平行四边形的性质和判定复习课件3
合集下载
平行四边形复习课 优课教学课件
A x D 2x
E
3X
3x
B
C
B
C
如图,Rt△OAB的两条直角边在坐标轴上,已知
点A(0,2),点B(3,0),则以点O,A,B为其
中三个顶点的平行四边形的第四个顶点C的坐标
为 。 _________________
y
(-3,2)
3
2A
(3,2 )
O
B
7
-4 -3 -2 -1
12 34 x
-1
1
-2
证法2: 连接BD,交AC于点O ,连接DE,BF
∵四边形ABCD是平行四边形
BC=AD
∴BO=OD, AO=CO
∠1=∠2 CE=AF ∴ △BCE≌△DAF ∴BE=DF, ∠3=∠4 ∴BE∥DF
又∵AF=CE
∴AE=CF
∴EO=FO
∴四边形BEDF是平行四边形
∴ BE=DF, BE∥DF
课堂小结
5矩形、菱形、正方形都具有的性质是( B)
A、对角线相等
B、对角线互相平分
C、对角线互相垂直 D、四条边都相等
6.已知矩形的一条对角线与一边的夹角是40°,
则两条对角线所成的锐角的度数( D )
A、50° B、60° C、70° D、80°
7、 已知菱形ABCD的周长为20cm。∠A: ∠ABC=1:2 ,则对角线BD的长等于 _____5_____cm。
四边形知识结构(定义)图
两组对边平行
角90° 个 一
矩形
一 组 邻 边 相 等
四边 形
平行四边
一角为直角且一组邻边相等
形
正方形
一 组 邻 边 相 等
菱形
18-1-2 平行四边形的性质定理课件2022-2023学年华东师大版八年级数学下册
F
A
B
∴∠FDO=∠EBO
又∵∠DOF=∠EOB
∴△DFO≌△BEO.
∴BE∥DF
∴OE=OF
3. 如图,在▱ABCD中,EF过对角线的交点O,且与边AB、CD分别相交 于点E、F,AB=4,AD=3,OF=1.3.求四边形BCFE的周长.
解:在▱ABCD中 易证得:△BEO≌△DFO ∴OE=OF,EB=DF, ∴lEB+lBC+lCF=lBC+lCD=4+3=7
B
C
因为对角线互相平分,所以有AO=CO,
OD=BO.
2.如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC
,垂足分别为点E、F.求证:OE=OF. 分析:要证明OE=OF,只要证明它们所在
D
C
OE
的两个三角形全等即可.
证明:在▱ABCD中 有OB=OD(平行四边形的对角线互相平分) ∵BE⊥AC,DF⊥AC
课堂小结
性质定理3 平行四边形的对角线互相平分
平行四边形 性质
根据平行四边形性质求面积与周长
∴AB+OA+OB+2=BC+OB+OC,
∴2(AB+BC)=16
即AB+2=BC
即4AB+4=16
又∵▱ABCD的周长等于16
∴AB=3,BC=5
例4 如图,在▱ABCD中,对角线AC=21cm,BE⊥AC,垂足为点E, 且BE=5cm,AD=7cm.求AD和BC之间的距离.
解:设AD,和BC之间的距离为x,则▱ABCD的
A
D
O
∴ AO +BO=15-6=9
B
人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件
10 ●O
∴AC= AB2−BC2= 102−82=6
∵OA=OC,∴OA=12AC=3
B
C
∴S ABCD= BC×AC=8×6=48.
随堂检测
1.如图,在▱ABCD中,对角线AC、BD相交于点O,若 AC=14,BD=8,AB=10,则△OAB的周长为 21 .
2.如图,平行四边形ABCD中,AD=5cm,AB⊥BD, 点O是两条对角线的交点,OD=2cm,则AB= 3 cm.
叫做这两条平行线之间的距离.
如图,直线a∥b,A是直线a上的任意
A
a
一点,AB ⊥b ,B是垂足,线段AB的
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
随堂检测
C:拓展延伸:
A
D
如图,在 ABCD中,
B
C
(1)∠A:∠B : ∠C : ∠D的度数可能是( B )
A. 1 : 2 : 3 : 4
B.3 : 2 : 3 : 2
C.2 : 3 : 3 : 2
D.2 : 2 : 3 : 3
(2)连接AC, 若∠D=60°, ∠DAC=40°,则 ∠B=_6_0_°_,
一条直线的距离相等.
已知:如图,EF∥MN,A,D是直线
人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)
论的个数是
()
• A.2
• B.3
• C.4
• D.5
7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥
AB 于点 E,PF⊥AC 于点 F,M 为 EF 中点,则 AM 的最小值为
(D )
A.54
B.45
C.53
D.65
8.如图,ABCD 是正方形,E、F 分别是 DC 和 CB 的延长
∠CBF,∴BF平分∠ABC.
• (3)解:△BEF是等腰三角形.理由如下:过 点F作FG⊥BE于点G.∵AD∥BC,FG⊥BE,
BE⊥AD,∴FG∥AD∥BC.∵F为CD的中点,
∴EG=BG,∴EF=BF,∴△BEF是等腰三
• ★集训2 特殊平行四边形的性质与判定的相 关计算与证明
• 7.已知四边形ABCD中,对角线AC与BD相A 交于点O,AD∥BC,下列判断中错误的是 ()
D.4 个
(B )
• 二、填空题(每小题5分,共20分)
• 9.已知一个菱形的两条对角线的长分别为 5210和24,则这个菱形的周长为______.
• 10.【湖北武汉中考】以正方形ABCD的边 A30D°或作15等0°边△ADE,则∠BEC的度数是 _______________.
• 11.如图,矩形ABCD的对角2线0 BD的中点为 O,过点O作OE⊥BC于点E,连接OA,已知 AB=5,BC=12,则四边形ABEO的周长为 ______.
• 4.如图,在□ABCD中,E、F分别是AB、
DC边上的点,AF与DE相交于点P,BF与CE 相41交于点Q.若S△APD=16 cm2,S△BQC=25 cm2,则图中阴影部分的面积为______cm2.
平行四边形的性质复习课件ppt
分成面积相等的两部分
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1、 通过本节课的学习,你有什么收获? 2、 平行四边形的性质共有哪些?
边 角 对角线
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
如图,把两张完全相同的平行四边形纸片叠
合在一起,在它们的中心O 钉一个图钉,将一个
平行四边形绕O旋转180°,你发现了什么?
A
B
O
D
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
结论
●1. ABCD绕它的中心O旋转180°后与自身重合,这 时我们说 ABCD是 中心对称图形,点O叫对称中心。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
猜一猜 你能证明
根据刚才的旋转,你知道平行四边形的对 它吗?
由于年迈体弱,他决定把这块土地分给他的四个孩
子,他是这样分的:
老大
老二
老四
老三
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
平行四边形复习课件
一组对边平行且相等的四边形是平行四边 形。
两组对角分别相等的四边形是平行四边形 。
02
平行四边形的特殊形式
矩形
01 定义
有一个角是直角的平行四边形是矩形。
02 性质
矩形的四个角都是直角,矩形的对角线相等。
03 判定
有一个角是直角的平行四边形是矩形;对角线相 等的平行四边形是矩形。
菱形
01 定义
矩形、菱形、正方形的判定方法与证明思路
正方形的判定方法与证明思路
正方形是特殊的长方形和菱形,其判 定方法有五种。
正方形的判定方法主要有五种,一是 有一组邻边相等且有一个角是直角的 平行四边形是正方形;二是有一个角 是直角的菱形是正方形;三是有一个 角是直角的矩形是正方形;四是有一 组邻边相等的矩形是正方形;五是有 一个角是直角的等腰梯形是正方形。 在证明过程中,需要结合已知条件, 通过全等三角形、平行线的性质等定 理进行证明。
2. 举例说明:例如,我们要证明四边形ABCD是平行 四边形,那么我们需要证明AB//CD且AB=CD。
总结词:如果一个四边形的一组对边平行且相 等,那么这个四边形是平行四边形。
1. 介绍利用一组对边平行且相等证明平行四边形 的方法:一组对边平行且相等的四边形是平行四 边形。
06
典型例题解析与拓展
矩形、菱形、正方形的判定方法与证明思路
01
菱形的判定方法与证明思路
02
菱形是平行四边形的一个特例,其判定方法有三种。
03
菱形的判定方法主要有三种,一是有一组邻边相等的平行 四边形是菱形;二是有一个角是直角的菱形是菱形;三是 有一组邻边相等的矩形是菱形。在证明过程中,需要结合 已知条件,通过全等三角形、平行线的性质等定理进行证 明。
最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-
第 1 题图
第 2 题图
2.(4分)如图,在四边形ABCD中,E是BC边的中点,
连接DE并延长,交AB的延长线于F点,AB=BF.添
加一个条件,使四边形ABCD是平行四边形.你认为
下面四个条件中可选择的是( D )
A.AD=BC;
B.CD=BF;
C.∠A=∠C;
D.∠F=∠CDE。
3.(8分)(2013·镇江)如图,AB∥CD,AB=CD,点
6.(5分)小玲的爸爸在钉制平行四边形框架时,采用了
一种方法:如图所示,将两根木条AC,BD的中点
重叠,并用钉子固定,则四边形ABCD就是平行四
边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形 7.(8分)如图,在▱ABCD中,点E,F是对角线AC上两
四边形的个数为( ) A.4个; B.3个; C.2个; D.1个
9.已知三条线段的长分别为10 cm, 14 cm和8 cm, 如 果以其中的两条为对角线, 另一条为边, 那么可以 画出所有不同形状的平行四边形的个数为( ) A. 1个; B. 2个; C. 3个; D. 4个.
10.如图, 在▱ABCD中, 对角线AC, BD相交于点O, E,
∠CFD+∠DFE=180°,∴∠AEF=∠DFE.∴AE∥DF.∴四边形 AFDE 为平行四边形
4.(4分)如图,在▱ABCD中,点E,F分别在AD,BC
上,且BE∥DF,若∠EBF=45°,则∠EDF的度数
为 45 。
5.(A41第B分8C2.)1D如课.2为图时平,平行四行平四边边四行形形边四A,B形边C则D形的可中的判添,性定加AB的质∥条与C件D判,是定要的使四综边合形应用
北师大版数学八年级下册平行四边形的判定课件
1.如图,已知l1∥l2,AB∥CD,HE⊥l2,FG⊥l2,垂足分别为E, G,则下列说法错误的是( A )
A.AB的长就是l1与l2之间的距离 B.AB=CD C.HE的长就是l1与l2之间的距离 D.HE=FG
跟踪练习
牛刀小试
2.如图,直线AB∥CD,P是AB上的动点,当点P的位置变化 时,三角形PCD的面积将( )
一个四边形为平行四边形?
课堂检测
能力提升题
2.如图,已知l1∥l2∥l3,相邻两条平行直线间 的距离都等于1.若等腰直角三角形ABC的三 个顶点分别在这三条平行直线上,求斜边AB的
长.
分析:利用平行线间的距离相等构造全等三角形,然后利用勾股定
理求AB的长.
解:如图,过点A作AD⊥l1于点D,过点B
经过度量,我们发现这些垂线段的长度都相等 (从图中也可以看到这一点).
猜想:平行线间距离处处相等.
探索新知
理论证明
例3:如图,直线a//b,A,B是直线a上任意两点, AC⊥b,BD⊥b,垂足分别为C,D.求证:AC=BD.
证明:∵AC⊥CD,BDC∥BD.
课题:平行四边形判定(3)
学习目标
1.探索并证明平行四边形其他相关的结论,发展演 绎能力;
2.利用平行四边形的判定研究“夹在平行线之间的 平行线段相等”,并理解平行线之间的距离;
3.能够综合运用平行四边形的判定定理和性质进行 计算和证明.
复习导入
平行四边形的判定方法
1.两组对边分别平行的四边形是平行四边形. 从边来判定 2.两组对边分别相等的四边形是平行四边形.
巩固练习
1. 如图:平行四边形ABCD中,∠ABC=700,∠ABC的平分线交AD 于点E,过D作BE的平行线交BC于点F,求∠CDF的度数.
A.AB的长就是l1与l2之间的距离 B.AB=CD C.HE的长就是l1与l2之间的距离 D.HE=FG
跟踪练习
牛刀小试
2.如图,直线AB∥CD,P是AB上的动点,当点P的位置变化 时,三角形PCD的面积将( )
一个四边形为平行四边形?
课堂检测
能力提升题
2.如图,已知l1∥l2∥l3,相邻两条平行直线间 的距离都等于1.若等腰直角三角形ABC的三 个顶点分别在这三条平行直线上,求斜边AB的
长.
分析:利用平行线间的距离相等构造全等三角形,然后利用勾股定
理求AB的长.
解:如图,过点A作AD⊥l1于点D,过点B
经过度量,我们发现这些垂线段的长度都相等 (从图中也可以看到这一点).
猜想:平行线间距离处处相等.
探索新知
理论证明
例3:如图,直线a//b,A,B是直线a上任意两点, AC⊥b,BD⊥b,垂足分别为C,D.求证:AC=BD.
证明:∵AC⊥CD,BDC∥BD.
课题:平行四边形判定(3)
学习目标
1.探索并证明平行四边形其他相关的结论,发展演 绎能力;
2.利用平行四边形的判定研究“夹在平行线之间的 平行线段相等”,并理解平行线之间的距离;
3.能够综合运用平行四边形的判定定理和性质进行 计算和证明.
复习导入
平行四边形的判定方法
1.两组对边分别平行的四边形是平行四边形. 从边来判定 2.两组对边分别相等的四边形是平行四边形.
巩固练习
1. 如图:平行四边形ABCD中,∠ABC=700,∠ABC的平分线交AD 于点E,过D作BE的平行线交BC于点F,求∠CDF的度数.
《平行四边形》期末复习 —初中数学课件PPT
∴△ODE≌△FCE(AAS). (2)∵△ODE≌△FCE,∴OD=FC. ∵CF∥BD,∴四边形ODFC是平行四边形. 在矩形ABCD中,OC=OD,∴ ODFC是菱形.
6.如图M-55-10,四边形ABCD是正方形,E,F分别是DC和CB的 延长线上的点,且DE=BF,连接AE,AF,EF. (1)求证:△ADE≌△ABF; (2)若BC=8,DE=3,求△AEF的面积.
21.如图M-55-22,在矩形ABCD中(AD>AB),点E是BC上
一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不
一定正确的是
( B)
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD-DF
22.如图M-55-23,在△ABC中,CD⊥AB于
点D,BE⊥AC于点E,F为BC的中点,DE=5,
(1)证明:∵四边形ABCD是矩形, ∴AD∥BC,AD=BC. ∵E,F分别是AD,BC的中点, ∴AE= AD,CF= BC. ∴AE=CF. ∴四边形AFCE是平行四边形.
综合提升
20.如图M-55-21,在菱形ABCD中,对角线AC,BD相交于点O, BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为( D ) A.4 B.4.8 C.2.4 D.3.2
14.如图M-55-16,在△ABC中,已知AB=8, ∠C=90°,∠A=30°,DE是中位线,则DE 的长为____2____.
15. 已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个 菱形的边长为____5______cm. 16. 如图M-55-17,矩形ABCD的对角线AC=8 cm,∠AOD=120°, 则AB的长为_____4_____cm.
6.如图M-55-10,四边形ABCD是正方形,E,F分别是DC和CB的 延长线上的点,且DE=BF,连接AE,AF,EF. (1)求证:△ADE≌△ABF; (2)若BC=8,DE=3,求△AEF的面积.
21.如图M-55-22,在矩形ABCD中(AD>AB),点E是BC上
一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不
一定正确的是
( B)
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD-DF
22.如图M-55-23,在△ABC中,CD⊥AB于
点D,BE⊥AC于点E,F为BC的中点,DE=5,
(1)证明:∵四边形ABCD是矩形, ∴AD∥BC,AD=BC. ∵E,F分别是AD,BC的中点, ∴AE= AD,CF= BC. ∴AE=CF. ∴四边形AFCE是平行四边形.
综合提升
20.如图M-55-21,在菱形ABCD中,对角线AC,BD相交于点O, BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为( D ) A.4 B.4.8 C.2.4 D.3.2
14.如图M-55-16,在△ABC中,已知AB=8, ∠C=90°,∠A=30°,DE是中位线,则DE 的长为____2____.
15. 已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个 菱形的边长为____5______cm. 16. 如图M-55-17,矩形ABCD的对角线AC=8 cm,∠AOD=120°, 则AB的长为_____4_____cm.
《四边形》复习课件
特殊四边形的面积与周长计算
菱形面积计算公式:对角线 乘积的一半
总结词:理解特殊四边形的 特点,掌握其面积与周长的
计算方法
01
02
03
正方形面积计算公式:边长 的平方
等腰梯形面积计算公式:上 底加下底后乘高再除以2
04
05
等边三角形面积计算公式: 边长乘高再除以2
04
四边形的应用
四边形在几何证明中的应用
04 菱形的判定定理包括四边相等
的平行四边形、对角线垂直的 平行四边形等。
总结词
掌握面积和周长的计算
05
详细描述
06 掌握菱形的面积和周长的计算
公式,并能灵活运用。
正方形题型解析
总结词
理解特有性质
详细描述
正方形的性质包括四边相等、四 个角都是直角等。
总结词
掌握判定定理
详细描述
掌握正方形的面积和周长的计算 公式,并能灵活运用。
总结词
熟练运用判定定理
详细描述
掌握平行四边形的判定定理,如两组 对边分别平行、两组对边分别相等、 一组对边平行且相等等。
总结词
掌握面积和周长的计算
详细描述
掌握平行四边形的面积和周长的计 算公式,并能灵活运用。
矩形题型解析
总结词
理解特有性质
详细描述
矩形的性质包括四个角都是直角、对角线相等 且互相平分等。
平行四边形的性质和判定
利用平行四边形的性质和判定定理, 可以证明两条直线是否平行或一个四 边形是否为平行四边形。
矩形的性质和判定
矩形的性质和判定定理在证明直角三 角形和等腰三角形等问题中有着广泛 应用。
菱形的性质和判定
菱形的性质和判定定理在证明等腰三 角形和等边三角形等问题中有着广泛 应用。
人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件
新知探究
于是我们又得到平行四边形的一个判断定理: 一组对边平行且相等的四边形是平行四边形.
数学表达式:如图,∵AB =∥ CD, ∴四边形ABCD是平行四边形.
例题精析
例1 如图,在▱ABCD中,E,F分别是AB,CD的中点.
求证:四边形EBFD是平行四边形.
证明:∵四边形ABCD是平行四边形,
人教版八年级数学下册
第十八章 平行四边形
平行四边形的判定
第1课时
新课导入
前面我们学习了平行四边形的定义和性质,它们的内容是什么? 平行四边形的定义:
两组对边分别平行的四边形叫平行四边形; 平行四边形的性质:
对边相等,对角相等,对角线互相平分.
新课导入 一、复习反思,引出课题
学习完定义和性质后,由以前经验接下来我们应该研究什么?
定义
性质
判?定
平行四边形的判定
新课探究
根据以往学习一些图形判定定理的经验,如何寻找平行四边形 的判定方法?
性质定理 两直线平行,同位角相等
角平分线上的点到角两边的距离相等
线段垂直平分线上的点到线段两端点的距 离相等
全等三角形的对应边相等 ……
判定定理 同位角相等,两直线平行
角的内部,到角两边距离相等的 点在这个角的角平分线上
∴ △AOD≌△COB.
∴ ∠OAD=∠OCB.
∴ AD∥BC. 同理 AB∥DC.
判定3: 对角线互相平分的四边形是平行四边形.
∴ 四边形ABCD是平行四边形.
新课探究
两组对边分别平行 两组对边分别相等 两组对角分别相等 对角线互相平分
的四边形是平行四边形
例题精析
例1 如图,AB=DC=EF,AD=BC,DE=CF.求证:AB∥EF.
平行四边形的性质和判定复习公开课获奖课件百校联赛一等奖课件
1.下列性质中,平行四边形不一定具有旳是( C)
(A)对角相等 (C )对角互补
(B)邻角互补 (D)内角和是360°
2.下面鉴定四边形是平行四边形旳措施中,
错误旳是( D )。
(A)一组对边平行,另一组对边也平行; (B)一组对角相等,另一组对角也相等; (C )一组对边平行,一组对角相等; (D)一组对边平行,另一组对边相等
3、已知:如图,在平行四边形ABCD旳周长为20 cm,O是对角线AC和BD旳交点 (1)若△ABC旳周长是17cm,求OC旳长 (2)若△OAB旳周长比△OBC旳周长短4cm, 求AB旳长
A
D
O
B
C
4.如图 四边形 ABCD和四边形BEDF都是 平行四边形, 请你阐明(1) AE=CF旳理由
A
求证:AG与ED相互平分。
A
E
H
F
B
D
C
G
7、已知:AD为△ABC旳角平分线,DE∥AB , 在AB上截取BF=AE。
求证:EF=BD
A
F B
12
3
D
E C
8、已知 平行四边形 ABCD中,直线MN // AC, 分别交DA延长线于M,DC延长线于N,AB于P, BC于Q。
求证:PM=QN。 M
小结:
• 1、平行四边形旳性质是什么? • 2、平行四边形旳鉴定定理是什
么?
师生共勉
把一件平凡旳事情做好就是不平凡 把一件简朴旳事情做好就是不简朴
D
E
A
D
O
E
F
B
C
F
B
C
变式:如图 已知 四边形 ABCD 都是平行四边形, AE=CF,请你阐 明四边形BEDF是平行四边形
中考数学《特殊平行四边形》专题复习课件(共32张PPT)
ACEF是菱形?请回答并证明你的结论. (3)四边ACEF有可能是正方形吗?请证明
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边
角
对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边
角
对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等
平行四边形复习课件2022——2023学年人教版八年级下册数学
3.(2021•云南20题8分)如图,四边形ABCD是矩形,E,F分别 是线段AD,BC上的点,O是EF与BD的交点.若将△BED沿 直线BD折叠,则点E与点F重合. (1)求证:四边形BEDF是菱形;
(2)若ED=2AE,AB•AD=3 3 ,
求EF•BD的值.
(1)证明:由折叠的性质可知△BED ≌△BFD, ∴BE=BF, DE=DF, ∠EBD=∠FBD. ∵四边形ABCD是矩形, ∴AD∥BC,∴∠EDB=∠FBD, ∴∠EBD=∠EDB,∴BE=DE. ∵BE=BF,DE=DF, ∴BE=BF=DE=DF, ∴四边形BEDF是菱形.
(2)任意平行四边形的中点四边形是什么形状?为什么?
(3)任意矩形、菱形和正方形的中点四边形是什么形状?为 什么?
走进中考
1.(2019•云南20题8分)如图,四边形ABCD中,对角线AC,BD相交于点O, AO=OC,BO=OD,且∠AOB=2∠OAD. (1)求证:四边形ABCD是矩形; (2)若∠AOB∶∠ODC=4∶3,求
两条平行线中,一条直线
D H C b 上任意一点到另一条直线的距
离叫做两条平行线之间的距离.
a 平行线之间的距离处处相等。
2.三角形的中位线定理:
A
D
E
B
C
三角形的中位线平行于三角形的第三边,并且等于 第三边的一半.
3.直角三角形斜边上的中线:
A
O
B
C
直角三角形斜边上的中线等于斜边的一半.
五、中点四边形(拓展)
∠ADO的度数.
(1)证明:∵AO=OC, BO=OD, ∴四边形ABCD是平行四边形. 又 ∵∠AOB = 2∠OAD , ∠AOB = ∠OAD+∠ADO, ∴∠OAD=∠ADO,∴AO=OD. ∵AC = AO + OC = 2AO , BD = BO + OD=2OD, ∴AC=BD,∴四边形ABCD是矩形.
北师大版九年级数学上册第一章 特殊平行四边形复习课件(共64张PPT)
第一章
特殊平行四边形
章末复习
第一章 特殊平行四边形
章末复习
知识框架
归纳整合
素养提升
中考链接
第一章 特殊平行四边形
知识框架
菱形
正方形
矩形
菱形、矩形、正
方形之间的关系
特殊平行四边形
第一章 特殊平行四边形
知识框架
定义
有一组邻边相等的平行
四边形叫作菱形
四条边相等
性质
对角线互相垂直
菱形
对称性
既是轴对称图形, 又是中心对称图形
第一章 特殊平行四边形
归纳整合
相关题1-2
如图1-Z-4, 在菱形ABCD中, 对角线AC, BD相
交于 点O, 过点D作对角线BD的 垂线交BA的
延长线于点E. (1)求证:四边形ACDE是 平行
四边形;(2) 若 AC = 8 ,
△ADE的周长.
BD = 6 ,
求
第一章 特殊平行四边形
归纳整合
分析
①
√
∵正方形ABCD的边长为6, CE=2DE, ∴DE=2, CE=4.
又∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=AB=6, ∠AFE=∠D=∠B=90°, 又AG=AG,故Rt△ABG和Rt△AFG
全等, ∴BG=GF
②
√
设 BG=x, 则GF=x, CG=BC-BG=6-x, 在Rt△CGE中, GE=x+2, EC=4,
过点H作PQ∥EF, 分别交AB, CD于点P, Q, 得到四边形MNQP, 此
时, 他猜想四边形MNQP是菱形, 请在图1-Z-2的框中补全他的证明
思路.
第一章 特殊平行四边形
特殊平行四边形
章末复习
第一章 特殊平行四边形
章末复习
知识框架
归纳整合
素养提升
中考链接
第一章 特殊平行四边形
知识框架
菱形
正方形
矩形
菱形、矩形、正
方形之间的关系
特殊平行四边形
第一章 特殊平行四边形
知识框架
定义
有一组邻边相等的平行
四边形叫作菱形
四条边相等
性质
对角线互相垂直
菱形
对称性
既是轴对称图形, 又是中心对称图形
第一章 特殊平行四边形
归纳整合
相关题1-2
如图1-Z-4, 在菱形ABCD中, 对角线AC, BD相
交于 点O, 过点D作对角线BD的 垂线交BA的
延长线于点E. (1)求证:四边形ACDE是 平行
四边形;(2) 若 AC = 8 ,
△ADE的周长.
BD = 6 ,
求
第一章 特殊平行四边形
归纳整合
分析
①
√
∵正方形ABCD的边长为6, CE=2DE, ∴DE=2, CE=4.
又∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=AB=6, ∠AFE=∠D=∠B=90°, 又AG=AG,故Rt△ABG和Rt△AFG
全等, ∴BG=GF
②
√
设 BG=x, 则GF=x, CG=BC-BG=6-x, 在Rt△CGE中, GE=x+2, EC=4,
过点H作PQ∥EF, 分别交AB, CD于点P, Q, 得到四边形MNQP, 此
时, 他猜想四边形MNQP是菱形, 请在图1-Z-2的框中补全他的证明
思路.
第一章 特殊平行四边形
九年级数学上册 第3单元复习课件 北师大版
第3章复习 ┃ 知识归类
(4)等腰梯形是轴对称图形,它只有一条对称轴,一底的垂 直平分线是它的对称轴.
12.等腰梯形的判定 (1)两腰相等的梯形是等腰梯形; (2)同一底上的两个角 相等 的梯形是等腰梯形; (3)两条对角线 相等 的梯形是等腰梯形. [注意] 等腰梯形的判定方法:①先判定它是梯形;②再用 “两腰相等”或“同一底上的两个角相等”来判定它是等腰梯 形.
第3章复习
第3章复习 ┃ 知识归类
┃知识归纳┃
1.平行四边形的性质 (1)平行四边形的两组对边分别平行; (2)平行四边形的两组对边分别 相等 ; (3)平行四边形的两组对角分别 __相__等__ ; (4)平行四边形的对角线 互相平分 ; (5)平行四边形是中心对称图形,它的对称中心是两条对角 线的交点.
(5)正方形既是轴对称图形又是中心对称图形 ,对称轴有 四 条,对称中心是对角线的交点.
10.正方形的判定 (1)有一组邻边相等并且有一个角是直角的平行四边形叫做 正方形; (2)有一组邻边相等的 矩形 是正方形;
第3章复习 ┃ 知识归类
(3)有一个角是直角的 菱形 是正方形. [注意] 矩形、菱形、正方形都是平行四边形,且是特殊的平 行四边形.矩形是有一内角为直角的平行四边形;菱形是有一组 邻边相等的平行四边形;正方形既是矩形,又是菱形. 11.等腰梯形的性质 (1)等腰梯形两腰 相等 、两底 平行 ; (2)等腰梯形在同一底上的两个角 相等 ; (3)等腰梯形的对角线 相等 ;
第3章复习 ┃ 知识归类
2.平行四边形的判定 (1)两组对边分别 平行 的四边形是平行四边形; (2)两组对角分别 相等 的四边形是平行四边形; (3)两组对边分别 相等 的四边形是平行四边形; (4)对角线 互相平分 的四边形是平行四边形; (5)一组对边平行且 相等 的四边形是平行四边形. [易错点] 一组对边相等,一组对角相等的四边形不一定是平 行四边形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
ABCD边AD、
E D
B
F
C
例2:已知点D、E、F分别在 ABC的边 BC、AB、AC上,且DE AF,DE=AF, G在FD的延长线上,DG=DF。
求证:AG与ED互相平分。
E H B G D F C A
拓展训练1
2、已知:AD为△ABC的角平分线,DE∥AB , 在AB上截取BF=AE。 求证:EF=BD
A
1 2
F
3
E
B
D
C
3、已知 平行四边形 ABCD中,直线MN // AC, 分别交DA延长线于M,DC延长线于N,AB于P, BC于Q。 求证:PM=QN。
M A D
P
B
Q N
C
思考:有一等腰三角形的木格子(如图),里 面的每一同方向木条都互相平行,已知等腰 三角形的腰长是30CM,底边长是50CM, 你能帮木工师傅算出拼木格子所需木条的总 长度吗?(不计接头)。
平行四边形的性质和判定复习
平行四边形的性质
1、对边的关系
2、对角的 关系
A
A
D C
B
平行四边形的对边平行且相等.
平行四边形的对角相等. A 3 、平行四边形的 对角线互相行四边形的判定方法
两组对边分别平行 边 两组对边分别相等 一组对边平行且相等 角 两组对角分别相等
D
C
B
四边形是平行四边形
对角线: 对角线互相平分
已知:如图,在平行四边形ABCD的周长为20 cm,O是对角线AC和BD的交点 (1)若△ABC的周长是17cm,求OC的长 (2)若△OAB的周长比△OBC的周长短4cm, 求AB的长
A
O
D C
B
• 1、下列条件中,不能判定四边形ABCD 是平行四边形的是( D ) • A、∠A=∠C,∠B=∠D • ∠A=∠B=∠C=90 • ∠A+∠B=180 ,∠B+∠C=180 • ∠A+∠B=180 ,∠C+∠D=180
A D
B
C
4.如图 四边形 ABCD和四边形BEDF都是 平行四边形, 请你说明(1) AE=CF的理由
A E D A E
F F
D
O
B
C
B
C
变式:如图 已知 四边形 ABCD都是平行 四边形, AE=CF,请你说明四边形BEDF是平 行四边形
知识运用
例1:已知E、F是 BC的中点, 求证:BE=DF。
ABCD边AD、
E D
B
F
C
例2:已知点D、E、F分别在 ABC的边 BC、AB、AC上,且DE AF,DE=AF, G在FD的延长线上,DG=DF。
求证:AG与ED互相平分。
E H B G D F C A
拓展训练1
2、已知:AD为△ABC的角平分线,DE∥AB , 在AB上截取BF=AE。 求证:EF=BD
A
1 2
F
3
E
B
D
C
3、已知 平行四边形 ABCD中,直线MN // AC, 分别交DA延长线于M,DC延长线于N,AB于P, BC于Q。 求证:PM=QN。
M A D
P
B
Q N
C
思考:有一等腰三角形的木格子(如图),里 面的每一同方向木条都互相平行,已知等腰 三角形的腰长是30CM,底边长是50CM, 你能帮木工师傅算出拼木格子所需木条的总 长度吗?(不计接头)。
平行四边形的性质和判定复习
平行四边形的性质
1、对边的关系
2、对角的 关系
A
A
D C
B
平行四边形的对边平行且相等.
平行四边形的对角相等. A 3 、平行四边形的 对角线互相行四边形的判定方法
两组对边分别平行 边 两组对边分别相等 一组对边平行且相等 角 两组对角分别相等
D
C
B
四边形是平行四边形
对角线: 对角线互相平分
已知:如图,在平行四边形ABCD的周长为20 cm,O是对角线AC和BD的交点 (1)若△ABC的周长是17cm,求OC的长 (2)若△OAB的周长比△OBC的周长短4cm, 求AB的长
A
O
D C
B
• 1、下列条件中,不能判定四边形ABCD 是平行四边形的是( D ) • A、∠A=∠C,∠B=∠D • ∠A=∠B=∠C=90 • ∠A+∠B=180 ,∠B+∠C=180 • ∠A+∠B=180 ,∠C+∠D=180
A D
B
C
4.如图 四边形 ABCD和四边形BEDF都是 平行四边形, 请你说明(1) AE=CF的理由
A E D A E
F F
D
O
B
C
B
C
变式:如图 已知 四边形 ABCD都是平行 四边形, AE=CF,请你说明四边形BEDF是平 行四边形
知识运用
例1:已知E、F是 BC的中点, 求证:BE=DF。