用。
第二节 飞机的动力装置
• 是增大进气压力)、燃油系统、点火系统(主要
包括高电压磁电机、输电线、火花塞)、起动系 统(一般为电动起动机)、散热系统和润滑系统 等。
• 第二次世界大战后,活塞式发动机逐渐被燃
气涡轮发动机所取代。目前,300千瓦以下的小功 率活塞式发动机仍在轻型、低速飞机和直升机上 广泛应用。
第一节 飞机的机体
• 4、起落架 • 起落装置是用来支持飞机并使它能在地面和水
平面起落和停放。陆上飞机的起落装置,大都由 减震支柱和机轮等组成。它是用于起飞、Байду номын сангаас陆滑 跑,地面滑行和停放时支撑飞机。
• 起落架配置分为前三点式和后三点式,现代大
中型运输机主要采用前三点式,紧急制动时更加 稳定。
• 起落架收放主要靠液压作动筒实现,同时还
作位置。
随着航空燃气涡轮技术的进步,人们在涡轮
喷气发动机的基础上,又发展了多种喷气发动机。
根据能量输出的不同,有涡轮风扇发动机、涡轮
螺旋桨发动机、涡轮轴发动机。
第二节 飞机的动力装置
• 4、涡桨发动机
第二节 飞机的动力装置
• 5、涡扇发动机
第二节 飞机的动力装置
• 6、涡轴发动机
第二节 飞机的动力装置
第三节 飞机的操纵系统
• 助力操纵系统: • 1、液压助力器
40年代末出现了液压助力系统,舵面由液压 助力器驱动,驾驶员通过中央操纵机构、机械传 动装置控制助力器的伺服活门,间接地使舵面偏 转。它同时通过杠杆系统把舵面一部分气动载荷 传给中央操纵机构,使驾驶员获得操纵力的感觉, 构成机械反馈。
飞机液压系统通常用来收放起落架、襟翼、减 速板和操作机轮刹车以及操纵舵面的偏转。
螺旋桨减速器、机匣等组成。 活塞顶部在曲轴旋转中心最远的位置叫上死点、
最近的位置叫下死点、从上死点到下死点的距离 叫活塞冲程。活塞式航空发动机大多是四冲程发 动机,即一个气缸完成一个工作循环,活塞在气 缸内要经过四个冲程,依次是进气冲程、压缩冲 程、膨胀冲程和排气冲程。
发动机除主要部件外,还须有若干辅助系统 与之配合才能工作。主要有进气系统(为了改善 高空性能,在进气系统内常装有增压器,其功用
第三节 飞机的操纵系统
• 飞行指引仪(Flight Director) • 飞行指引仪是帮助飞行员监视或者操纵飞机的工
具,它是计算机通过采集大气、导航、姿态等信 号,并在姿态显示仪上表示。如果这时自动驾驶 仪是打开的,将此飞行指引仪的指引与自动驾驶 仪的操纵进行对比,就可以监视飞行;而在自动 驾驶仪关闭时,指引仪也可以提供指引信息,帮 助操纵飞机。它的内容包括:高度保持,航向保 持,VOR航路跟踪,完成ILS进近等。
第三节 飞机的操纵系统
第三节 飞机的操纵系统
• 主操纵系统中,飞行员用手和脚直接操纵的系
统叫中央操纵系统。通过主操纵系统(驾驶杆、 副翼、脚蹬)飞行员完成飞机的纵向、横向和航 向操纵。
• 辅助操纵系统主要是改善飞机操作性,操作方
便,减轻飞行员劳动强度,主要由扰流板、调整 片、前缘缝翼、后缘襟翼、水平安定面的操纵系 统组成。
第一节 飞机的机体
• 机翼由翼梁、翼肋、桁条和蒙皮组成。
第一节 飞机的机体
• 2、机身
机身是飞机的运载部分,绝大部分的机身是筒 状的,两头小、中间大的纺锤体。机身的主要功 用是装载乘员、旅客、武器、货物和各种设备; 还可将飞机的其它部件如尾翼、机翼及发动机等 连接成一个整体。 3、尾翼
尾翼包括水平尾翼和垂直尾翼。水平尾翼由固 定的水平定面和可动的升降舵组成。垂直尾翼则 包括固定的垂直安定面和可动的方向舵。尾翼的 主要功用是用来操纵飞机俯仰和偏转,并保证飞 机能平稳地飞行。尾翼前缘有防冰装置、尾翼尖 端有灯和静电放电刷。
第一节 飞机的机体
• 上单翼飞机干扰阻力小,向下视野良好,机身 离地面近,便于装运货物,发动机安装位置较高, 免受地面沙石损害,故大部分军用运输机采用这 种布局。 机翼的主要功用是产生升力,以支持飞机在空 中飞行;也起一定的稳定和操纵作用。在机翼上 一般安装有副翼和襟翼。操纵副翼可使飞机滚转; 放下襟翼能使机翼升力增大。另外,机翼上还可 安装发动机、起落架和油箱等。
第二节 飞机的动力装置
• 2、螺旋桨
第二节 飞机的动力装置
• 到了二战中,由于战争的需要,飞机的性能
得到了迅猛的发展,飞行速度达到700-800公里 每小时,高度达到了10000米以上,但人们突然 发现,螺旋桨飞机似乎达到了极限,尽管工程师 们将发动机的功率越提越高,从1000千瓦,到 2000千瓦甚至3000千瓦,但飞机的速度仍没有明 显的提高,发动机明显感到“有劲使不上”。
• 7、APU • 在大、中型飞机上和大型直升机上,为了减少
对地面(机场)供电设备的依赖,都装有独立的 小型动力装置,称为辅助动力装置或APU。
APU的作用是向飞机独立地提供电力和压缩 空气 ,也有少量的APU可以向飞机提供附加推力。 飞机在地面上起飞前,由APU供电来启动主发动 机,从而不需依靠地面电、气源车来发动飞机。 在地面时APU提供电力和压缩空气,保证客舱和 驾驶舱内的照明和空调,在飞机起飞时使发动机 功率全部用于地面加速和爬升,改善了起飞性能。 降落后,仍由APU供应电力照明和空调,使主发 动机提早关闭,从而节省了燃油,降低机场噪声。
第三节 飞机的操纵系统
• 飞机的操纵系统是指传递操纵指令、驱动舵面
和其他机构以控制飞机飞行姿态的系统。根据操 纵指令的来源,可分为人工操纵系统(由主操纵 系统和辅助操纵系统组成)和自动控制系统。
飞机飞行操纵系统是飞机上所有用来传递操纵 指令,驱动舵面运动的所有部件和装置的总合, 用于飞机飞行姿态、气动外形、乘坐品质的控制。
第二节 飞机的动力装置
• 通常在飞机爬升到一定高度(5000米以下)辅
助动力装置关闭.但在飞行中当主发动机空中停 车时, APU可在一定高度(一般为10000米)以 下的高空中及时启动,为发动机重新启动提供动 力。
APU是动力装置中一个完整的独立系统,但是 在控制上它和整架飞机是一体的。它的控制板装 在驾驶员上方仪表板上,它的启动程序、操纵、 监控及空气输出都由电子控制组件协调,并显示 到驾驶舱相关位置,如EICAS的屏幕上。
第三节 飞机的操纵系统
• 电传操纵系统的优点是体积小、重量轻、通过 性好,便于采用主动控制技术,易于与其他系统 交联,生存力强,维护性好,可提高飞机操纵品 质和性能,是高性能飞机操纵系统发展的方向。
• 自动驾驶系统 • 飞机上的自动飞行系统,是通过飞行员按一些
按钮和旋转一些旋钮,或者由导航设备接收地面 导航信号,来自动控制飞行器完成三轴动作的装 置。它包含自动驾驶仪、飞行指引仪、偏航阻尼 器、自动俯仰配平系统和自动油门控制系统。
第三节 飞机的操纵系统
• 偏航阻尼器(Yaw Damper) • 偏航阻尼器是一个防止飞机同时发生偏航及横滚
的系统。由于在横滚的同时发生偏航会引发“荷 兰滚”,而“荷兰滚”的频率相对固定,偏航阻 尼器通过滤波器获取这一信号,并通过液压系统 控制方向舵,完成飞行员无法进行的操作,自动 抵消“荷兰滚”的动作,所以偏航阻尼器在整个 飞行过程中都可以打开。
第一节 飞机的机体
第一节 飞机的机体
第一节 飞机的机体
根据机翼在机身上安装的部位和形式,可以把 机翼分为下单翼、中单翼、上单翼。
而民航飞机采用下单翼布局最多。 优点:1、机翼离地面近,起落架相应的就短,减轻
重量。重心低,稳。 2、迫降时,机翼吸收大部分冲击能量 3、便于维护和使用。
缺点: 机身离地面高,人货的上下不方便,需要使 用廊桥和梯车;发动机离地面近,使用时会吸入 跑道表面的沙石冰雪。
问题就出在螺旋桨上,当飞机的速度达到800 公里每小时,由于螺旋桨始终在高速旋转,桨尖 部分实际上已接近了音速,这种跨音速流场的直 接后果就是螺旋桨的效率急剧下降,推力下降,
第二节 飞机的动力装置
• 同时,由于螺旋桨的迎风面积较大,带来的阻力 也较大,而且,随着飞行高度的上升,大气变稀 薄,活塞式发动机的功率也会急剧下降。这几个 因素合在一起,决定了活塞式发动机+螺旋桨的 推进模式已经走到了尽头,要想进一步提高飞行 性能,必须采用全新的推进模式,喷气发动机应 运而生。 根据牛顿第三定律,作用在物体上的力都有大 小相等方向相反的反作用力。喷气发动机在工作 时,从前端吸入大量的空气,燃烧后高速喷出, 在此过程中,发动机向气体施加力,使之向后加 速,气体也给发动机一个反作用力,推动飞机前 进。事实上,这一原理很早就被应用于实践中, 我们玩过的爆竹,就是依靠尾部喷出火药气体的 反作用力飞上天空的。
相关文档
最新文档