图像增强理论简述

合集下载

计算机视觉的图像增强技术(六)

计算机视觉的图像增强技术(六)

计算机视觉的图像增强技术在当今社会,计算机视觉的发展已经成为了一种趋势。

随着人工智能和大数据技术的不断演进,计算机视觉技术在图像处理和分析领域的应用也越来越广泛。

其中,图像增强技术作为计算机视觉的一个重要分支,对于提高图像的质量和清晰度有着重要的作用。

一、图像增强技术的概念图像增强技术是指利用计算机视觉技术对图像进行处理,以改善图像的质量、清晰度和对比度的一种方法。

通过图像增强技术,可以使得原始图像在保持基本信息的情况下,更加清晰、更具对比度和更真实。

在实际应用中,图像增强技术被广泛应用于医学影像、卫星图像、航空图像、安防监控等领域。

二、图像增强技术的原理图像增强技术的原理主要是通过对图像的像素进行处理,改变对比度、亮度和颜色等属性,从而使得图像更加清晰。

常见的图像增强技术包括直方图均衡化、滤波、锐化和去噪等方法。

其中,直方图均衡化是一种最简单的图像增强方法,它通过调整图像的灰度级别,使得图像的对比度得到增强。

而滤波、锐化和去噪则是通过对图像进行频域或空域的处理,进而改善图像的质量。

三、图像增强技术的应用图像增强技术在各个领域都有着广泛的应用。

在医学影像领域,通过图像增强技术可以使得医生更加清晰地观察到患者的病情,从而提高诊断的准确性。

在航空航天领域,图像增强技术可以帮助飞行员更加清晰地观察到地面情况,提高飞行安全性。

在安防监控领域,图像增强技术可以帮助监控人员更加清晰地观察到监控画面,提高监控效率。

四、图像增强技术的发展趋势随着人工智能和大数据技术的不断发展,图像增强技术也在不断创新和完善。

未来,随着深度学习和神经网络技术的不断成熟,图像增强技术将更加智能化和自动化。

通过深度学习算法,可以更加准确地识别和处理图像中的信息,从而进一步提高图像增强技术的效果和应用范围。

总之,图像增强技术作为计算机视觉的一个重要分支,在图像处理和分析领域有着广泛的应用前景。

随着技术的不断进步,图像增强技术将会在医学、航空航天、安防监控等领域发挥越来越重要的作用。

图像增强讲义

图像增强讲义

中值滤波
中值滤波是对一个滑动窗口内的诸像素灰度值排序,用 中值代替窗口中心像素的原来灰度值,因此它是一种非线性 的图像平滑法。 例:采用1×3窗口进行中值滤波 原图像为: 2 2 6 2 1 2 4 4 4 2 4 处理后为: 2 2 2 2 2 2 4 4 4 4 4 它对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪 声的同时能有效保护边缘少受模糊。但它对点、线等细节较 多的图像却不太合适。 对中值滤波法来说,正确选择窗口尺寸的大小是很重要 的环节。一般很难事先确定最佳的窗口尺寸,需通过从小窗 口到大窗口的中值滤波试验,再从中选取最佳的。
f (i,j)
②指数变换
指数变换的一般表达式为
g(i, j) b
c f (i , j )a
1
这里参数a,b,c用来调整曲线的位置和形状。这种变 换能对图像的高灰度区给予较大的拉伸。 f (i,j)
g (i,j)
对数变换动态范围压缩
直方图修整法
灰度直方图反映了数字图像中每一灰度级与其出现频率 间的关系,它能描述该图像的概貌。通过修改直方图的方法 增强图像是一种实用而有效的处理技术。
(c / a ) f ( x, y ) 0 f ( x, y ) a g ( x, y) [(d c) /(b a)][ f ( x, y) a] c a f ( x, y) b [(M d ) /(M b)][ f ( x, y) b] d b f ( x, y) M f f g
下面是一个直方图规定化应用实例。
图(C)、(c)是将图像(A)按图(b)的直方图进行规定化得 到的结果及其直方图。通过对比可以看出图(C)的对比度同 图(B)接近一致,对应的直方图形状差异也不大。这样有利 于影像融合处理,保证融合影像光谱特性变化小。

低光照图像增强算法综述

低光照图像增强算法综述

低光照图像增强算法综述一、本文概述随着计算机视觉技术的快速发展,图像增强技术成为了研究的重要领域之一。

其中,低光照图像增强算法是处理低质量、低亮度图像的关键技术,对于提高图像质量、增强图像细节、提升图像识别精度等方面具有重要的应用价值。

本文旨在对低光照图像增强算法进行全面的综述,介绍其研究背景、发展历程、主要算法及其优缺点,并探讨未来的发展趋势。

本文将对低光照图像增强的研究背景进行介绍,阐述低光照图像增强技术在视频监控、医学影像分析、军事侦察、航空航天等领域的应用需求。

本文将回顾低光照图像增强技术的发展历程,分析不同算法在不同历史阶段的发展特点和主要贡献。

接着,本文将重点介绍当前主流的低光照图像增强算法,包括基于直方图均衡化的算法、基于Retinex理论的算法、基于深度学习的算法等,并详细阐述其原理、实现方法、优缺点等。

本文将展望低光照图像增强技术的未来发展趋势,探讨新技术、新算法在提升图像质量、提高识别精度等方面的潜在应用。

通过本文的综述,读者可以全面了解低光照图像增强算法的研究现状和发展趋势,为相关领域的研究和实践提供有益的参考和借鉴。

二、低光照图像增强的基本原理低光照图像增强算法的核心目标是在保持图像细节和色彩信息的提高图像的亮度和对比度,从而改善图像的视觉效果。

这通常涉及到对图像像素值的调整,以及对图像局部或全局特性的分析和优化。

基本的低光照图像增强算法可以分为两类:直方图均衡化和伽马校正。

直方图均衡化是一种通过拉伸像素强度分布来增强图像对比度的方法。

这种方法假设图像的可用数据跨度大,即图像包含从暗到亮的所有像素值。

然而,对于低光照图像,由于大部分像素值集中在较低的亮度范围内,直方图均衡化可能会过度增强噪声,导致图像质量下降。

伽马校正则是一种更为柔和的增强方法,它通过调整图像的伽马曲线来改变图像的亮度。

伽马曲线描述了输入像素值与输出像素值之间的关系,通过调整这个关系,可以改变图像的亮度分布。

图像增强

图像增强

多媒体技术图像对比度增强学号: 姓名:20127610105程飞数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。

图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。

本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。

1 图像增强概述1.1 图像增强背景及意义在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。

在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。

总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。

图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域,从而更加容易对图像中感兴趣的目标进行检测和测量。

处理后的图像是否保持原状已经是无关紧要的了,不会因为考虑到图像的一些理想形式而去有意识的努力重现图像的真实度。

图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。

它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。

增强的效果通常都与具体的图像有关系,靠人的主观感觉加以评价。

1.2 图像增强的应用目前图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域。

简述图像增强的应用原理

简述图像增强的应用原理

简述图像增强的应用原理什么是图像增强图像增强是指通过一系列的处理方法,对原始图像进行修复、增强或改善,以获得更好的视觉效果或更好的图像质量。

图像增强技术是计算机视觉领域中的重要技术之一,被广泛应用于图像处理、计算机视觉、机器学习等领域。

图像增强的应用原理图像增强的应用原理基于对图像的像素值进行调整或处理,以改善图像的对比度、亮度、清晰度等视觉效果。

以下是常见的图像增强应用原理的介绍:1.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过重新分配图像的灰度级,使得图像的直方图均匀分布在整个灰度级范围内。

这样可以增加图像的对比度,使得图像细节更加突出。

2.对比度增强对比度增强是通过调整图像中像素值的动态范围来增加图像的对比度。

常见的对比度增强方法包括拉伸对比度、直方图均衡化、灰度拉伸等。

3.锐化增强锐化增强是通过增强图像的边缘和细节来提高图像的清晰度。

常见的锐化增强方法包括拉普拉斯算子、边缘增强滤波器等。

4.噪声消除图像中的噪声会影响图像的质量和清晰度,通过噪声消除技术可以减少或去除图像中的噪声。

常见的噪声消除方法包括均值滤波、中值滤波、高斯滤波等。

5.色彩增强色彩增强是调整图像中的色彩分量,以改善图像的颜色饱和度和色彩平衡。

常见的色彩增强方法包括颜色平衡、色彩曲线调整、HSV调整等。

图像增强的应用场景图像增强的应用广泛,以下列举几个常见的应用场景:•医学图像处理:对医学图像进行增强处理,提升图像的细节和对比度,以便医生更准确的诊断和分析。

•智能监控:对监控摄像头捕捉到的图像进行增强,提高图像质量和识别能力,提高监控的效果。

•无人驾驶:对车载摄像头捕捉到的图像进行增强处理,提高图像的清晰度和对比度,以提高无人驾驶系统的感知能力和安全性。

•图像检索:对图像进行增强处理,以提高图像检索的准确性和召回率。

以上只是部分图像增强的应用场景,图像增强技术的应用还在不断拓展和发展中。

随着计算机视觉和人工智能的不断进步,图像增强技术将会在更多的领域得到应用和发展。

图像增强 image enhancement

图像增强 image enhancement

1、图像增强的应用概括数字图像处理在40多年的时间里,迅速发展成一门独立的有强大生命力的学科,图像增强技术已逐步涉及人类生活和社会生产的各个方面,下面仅就几个方面的应用举些例子。

1.1航空航天领域的应用早在60年代初期,第3代计算机的研制成功和快速傅里叶变换的提出,使图像增强技术可以在计算机上实现。

1964美国喷气推进实验室(JPL)的科研人员使用IBM7094计算机以及其它设备,采用集合校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等方法对航天探测器“徘徊者7号”发回的几千张月球照片成功的进行了处理。

随后他们又对“徘徊者8号”和“水手号”发回地球的几万张照片进行了较为复杂地数字图像处理,使图像质量得到进一步的提高,从此图像增强技术进入了航空航天邻域的研究与应用。

同时图像增强技术的发展也推动了硬件设备的提高,比如1983年LANDSAT-4的分辨率为30m,而如今发射的卫星分辨率可达到3-5m的范围内。

图像采集设备性能的提高,使采集图像的质量和数据的准确性和清晰度得到了极大地提高。

1.2生物医学领域的应用图像增强技术在生物医学方面的应用有两类,其中一类是对生物医学的显微光学图像进行处理和分析,比如对红细胞、白细胞、细菌、虫卵的分类计数以及染色体的分析;另一类应用是对X射线图像的处理,其中最为成功的是计算机断层成像。

1973年英国的EMI公司在制造出第一台X射线断层成像装置。

由于人体的某些组织,比如心脏、乳腺等软组织对X射线的衰减变化不大,导致图像灵敏度不强。

由此图像增强技术在生物医学图像中得到广泛的应用。

1.3工业生产领域的应用图像增强在工业生产的自动化设计和产品质量检验中得到广泛应用,比如机械零部件的检查和识别、印刷电路板的检查、食品包装出厂前的质量检查、工件尺寸测量、集成芯片内部电路的检测等等。

此外计算机视觉也可以应用到工业生产中,将摄像机拍摄图片经过增强处理、数据编码、压缩送入机器人中,通过一系列的控制和转换可以确定目标的位置、方向、属性以及其它状态等,最终实现机器人按照人的意志完成特殊的任务。

图像增强知识点总结

图像增强知识点总结

图像增强知识点总结在图像增强领域,有许多常见的方法和技术,比如灰度变换、直方图均衡化、滤波、锐化、维纳滤波等。

这些方法都有各自的特点和应用场景,下面我们将一一介绍这些知识点。

1. 灰度变换灰度变换是图像增强中最基本的方法之一,它通过对图像的灰度级进行变换,来改善图像的质量。

常见的灰度变换包括线性变换和非线性变换。

线性变换通常使用线性函数来对图像进行变换,而非线性变换则使用非线性函数。

2. 直方图均衡化直方图均衡化是一种常见的图像增强方法,它通过对图像的灰度分布进行重新分配,来增强图像的对比度和清晰度。

直方图均衡化可以有效地增加图像的动态范围,从而使图像更加有吸引力。

3. 滤波滤波是图像增强中常用的方法之一,它通过对图像进行滤波操作,来去除图像的噪声和增强图像的细节。

常见的滤波方法包括均值滤波、中值滤波、高斯滤波等,它们都有各自的适用场景和特点。

4. 锐化锐化是图像增强中常用的方法之一,它通过增强图像的边缘和细节,来使图像更加清晰和鲜明。

常见的锐化方法包括拉普拉斯锐化、梯度锐化等,它们都可以有效地改善图像的质量。

5. 维纳滤波维纳滤波是一种基于统计模型的图像增强方法,它通过对图像进行频域滤波操作,来去除图像的噪声和增强图像的对比度。

维纳滤波可以在去噪和保留图像细节之间取得平衡,从而使图像更加清晰和有吸引力。

6. 小波变换小波变换是一种常用的图像增强方法,它可以将图像分解成不同频率的子带,从而使图像的低频部分和高频部分可以分别进行增强。

小波变换可以有效地增强图像的细节和对比度,从而使图像更加清晰和有吸引力。

7. 自适应增强自适应增强是一种基于局部特性的图像增强方法,它可以根据图像的局部特点来选择适当的增强方法和参数。

自适应增强可以在不同的图像区域使用不同的增强方法,从而使图像在不同区域上都能得到最佳的增强效果。

总结来说,图像增强是图像处理领域中一个重要的研究方向,它可以帮助我们改善图像的质量、清晰度和对比度,使图像更加鲜明、有吸引力。

图像增强算法综述

图像增强算法综述

图像增强算法综述①靳阳阳, 韩现伟, 周书宁, 张世超(河南大学 物理与电子学院, 开封 475001)通讯作者: 韩现伟摘 要: 图像增强算法主要是对成像设备采集的图像进行一系列的加工处理, 增强图像的整体效果或是局部细节,从而提高整体与部分的对比度, 抑制不必要的细节信息, 改善图像的质量, 使其符合人眼的视觉特性. 首先, 本文从图像增强算法的基本原理出发, 归纳了直方图均衡图像增强、小波变换图像增强、偏微分方程图像增强、分数阶微分的图像增强、基于Retinex 理论的图像增强和基于深度学习的图像增强算法, 并讨论了它们的改进算法. 然后,从视觉效果、对比度、信息熵等方面对几种算法进行了定性和定量的对比, 分析了它们的优势和劣势. 最后, 对图像增强算法的未来发展趋势作了简单的展望.关键词: 图像增强; 直方图均衡; 小波变换; 微分方程; Retinex 理论; 深度学习引用格式: 靳阳阳,韩现伟,周书宁,张世超.图像增强算法综述.计算机系统应用,2021,30(6):18–27. /1003-3254/7956.htmlReview on Image Enhancement AlgorithmsJIN Yang-Yang, HAN Xian-Wei, ZHOU Shu-Ning, ZHANG Shi-Chao(School of Physics and Electronics, Henan University, Kaifeng 475001, China)Abstract : Image enhancement algorithm mainly process the captured images to enhance the overall effect or local details,increasing the overall and partial contrast while suppressing unwanted details. As a result, the quality of the images is improved, conforming to the visual perception of the human eye. Firstly, according to the basic principles of image enhancement algorithms, this study analyzes those based on histogram equalization, wavelet transform, partial differential equations, fractional-order differential equations, the Retinex theory and deep learning, and their improved algorithms.Then, the qualitative and quantitative comparisons between image enhancement algorithms are carried out with regard to visual effect, contrast, and information entropy to indentify the advantages and disadvantages of them. Finally, the future development trend of image enhancement algorithms is briefly predicted.Key words : image enhancement; histogram equalization; wavelet transform; differential equation; Retinex theory; deep learning在全球信息化大幅发展的时代, 对于这个世界的认识越来越依靠于信息的爆炸性传递. 大部分人认识世界的主要途径还是眼睛的可视性, 人眼所看到的一切都可以化作图像的形式. 图像的获取、生成、压缩、存储、变换过程自然会受到各种状况的影响, 例如获取图像时会因为天气原因, 不同光照条件, 图像亮度也有着细微的变化, 同样由于仪器设备的质量, 参数的设置, 人员的操作都会使图像质量在一定程度上的损伤, 影响图像的质量. 图像增强算法的出现, 无疑是对受损的图像做一个“修补”的工作, 以此来满足各样的需求. 图像增强的目的是为了适应人眼的视觉特性,且易于让机器来进行识别. 近些年来, 图像增强的发展计算机系统应用 ISSN 1003-3254, CODEN CSAOBNE-mail: Computer Systems & Applications,2021,30(6):18−27 [doi: 10.15888/ki.csa.007956] ©中国科学院软件研究所版权所有.Tel: +86-10-62661041① 收稿时间: 2020-10-12; 修改时间: 2020-11-05; 采用时间: 2020-11-17; csa 在线出版时间: 2021-06-01涉及了很多领域, 其中包括了遥感卫星成像领域、医学影像领域、影视摄影等各领域[1].要想真正地实现图像增强的效果, 首先对于整个图像来讲, 要提高图像部分和整体的对比度, 细节也不能忽略; 其次应提高图像的信噪比, 抑制噪声的产生,对“降质”的图像处理; 然后是对于增强过的图像来讲,避免出现局部增强不适, 影响人眼的观看模式.下面我们将列出几类典型的且应用范围比较广的图像增强算法以及改进的算法. 直方图均衡(HE)技术原理是对原图像的灰度直方图从比较集中的某个灰度区间转换为全部灰度区域内的均匀分布[2]; 由此算法进行转化的局部直方图均衡化[3], 符合图像局部特性; Kim 等提出的保持亮度的双直方图均衡算法(BBHE)[4],最大亮度双直方图均衡(MMBEBHE)算法有效地保持图像亮度[5]; 迭代阈值的双直方图均衡算法(IBBHE)[6]用迭代的方法达到增强对比度和亮度保持的效果; 彩色图像直方图均衡算法[7], 运算复杂度很低, 合并图像的视觉效果很好. 基于偏微分方程(PDE)的增强方法是把图像作为水平集或高维空间中的曲面, 再根据曲线和曲面演化逐步来增强图像的对比度[8]; 基于全变分模型插值的图像增强方法[9], 保留原图像的细节, 提高了对比度; 基于HE的偏微分方程增强方法, 在梯度域增强对比度基础上[10]提出新梯度变换函数. 小波变换中增强本质是图像信号分解为不同频段图像分量[11]; 小波变换图像多聚集模糊增强方法[12], 增强后的图像较为清晰; 基于离散余弦变换(DCT)和离散小波变换(DWT)的图像增强方法, 提高图像的质量, 同时减少计算复杂度和内存使用量[13]; 基于小波分析和伪彩色处理的图像增强方法[14], 在降噪增强的同时进一步提高图像分辨率. 基于量子力学偏微分方程的缺陷图像增强的研究[15]. 基于PDE的红外图像增强, 很好改进了传统对比度增强方法的不足[16]; 基于PDE平滑技术是一种新兴的图像增强滤波技术, 实质性、开创性的研究在图像增强滤波中引入的尺度空间理论[17]. 基于LBPV (Local Binary Pattern Variance)的分数阶微分图像增强算法[18],在图像纹理和细节方面处理效果比现有分数阶算法效果更好; 自适应分数阶微分理论指纹图像增强算法改进了传统分数阶微分形式, 提高了计算精度[19]. 基于多尺度Retinex的HSV彩色快速图像增强算法, 在HSV 颜色模型中有与Multi-Scale Retinex (MSR)等同的结果, 处理时间短[20]; 基于多尺度Retinex的数字射线照相增强算法, 改善对比度, 抑制噪声[21]; MSR与颜色恢复(MSRCR)算法增强的图像在复杂的情况下进行识别物体[22]; 基于变分Retinex方法的图像增强, 良好结合了MSRCR和变分方法的优点, 保证图像自然度[23].近年来, 基于深度学习的图像处理算法迎来了一个新的时代[24]. Hu等利用超分辨卷积神经网络(SRCNN)方法提高了风云卫星亮温图像的峰值信噪比, 结果较传统方法更精细[25]; Li等利用深度学习来增强低光图像, 提出利用深度的卷积神经网络进行学习, 提高图像质量[26].1 图像增强算法的介绍1.1 直方图均衡算法直方图均衡化算法, 简言之就是对图像直方图的每个灰度级来进行统计[3]. 实现归一化的处理, 再对每一灰度值求累积分布的结果, 可求得它的灰度映射表,由灰度映射表, 可对原始图像中的对应像素来进行修正, 生成一个修正后的图像.1.1.1 传统标准直方图均衡算法f HE传统直方图均衡算法是通过图像灰度级的映射,在变换函数作用下, 呈现出相对均匀分布的输出图像灰度级, 增强了图像的对比度. 该算法是相对于图1中n=1, 均衡函数为的简化模型[27], 即:f HEX k= {X0,X1,···,X L−1}其中, 函数代表直方图均衡过程, 其大致过程为: 已知输入和输出图像为X和Y, 总灰度级为L, 则存在, 均衡后输出和输入图之间有如下变换关系:c(X k)其中, 展现的累积概率分布表示函数输入图像灰度级.图1 全局均衡算法的模型L=∞如果输入图像看作一个连续随机变量, 即,则输出图像自然是一个随机变量, 输出图像灰度级均衡后的概率分布将趋于均匀, 则输出图像的亮度均值为:2021 年 第 30 卷 第 6 期计算机系统应用得到均衡后图像的均值分布与原图像无关, 由此可知其不能有效保持原始图像的亮度, 由于原图像各灰度级概率密度的差异, 简并现象的产生明显变多.1.1.2 保持亮度的双直方图均衡算法BBHE 实质是利用两个独立的子图像的直方图等价性[4]. 两个子图像的直方图等价性是根据输入图像的均值对其进行分解得到, 其约束条件是得到均衡化后的子图像在输入均值附近彼此有界作为基于图像均值进行的分割, 均衡后图像均值偏离原始图像均值的现象不会出现, 达到了亮度保持的目的, 其算法流程如下:G mean 1)计算输入图像均值, 根据均值将原始直方图分为左右两个子直方图.P L (i )P R (i )2)分别计算左右两个子直方图的灰度分布概率直方图和, 即:N L N R 其中, 和分别表示左右两个子直方图的总像素数,L 表示图像总灰度级数.cd f L (i )cd f R (i )3)计算左右两子直方图的累积分布直方图和, 即:tab L (i )tab R (i )4)计算左右两个映射表和, 合并之后得到最终的映射表tab , 其中round 表示四舍五入取整, 即:对于一些低照度和高亮的图像, 均值会处于较低和较高的地方, 若此时基于均值进行分割并分别均衡的话, 很大程度上会导致一个有大量数据的子直方图在小范围内进行均衡的情况出现, 另一个只有少量数据的子直方图却在较宽的范围内均衡.1.2 小波变换图像增强算法19世纪80年代Morlet 提出小波变换的概念, 数学家Merey 在十几年后提出小波基构造思想, 随着Mallat 的加入, 两个人共同建立了小波变换算法. 通过小波逆变换将同态滤波处理的低频分量和经自应阈值噪、改进模糊增强的高频分量得到增强处理后的红外图像[28].1.2.1 标准小波变换图像增强小波理论具有低熵和多分辨率的性质, 处理小波系数对降噪有一定作用, 噪声主要在高通系数中呈现,对高低通子带均需要增强对比度和去噪处理. 标准小波变换图像增强(WT)将图像分解为1个低通子图像和3个具有方向性的高通子图像, 高通子图像包括水平细节图像、垂直细节图像和对角细节图像[29]. 小波变换最大的特点是能较好地用频率表示某些特征的局部特征, 而且小波变换的尺度可以不同[30].1.2.2 改进后的小波变换图像增强算法针对传统方法对图像多聚焦模糊特征进行增强会出现图像不清晰、细节丢失现象, 小波变换图像多聚焦模糊特征增强方法, 利用背景差分法将目标图像的前景区域提取出来, 背景区域亮度会随时间发生变化,进而完成背景区域特征更新; 根据全局像素点熵值和预设阈值校正加强模糊特征, 突出小波变换图像边界局部纹理细节信息, 完成增强变换. 基于小波变换域的医学图像增强方法[31], 是基于Shearlet 变换改进的Gamma 校正, 采用改进的伽玛校正对低频进行处理, 利用模糊对比函数增强图像细节, 增强图像的对比度.二进小波变换简单的对信号尺度参数实现了离散化, 不过仍具备和连续小波变换同样的平移不变特性.利用二进小波变换将指纹图像分解[32], 步骤如下:1)首先将获取的指纹图像进行尺度的分解, 这样得到的频率分量为一低三高;2)对低频分量进行直方图均衡;3)对3个高频分量先进行高斯拉普拉斯掩膜锐化, 得到锐化后的图像;4)直方图均衡后的低频分量和处理后的3个高频分量进行二进小波逆变换重构, 得到增强后的图像.1.3 偏微分方程图像增强算法u (x 1,x 2,···,x n )关于未知函数的偏微分方程是形如式(11)的等式:计算机系统应用2021 年 第 30 卷 第 6 期x =(x 1,x 2,···,x n )Du =u x 1,u x 2,···,u x n 其中, , , F 是关于x 和未知函数u 加上u 的有限多个偏导数的基础函数. 偏微分方程(Partial Differential Equation, PDE)是微分方程的一种, 如果一个微分方程出现多元函数的偏导数, 这种方程就是偏微分方程[33].1.3.1 标准偏微分方程图像增强V l o (p )V l (p )l o V l o (p )V l (p )l o l o l o 假设和分别为两幅图像和l 的对比度场, 若与在每一点上具有相同的梯度方向,但前者大小均大于后者, 则图像应该比l 具有更高的对比度, 可以将看作l 的增强图像. 实际上, 从图像l 到图像的过程就是标准PDE 图像增强实现的过程,可以由以下式子来描述它们的关系:V l o (p )式中, 为增强后图像的对比度场; k 为增强因子,一般情况下k >1, 过大的话会增大噪声. 对于式(12),图像l 是已知的, 其解为:φl o (p )式中, 是一个与坐标无关的常数. 可看到两幅图像之间的动态范围存在k 倍的差距. 对于可在计算机屏幕上显示的数字图像, 其动态范围为0 ~ 255. 我们要做到先要对的对比度场进行约束, 之后开始按照步骤运算, 最后才能得到比较准确的数据.1.3.2 改进的偏微分方程增强方法∇u max ∥∇u ∥min为避免增强图像梯度场同时造成噪声的危害加剧,寻找一种比较适合的增强方法. 定义原图像的数值梯度函数为, 梯度模的最大值为, 最小值为, 增强之后的图像梯度为S [10]:∥∇u ∥[min ∥∇u ∥,max ∥∇u ∥][0,max ∥∇u ∥]式中, 表示梯度场的方向信息. 经过改进的梯度函数梯度场从的区域内映射到内. 原本纹理突显出来的同时保留梯度值较大的边缘.基于量子力学偏微分方程的缺陷图像增强研究方法[15]. 航空材料缺陷的图像增强对缺陷的定性和定量性能起着至关重要的作用, 由于复合材料分布不均匀,将导致缺陷成像对比度不高, 会让识别和量化的难度加大. 算法主要分为两个步骤: 首先是根据量子力学理论, 计算图像边缘的量子概率; 在此基础上, 建立融合各向异性量子概率的偏微分方程来增强航空材料缺陷图像. 此算法可以在有效抑制噪声和减少成像不均匀性的同时, 更好保留缺陷的特征, 增强图像的对比度.1.4 分数阶微分方程增强算法近些年, 分数阶微积分在多领域都有了突破性进展[34]. 分数阶微分不仅可以提升图像中的高频分量, 还可以以一种非线性形式保留图像中低频分量所带有的性能. 常用的分数阶微分定义有G-L 、R-L 、Caputo 三种定义, 其中最常用的是采用非整型分数阶微积分的G-L 定义[35].1.4.1 图像增强的分数阶微分算子构造m ×n 让图像像素邻域中任一像素与对应系数进行乘法运算, 得到的结果再进行和运算, 得到像素点所在位置的回复, 当邻域的大小为, 要求的系数会很多. 这些系数被排列成一个矩阵, 称为滤波器、模板或者掩模[36].f (x ,y )在整数阶微分方程的增强算子中, 有一类是拉普拉斯算子, 对任一二元连续函数来讲, 其拉氏变换可表示为:f (x ,y )f (x ,y )f (x ,y )x ∈[x 1,x 2]y∈[y 1,y 2]n x =[x 2−x 1]n y =[y 2−y 1]由于在图像中, 两个相邻像素点之间灰度产生差异的距离最小, 因此图像在它的x 和y 方向上灰度值的变化只能以像素之间的最小距离为单位来进行数值度量和分析, 所以的最小等分间隔只能设为: h =1, 如果图像中x 和y 方向的持续区间分别为和, 则最大等分份数分别为和.将上式拉普拉斯变换写成离散的表示形式, 对x 方向和y 方向重新定义, 得到它的二阶微分表示:根据以上定义, 可以得到:拉氏算子还要对处理前后的图像完成进一步的叠加, 其方式如下:2021 年 第 30 卷 第 6 期计算机系统应用在雾天图像中应用算子增强图像, 边缘轮廓还有纹理部分的效果会很容易看到, 不过若是图像像素中某一范围灰度变化不明显, 细节可能受到损失. 因此,构建图像增强的分数阶微分算子, 将整数阶微分扩展到分数阶微分上并且应用于图像增强中[37].1.4.2 改进的分数阶微分算子增强图像相比传统的分数阶微分算法的不足, 提出新的改进算法, 在极端条件处理拍摄的交通图像时, 具有良好效果. 上文提到的指纹图像增强算法, 对传统形式加以改造, 在计算精度上有所提升, 进而构造了更加高精度的分数阶微分掩模. 通过对像素周围的纹理对比从而逐点选择微分阶, 明确的选择了具有二阶精度的分数阶微分形式来构造IRH 算子, 并对算子结构进行相应的改进, 之后利用图像的梯度信息和局部统计信息, 结合中心像素对相邻像素的影响, 建立自适应分数阶微分的自适应函数, 此法保留了指纹纹线和图像纹理细节, 对于降噪起到很好的作用.1.5 Retinex 图像增强算法S (x ,y )L (x ,y )R (x ,y )S (x ,y )L (x ,y )Retinex 是retina(视网膜)和cortexv(大脑皮层)组成的, Retinex 算法由美国物理学家提出[38]. Retinex 理论的基础是人类视觉系统的色彩恒常性, 人类视觉感知系统的色知觉存在“先入为主”的特性, 即光源条件发生改变, 视网膜接收到的彩色信息也会被人们的大脑驳回. Retinex 理论的依据就是是原始图像可以分解为照射图像和反射图像, 最重要的就是让摆脱的影响, 以便得到图像的反射属性.1.5.1 经典的Retinex 图像增强对数域进行操作可以把乘法运算变成简单的加法运算, 进而出现了多种Retinex 算法. 经典的有: 单尺度Retinex 算法(SSR)、多尺度Retinex 算法(MSR)和带色彩恢复的多尺度Retinex 算法(MSMCR)等[39].针对运算速度缓慢的问题, 在1986年, Jobson 等[40]将高斯低通滤波与Retinex 结合, 改进了Land 提出的中心环绕Retinex 算法(Center/Surround Retinex), 提出了单尺度Retinex(SSR)算法. 在SSR 算法中, Jobson 等创新的使用高斯函数与图像进行卷积的方式来近似实现了入射分量的表达. 它的数学表达式如式(20)表示:I i (x ,y )i ∈(R ,G ,B )G (x ,y ,c )∗L i (x ,y )其中, 表示原始图像的第i 个通道分量的像素值,颜色通道中的一个, 表示中心环绕函数, 是一种卷积操作表示, 入射分量的表达可以借用Jobson 等的成果, 则可以看做入射图像的第i 个通道分量. SSR 的实现过程如式(21)至式(23)所示:由于SSR 算法处理要对图像细节对比度和色彩的保留做到很好的发展, 而尺度c 又相对难做到极好的运用, MSR 算法的出现, 在很大程度上解决了这一问题, 起到了平衡图像色彩和细节的良好效果.1.5.2 改进的Retinex 图像增强Retinex 算法对于图像增强的效果需要经过精确且复杂的计算, 最后的结果精确度越高, 增强效果将会更好. 文献[20]中基于多尺度Retinex 的HSV 彩色快速图像增强算法. 在HSV 模型中用多尺度Retinex 进行图像增强, 由于颜色转换的非线性, 计算起来非常复杂. 使用亮度校正的MSR 算法基于HSV 颜色模型和修正的V 频道输出图像的RGB 分量的线性形式减少30–75%的平均处理时间, MSR 算法在Haar 小波变换低频区域应用亮度校正的处理速度有很明显优势, 平均加速度接近3倍. 文献[22,23]中介绍了MSRCR 算法. 由于传统均值移位算法有不少的不足, 改进后, 对要增强的图像可以在情况复杂下进行识别物体, 增强对比度的同时, 光晕现象的产生被消灭, 噪声得到抑制,保证图像自然度. 基于Retinex 提出一种自适应的图像增强方法, 其中包括如下4个步骤: (1)用引导滤波器估计其照度分量; (2)提取图像的反射分量; (3)对反射分量进行颜色恢复校正; (4)后处理. 由于雾霾和照度较低, 自然生成的图像质量比较差, 而此法不管是在定量还是定性上都突出了更好的优势. 此算法最终的结果图像具有清晰的对比度和生动自然的颜色[41].1.6 基于深度学习的图像增强算法在当今社会经济科技奋进之时, 深度学习的发展可谓是如日中天, 特别是在图像增强方面.1.6.1 卷积神经网络图像增强算法神经网络(neural networks)最基本的组成结构是计算机系统应用2021 年 第 30 卷 第 6 期神经元(neuron), 神经元概念源于生物神经网络[42]. 卷积神经网络(Convolutional Neural Network, CNN)在传统神经网络基础上, 引入了卷积(convolution)和池化(pooling), CNN 的建筑灵感来自于视觉感知[43]. CNN 是深度学习领域最重要的网络之一, CNN 在计算机视觉和自然语言处理等诸领域都有很大成就. 卷积神经网络的特性比较突出, 除了可以实现权值共享外, 可调的参数相对来说不多, 对二维图像这类的, 它的平移、倾斜、缩放包括其他形变都拥有着极高的不变性.CNN 相比于一般的神经网络, 具有很大优势[44]: (1)局部连接. 每个神经元只与少数神经元相连, 有效地减少了参数, 加快了收敛速度; (2)重量共享. 一组连接可做到同时分享相同的权值, 进一步降低了所需的参数;(3)降采样降维. 池化层利用图像部分相关的依据对图像进行降采样, 降低运算数据量, 留存有效的信息值.卷积神经网络大致包含4部分, 卷积层、池化层、全连接层以及反卷积层, 各自具有不同作用, 承担独自的工作. 深度越深, 网络性能越好; 随着深度增加, 网络性能逐渐饱和.1.6.2 基于深度学习图像增强的改进算法f o=F (g )F (g )Hu 等基于深度学习方法增强MMSI 亮温图像, 设计卷积神经网络重建风云四号卫星MMSI 的亮温图像和风云三号卫星微波成像仪亮温图像[25]. 在根据SRCNN进行实现映射函数, 式中, g 为监测的天线温度的图像, 可用于复原, 使其尽可能接近地面真实高分辨率亮温图像f . 映射函数F 的完成可以依据学习思想, 构建一种卷积神经网络, 为了让观测图像数据重新构建为理想的高分辨数据, 需要对卷积神经网络进行一系列特征变换, 此过程即达成卷积核的卷积操作.相比古老的插值方法而言, SRCNN 方法除了提高图像的峰值信噪比之外, 在提高图像细节较古老的方法也有很大的提高.2 图像增强算法的评价和对比2.1 各种算法增强效果的分析通过对论文文献研究比对, 以及对于其中的经典算法以及改进的算法, 对应用广泛的上述6大类图像增强算法进行较概括的研究分析.图2是几种不同算法得到的增强图像. 从增强图像的效果来看, HE 增强效果是对图像的动态范围进行拉大实现的, 增强效果随动态范围增加而变差. BBHE算法均衡后的图像在增强对比度的同时很好保持原图像的平均亮度. IBBHE 根据各子图像的直方图分别进行独立的均衡化处理, IBBHE 增强效果更好. WT 算法增强图像细节信息, 但是增加了噪声. 小波变换图像多聚集模糊增强方法, 对图像增强后, 图像较为清晰, 细节没有丢失, 效果较好. PDE 和TVPDE 算法放大了图像对比度场, 增强后图像都有较高对比度[45]. 自适应分数阶微分可以很好降噪. SSR 和MSR 算法去除了图像中照度分量影响, 还原景物本身的亮度信息, MSRCR 处理后的图像比原图像细节增加了, 亮度有所提高, 颜色有一定矫正, 对颜色的恢复存在失真现象. 基于深度学习的图像增强算法通过复杂的神经网络, 进行大量的训练, 得到的模型同时减少了训练时间, 取得了更好的精度.2.2 算法增强效果的对比对一幅图像的增强效果来讲, 需要对图像对比度和信息熵来进行评价和比较, 可以对图像有很好认识.图像对比度的计算公式:I i ,j 其中, 为中心像素点的灰度值, N 为图像局部块内像素点的个数. 为了计算一幅完整图像的对比度, 需要对图像中所有部分块对比度总体的平均值来表示.图像的信息熵公式如下:p (k )式中, 为灰度级k 的概率密度, M 为最大的灰度级.表1中为第一幅图通过不同算法得到的图像质量的客观结果评价, 评价指标为对比度和信息熵. 通过对文献中算法的研究以及本文中对增强算法的分析对比, 我们得到表2中对不同算法优缺点的总结.3 增强算法发展趋势及有意义的研究方向根据上文所介绍的不同图像增强算法及实验分析对比结果, 可预见未来的图像增强算法发展将有以下特点: 超分辨率、多维化、智能化和超高速.1)超分辨率, 对获得的低分辨率图像进行增强从而得到超高分辨率的图像, 重点是对采集分辨率以及显示分辨率做进一步的提升, 突破技术壁垒限制, 向时空感知超分辨率迈进.2021 年 第 30 卷 第 6 期计算机系统应用。

第4章 图像增强2

第4章 图像增强2

第4章 图像的增强 4.2 直接灰度变换 章
g (x, y) Mg d A c 0 a b f (x, y) Mf 0 a Mg
2. 分段线性变换
g (x, y) A f (x, y) b Mf
1) 对比度扩展
g (x, y) Mg f (x, y) 0 a Mf 0 Mg
2) 削波
g (x, y)
1 将非均匀密度变换为均匀密度 r
第4章 图像的增强 章
4.3 直方图修正法
2. 直方图均衡化
由概率论理论可知,如果已知随机变量 的概率密度为 的概率密度为p 由概率论理论可知,如果已知随机变量r的概率密度为 r(r),而 而 随机变量s是 的函数 的函数, 的概率密度 的概率密度p 可以由 可以由p 求出 求出。 随机变量 是r的函数,则s的概率密度 s(s)可以由 r(r)求出。 假定随机变量s的分布函数用 表示, 假定随机变量 的分布函数用Fs(s)表示,根据分布函数定义 的分布函数用 表示
f (x, y) a Mf
3) 阈值化
4) 灰度窗口变换
第4章 图像的增强 章
1. 灰度直方图 图像灰度直方图 直方图的作法
4.3 直方图修正法
1. 灰度直方图
直方图反映了图像的像素的灰度分布
rk = k , k = 0,1,L , L − 1 L −1
a)将图像的灰度级归一化 将图像的灰度级归一化
0.21 0.16 0.08 0.06 0.65 0.81 0.89 0.95 6 5 6 7 2→5 3,4→6 3,4→6 1023 0.25
5,6,7→7 850 985 448 0.21 0.24 0.11
第4章 图像的增强 章
pr(rk)

图像增强原理

图像增强原理

图像增强原理图像增强是数字图像处理中的一项重要技术,它通过对图像进行各种处理,改善图像的质量,使图像更适合于后续的分析和应用。

图像增强的原理是通过增强图像的对比度、亮度、锐度等特征,以提高图像的视觉效果和信息表达能力。

在本文中,我们将介绍图像增强的原理及常见的增强方法。

图像增强的原理主要包括两个方面,空间域增强和频域增强。

空间域增强是指直接对图像像素进行操作,包括灰度变换、直方图均衡化、滤波等方法;频域增强是指将图像转换到频域进行处理,包括傅里叶变换、滤波器设计等方法。

在空间域增强中,最常见的方法之一是灰度变换。

灰度变换通过对图像的灰度级进行变换,可以改变图像的对比度和亮度。

常见的灰度变换函数包括线性变换、对数变换、幂次变换等。

线性变换可以通过拉伸或压缩图像的灰度范围来增强对比度,对数变换可以扩展图像的暗部细节,幂次变换可以调整图像的亮度分布。

这些方法都是通过对图像的像素值进行重新映射来实现增强的效果。

另一个常见的空间域增强方法是直方图均衡化。

直方图均衡化是一种通过重新分配图像灰度级来增强对比度的方法。

它通过对图像的灰度直方图进行变换,将原始的灰度级分布变换为均匀分布,从而增强图像的对比度。

直方图均衡化在很多图像处理领域都有广泛的应用,特别是在医学影像、遥感图像等领域。

在频域增强中,傅里叶变换是一种重要的方法。

傅里叶变换可以将图像从空间域转换到频率域,通过对频率域进行滤波来实现图像增强。

频域滤波可以通过去除图像中的噪声、增强图像的边缘等方式来改善图像的质量。

常见的频域滤波方法包括低通滤波、高通滤波、带通滤波等。

低通滤波可以去除图像中的高频噪声,高通滤波可以增强图像的边缘细节,带通滤波可以选择性地增强或抑制特定频率成分。

除了上述方法外,图像增强还可以通过图像增强技术来实现。

图像增强技术是一种通过对图像进行分析和处理来实现增强效果的方法。

常见的图像增强技术包括锐化、平滑、边缘增强等。

锐化可以增强图像的细节和边缘,平滑可以去除图像中的噪声,边缘增强可以突出图像中的边缘信息。

图像处理理论与图像分析

图像处理理论与图像分析

图像处理理论是关于图像处理的基本原理和方法的研究。

它包括了图像获取、图像增强、图像压缩、图像复原以及图像分析等内容。

图像获取是指通过图像设备(如摄像机、扫描仪)获取到的原始图像数据。


像获取涉及到硬件设备的选择、参数设置等问题。

图像增强是指通过各种方法对原始图像进行改善,使得图像更加适合于后续处
理或观察。

图像增强可以通过增加图像的对比度、提高图像的清晰度等方式来实现。

图像压缩是指通过各种方法对图像数据进行压缩,以减少存储空间或传输带宽。

图像压缩方法可以分为有损压缩和无损压缩两种。

图像复原是指通过对损坏或退化的图像进行恢复,使其尽可能接近或恢复到原
始图像的状态。

图像复原涉及到图像的模型建立、退化模型的估计以及复原算法的设计等问题。

图像分析是指通过对图像进行特征提取、目标检测或目标识别等方式来获取图
像中包含的信息。

图像分析涉及到特征提取的方法、目标检测的算法以及目标识别的模型等内容。

总之,图像处理理论与图像分析是关于图像处理的基本原理和方法的研究,可
以应用于各种图像处理领域,如计算机视觉、医学影像处理、遥感图像分析等。

图像增强原理

图像增强原理

图像增强原理图像增强是数字图像处理中的一种重要技术,它通过改善图像的质量、增强图像的特征以及改变图像的外观来提高图像的视觉效果。

图像增强的原理是利用各种数字图像处理技术,对图像进行增强处理,使得图像在视觉上更加清晰、鲜艳、具有更好的对比度和更丰富的细节。

图像增强技术在医学影像、遥感图像、安防监控、数字摄影等领域有着广泛的应用。

图像增强的原理主要包括以下几个方面:1. 空域图像增强。

空域图像增强是指直接对图像的像素值进行处理,常见的方法包括灰度变换、直方图均衡化、滤波等。

其中,灰度变换是通过对图像的灰度级进行变换,调整图像的对比度和亮度;直方图均衡化是通过对图像的像素值进行重新分布,增强图像的对比度;滤波是利用各种滤波器对图像进行平滑或锐化处理,以改善图像的质量。

2. 频域图像增强。

频域图像增强是指将图像转换到频域进行处理,常见的方法包括傅里叶变换、频率域滤波等。

通过频域处理,可以对图像的频率成分进行调整,增强或抑制特定频率的信息,从而改善图像的质量。

3. 对比度增强。

对比度是指图像中最亮和最暗部分之间的差异程度,对比度增强是通过调整图像中像素值的分布,增加图像中的灰度级数,使得图像的细节更加丰富,轮廓更加清晰,从而提高图像的质量。

4. 锐化增强。

锐化增强是通过增强图像中的边缘和细节信息,使得图像看起来更加清晰和鲜艳。

常见的方法包括拉普拉斯算子、梯度算子等,通过对图像进行微分运算,突出图像中的边缘信息,从而增强图像的清晰度。

5. 去噪增强。

图像中常常存在各种噪声,如高斯噪声、椒盐噪声等,去噪增强是通过滤波等方法,去除图像中的噪声,使得图像更加清晰和平滑。

综上所述,图像增强的原理主要包括空域图像增强、频域图像增强、对比度增强、锐化增强和去噪增强等方面。

这些原理都是通过对图像的像素值、频率成分、对比度、边缘信息以及噪声进行处理,从而改善图像的质量,使得图像在视觉上更加清晰、鲜艳、具有更好的对比度和更丰富的细节。

图像增强原理

图像增强原理

图像增强原理图像增强是数字图像处理领域中的一个重要概念,其目的是改善图像的质量或者使图像更适合特定的应用。

图像增强技术可以应用于医学影像、卫星图像、摄影图像等领域,对于提高图像的清晰度、对比度和色彩等方面都有重要作用。

本文将介绍图像增强的原理和常用的增强方法。

图像增强的原理主要包括两个方面,空间域增强和频域增强。

空间域增强是指在图像的像素级别进行处理,常见的方法包括灰度变换、直方图均衡化、滤波等。

灰度变换是通过对图像的灰度级进行变换来增强图像的对比度,常用的方法包括对数变换、幂次变换等。

直方图均衡化是一种通过重新分配图像像素灰度级来增强图像对比度的方法,其原理是使得图像的灰度级分布更均匀。

滤波是指通过对图像进行卷积操作来实现增强效果,常见的滤波器包括均值滤波、中值滤波、高斯滤波等。

频域增强是指在图像的频域进行处理,其基本原理是利用图像的频谱信息来进行增强。

常见的频域增强方法包括傅里叶变换、小波变换等。

傅里叶变换可以将图像从空间域转换到频域,通过对频域信息进行滤波或增强操作,再进行逆变换得到增强后的图像。

小波变换是一种多尺度分析方法,可以将图像分解为不同尺度的小波系数,通过增强不同尺度的系数来实现图像增强。

在实际应用中,图像增强常常需要根据具体的应用场景和需求来选择合适的方法。

例如,在医学影像中,对比度的增强对于诊断疾病非常重要,可以通过灰度变换或直方图均衡化来实现;在卫星图像中,对图像的细节进行增强可以帮助识别地物,可以通过滤波或频域增强方法来实现。

因此,图像增强的原理和方法需要根据具体的应用场景来灵活选择和应用。

总之,图像增强是数字图像处理中的重要技术,其原理包括空间域增强和频域增强。

空间域增强主要是对图像的像素级别进行处理,包括灰度变换、直方图均衡化、滤波等方法;频域增强则是利用图像的频谱信息进行增强,包括傅里叶变换、小波变换等方法。

在实际应用中,需要根据具体的需求和应用场景来选择合适的增强方法,以达到最佳的增强效果。

图像增强基本理论综述

图像增强基本理论综述

摘 要 : 增强是数 字 图像 处理 的最基 本的方 法之 一, 图像 本文 总结 了图像 增强 的基本 理论 , 并对 新的 图像增 强的 方法作 了 简单 介绍 。
Ab ta t I g e h n e nt s f n a ntl n i otn tc n lg i i g p o e sn fed S f n a ntl h oy n sme e sr c : ma e n a c me i a u d me a a d mp ra t e h oo y n ma e rc s ig il . o u d me a te r a d o n w
…【 f f a


3 图像 增 强 的基 本 理 论 图 像 增 强 技 术 主 要 包 括 : 度 变换 , 方 图修 正 , 灰 直 图像 平 滑 , 图
像 锐 化 及彩 色增 强 等 。从 图像 增 强 的作 用域 出发 可 分 为 两 类 : 空 ① 除梯度算子 以外 ,还可采用 R br 、rwt和 Sb l o e sPe i t t o e 算子计算 域 处理 法 ; 频域 处 理 法 。 ② 梯度 , 未增 强边 缘 。 31空 间域 图像 增 强 技 术 空 间域 指 的是 平 面 本 身 ,空 间 域 图 . ②高通滤波法。 高通滤波法就是用高通滤波算子和图像卷积来 像 增 强 方法 是 对 图像 的像 素 进行 处理 。 可 以定 义 为 f 0 —1 0 1 f 一1 —1 —1 1 gxY)TfxY】 (, : 【 ,) ( () 1 增强边缘。常用的算子有:Il15— I H=— H:一 1 211 9— l 1 其 中 , xY 是输 入 图 像 ,(, ) 处理 后 的 图像 , f ,) ( gx Y是 T是 对 f 一 的 0— 0j 1 【1— 1 一 1— J 种 操作 。 空 间域 图 像增 强技 术 又 可 分 为点 处 理 和 邻域 处理 。 32频 域 图 像 增 强技 术 频 域 ( - 变换 域 ) 像 增 强 操 作 的 基 本原 图

图像增强的原理及其应用

图像增强的原理及其应用

图像增强的原理及其应用图像增强是指使用各种技术和方法对原始图像进行改进,以提高图像的视觉质量和可识别性。

图像增强的原理是通过调整图像的亮度、对比度、饱和度以及色彩平衡等参数,使得图像在视觉上更加清晰、明亮、细节丰富。

图像增强技术在计算机视觉、医学影像、遥感图像等领域都有广泛的应用。

图像增强可以分为两大类:基于像素的图像增强和基于频域的图像增强。

基于像素的图像增强方法是通过改变像素的亮度值,调整各个像素的对比度和饱和度,进而改变整个图像的视觉效果。

常用的基于像素的图像增强方法有直方图均衡化、规定化、自适应直方图均衡化等。

直方图均衡化是通过对图像的直方图进行调整,将像素的灰度值分布拉伸到整个灰度级范围内,以增强图像的对比度和视觉效果。

规定化是通过将图像的灰度值映射到特定的目标值范围内,以使图像具有特定的视觉特征。

自适应直方图均衡化是根据图像的局部均衡性来进行直方图均衡化,解决了传统直方图均衡化在处理具有大幅度灰度变化的图像时,容易造成细节信息丢失的问题。

基于频域的图像增强方法是通过将图像从空域转换到频域进行增强。

常见的基于频域的图像增强方法有傅里叶变换、小波变换等。

傅里叶变换可以将一个信号表示为一组正弦和余弦函数的叠加,通过对图像进行傅里叶变换可以得到图像的频谱信息,从而进行图像增强。

小波变换是一种多分辨率分析方法,通过将图像分解为不同尺度和方向上的小波系数,可以对图像进行多尺度的增强。

图像增强在许多领域有广泛的应用。

在计算机视觉中,图像增强可以用于目标检测和识别,通过增强图像的细节特征,提高目标检测的准确性和识别的可靠性。

在医学影像中,图像增强可以用于放射学诊断和病理学分析,通过增强图像的对比度和细节,更好地显示病变区域,帮助医生做出准确的诊断和治疗决策。

在遥感图像中,图像增强可以用于地物分类和地貌分析,通过增强图像的视觉效果和细节特征,提高遥感图像的解译能力和应用效果。

总之,图像增强是对原始图像进行改进以提高图像质量和可识别性的技术和方法。

图像增强的应用与原理

图像增强的应用与原理

图像增强的应用与原理1. 介绍图像增强是一种数字图像处理技术,其主要目的是改善或强化图像的质量,使得图像更加适合于观察和分析。

图像增强在许多领域中都有广泛的应用,例如医学影像、计算机视觉、安全监控等。

本文将介绍图像增强的应用和原理。

2. 图像增强的应用2.1 医学影像医学影像是图像增强应用的一个重要领域。

通过图像增强技术,医生可以更清晰地观察和分析影像,从而更准确地诊断疾病。

例如,对于X光片图像,可以通过增强对比度和增强边缘等方式,使得病变更加明显,从而帮助医生发现疾病。

此外,图像增强技术还可以用于医学影像融合,使得多个模态的影像信息结合起来,提供更全面的诊断信息。

2.2 计算机视觉计算机视觉是另一个重要的图像增强应用领域。

在计算机视觉中,图像增强可以用于改善图像的质量和细节,从而提高计算机在图像识别、目标检测和图像分割等任务中的性能。

例如,在人脸识别领域,可以通过图像增强技术提高人脸图像的质量和清晰度,从而提高识别准确率。

2.3 安全监控图像增强技术在安全监控中的应用也十分重要。

通过图像增强技术,可以提高监控摄像头捕捉到的图像质量,从而更准确地观察和分析监控图像,提高安全监控系统的性能和效果。

例如,在夜间监控中,可以通过增强图像亮度和对比度等方式,提高夜间监控图像的可视性。

3. 图像增强的原理图像增强的原理是通过对图像的像素值进行调整和改变,从而使得图像在观察上更加清晰、明确或更适合特定的应用需求。

下面介绍几种常用的图像增强技术原理:3.1 线性变换线性变换是一种简单而常用的图像增强技术。

在线性变换中,对每个像素的灰度值进行线性缩放或平移,从而改变图像的亮度或对比度。

通过适当的选择线性变换的参数,可以增加图像的清晰度和对比度。

3.2 直方图均衡化直方图均衡化是一种通过调整像素灰度值分布来增强图像对比度的方法。

该方法通过将原始图像的像素值进行变换,使得在输出图像中的灰度级别均匀分布。

直方图均衡化可以增加图像的动态范围,使得细节更加明显。

数字图像处理 第四章图像增强

数字图像处理 第四章图像增强

Pr(rk) 0.19 0.25 0.21 0.16 0.08 0.06
0.03
0.02
计算每个sk对应的像素数目 计算均衡化后的直方图
Tr
Sk并
sk
nsk Ps(sk)
0.19
1/7
0.44
3/7
S0=1/7 S1=3/7 S2=5/7
790 0.19 1023 0.25 850 0.21
0.65
✓ 校正后的原始图像 f (i, j) C g(i, j) gc(i, j)
9
灰度级校正注意问题:
对降质图像进行逐点灰度级校正所获得的图像, 其中某些像素的灰度级值有可能要超出记录器 件或显示器输入灰度级的动态范围,在输出时 还要采用其他方法来修正才能保证不失真地输 出。
降质图像在数字化时,各像素灰度级都被量化 在离散集合中的离散值上,但经校正后的图像 各像素灰度极值并不一定都在这些离散值上, 因此必须对校正后的图像进行量化。
),使得结果图像s的直方图Ps(s)为一个常数
Pr(r)
Ps(s)
直方图均衡化 T(r)
r
s
26
直方图均衡化理论基础
-1 由概率论可知,若Pr(r)和变换函数s=T(r)已知,r=T (s)是单 调增长函数,则变换后的概率密度函数Ps(s)可由Pr(r)得到:
分 布 函 数 Fs(s)sp( s s) ds=rp( r r) dr
✓ 计算均衡后的直方图
s k 计
T( rk)
k
=
i 0
P(r
r

i
k i 0
ni n
s k并
round( sk计 * (L L 1
1))
j

图像增强_精品文档

图像增强_精品文档

图像增强图像增强是一种改善图像质量的技术。

通过对图像进行处理和调整,可以提高图像的对比度、清晰度和细节,使其更加鲜明和有吸引力。

图像增强在很多领域都有广泛的应用,包括医学影像、航空航天、安防监控等。

在图像增强中,有许多常见的技术和方法,这些技术可以分为两大类:空域增强和频域增强。

空域增强是指在图像的像素级上进行改变,主要通过对像素的亮度、对比度、色彩等进行调整来改善图像的质量。

常见的空域增强方法包括灰度拉伸、直方图均衡化、对比度增强等。

灰度拉伸是一种简单常用的空域增强方法,它通过对图像的灰度级进行拉伸来增加图像的动态范围。

具体实现时,可以选择一个最小和最大灰度级,然后将原始图像中的灰度级映射到新的范围上。

直方图均衡化是一种用于增强图像对比度的方法,它通过对图像的直方图进行重新分布来增加图像的动态范围。

通过这种方法,可以使得图像中的像素灰度分布更加均匀,使得图像的细节更加明确和丰富。

对比度增强是一种通过调整图像的亮度和对比度来改善图像质量的方法。

可以通过增加图像的对比度来增强图像的细节和清晰度,使得图像更加饱满和生动。

频域增强是指在图像的频域上进行改变,主要通过对图像进行傅里叶变换来改变频域的信息。

常见的频域增强方法包括傅里叶变换、滤波等。

傅里叶变换是一种将图像从时域转换到频域的方法,可以通过分析图像在不同频率上的分量来进行增强。

通过傅里叶变换,可以提取出图像中的高频、中频、低频分量,然后根据需要进行增强处理。

滤波是一种常见的频域增强方法,通过在频域上对图像进行滤波,可以增加图像的清晰度和细节。

常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。

图像增强在实际应用中有很多挑战和难点。

首先,不同的图像增强方法适用于不同的图像,在选择合适的方法时需要考虑到图像的特点和要求。

其次,图像增强可能会引入噪声或者产生不良影响,因此需要进行适当的处理和控制。

此外,图像增强还需要考虑到计算资源的限制和实时性要求。

最后,随着技术的进步和发展,图像增强也在不断创新和改进。

图像增强理论简述

图像增强理论简述

图像增强方法研究一、图像增强研究现状图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。

处理的结果使图像更适应于人的视觉特性或机器的识别系统。

二、图像增强所要借助的软件MATLABMATLAB 是MATrix LABoratory(“矩阵实验室”)的缩写,是由美国MathWorks 公司开发的集数值计算、符号计算和图形可视化三大基本功能于一体的,功能强大、操作简单的语言。

是国际公认的优秀数学应用软件之一。

三、图像增强方法分类1、频域图像增强方法2、小波域图像增强方法3、空域图像增强方法(一)频域图像增强方法频域图像增强是对图像经傅立叶变换后的频谱成分进行操作,然后逆傅立叶变换获得所需结果。

其原理如下图所示:频域图像增强原理图1、平滑噪声有些图像是通过扫描仪扫描输入、或传输通道传输过来的。

图像中往往包含有各种各样的噪声。

这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。

这些噪声的存在直接影响着后续的处理过程,使图像失真。

图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采用均值滤波或中值滤波,均值滤波是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波;中值滤波是一种非线性空间滤波,其与均值滤波的区别是掩模中心对应像素点的灰度值用掩模内所有像素点灰度值的中间值代替。

2、锐化平滑噪声时经常会使图像的边缘变的模糊,针对平均和积分运算使图像模糊,可对其进行反运算采取微分算子使用模板和统计差值的方法,使图像增强锐化。

图像边缘与高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,通过高通滤波器去除低频分量,也可以达到图像锐化的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像增强方法研究
一、图像增强研究现状
图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。

处理的结果使图像更适应于人的视觉特性或机器的识别系统。

二、图像增强所要借助的软件MATLAB
MATLAB 是MATrix LABoratory(“矩阵实验室”)的缩写,是由美国MathWorks 公司开发的集数值计算、符号计算和图形可视化三大基本功能于一体的,功能强大、操作简单的语言。

是国际公认的优秀数学应用软件之一。

三、图像增强方法分类
1、频域图像增强方法
2、小波域图像增强方法
3、空域图像增强方法
(一)频域图像增强方法
频域图像增强是对图像经傅立叶变换后的频谱成分进行操作,然后逆傅立叶变换获得所需结果。

其原理如下图所示:
频域图像增强原理图
1、平滑噪声
有些图像是通过扫描仪扫描输入、或传输通道传输过来的。

图像中往往包含有各种各样的噪声。

这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。

这些噪声的存在直接影响着后续的处理过程,使图像失真。

图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采用均值滤波或中值滤波,均值滤波是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波;中值滤波是一种非线性空间滤波,其与均值滤波的区别是掩模中心对应像素点的灰度值用掩模内所有像素点灰度值的中间值代替。

2、锐化
平滑噪声时经常会使图像的边缘变的模糊,针对平均和积分运算使图像模糊,可对其进行反运算采取微分算子使用模板和统计差值的方法,使图像增强锐化。

图像边缘与高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,通过高通滤波器去除低频分量,也可以达到图像锐化的目的。

(二)小波域图像增强方法
小波是近几年发展起来的一种时频分析工具,它同时具有时频局部化能力和多分辨率分析的能力,因此它更适用于信号处理领域。

之前的图像降噪大多采用低通滤波器直接滤除高频信息,因此使得在去除噪声的同时,也去掉了一些有用的高频信息,损失了图像的细节。

而采用小波进行去噪,由于其多分辨率特性,它用不同中心频率的带通滤波器对信号进行滤波,把主要反映噪声频率的尺度系数去掉,再
把剩余尺度的系数结合起来做反变换,从而使得噪声得到很好的抑制。

(三)空域图像增强方法
空域是指组成图像的像素的集合,空域图像增强直接对图像中像素灰度值进行运算处理,基本上是以灰度映射变换为基础的。

1、直方图均衡化
有些图像在低值灰度区间上频率较大,使得图像中较暗区域中的细节看不清楚。

这时可以通过直方图均衡化将图像的灰度范围分开,并且让灰度频率较小的灰度级变大,通过调整图像灰度值的动态范围,自动地增加整个图像的对比度,使图像具有较大的反差,细节清晰。

2、对比度增强法
有些图像的对比度比较低,从而使整个图像模糊不清。

这时可以按一定的规则修改原来图像的每一个象素的灰度,从而改变图像灰度的动态范围。

三、小结
数字图像增强技术是数字图像处理的基本技术,图像增强的目的是突出图像中人或者机器感兴趣的特征部分,为后续的图像识别、理解、输出显示等服务。

图像增强的方法有很多种,针对不对图像的情况运用不同的增强技术,使图像更容易让人识别、更清晰,是本课题主要的研究目的。

对比度增强法适合于对比度较低的图像,通过线性和非线性的变化,修改每一个像素的灰度,从而改变图像的动态范围达到图像增强的目的。

直方图均衡化针对在低值灰度区间上频率较大、图像中较暗区域中细节看不清楚的图像,有较好的增强效果。

但是上述两种方法的缺点都是不能抑制噪声
对于图像中呈孤立分散分布的噪声点,可以用平滑的方式去除
其中线性滤波实现简单,去噪效果明显,但是去噪的同时会导致结果图像边缘位置的改变和细节模糊甚至丢失;非线性滤波能够较好的保持图像边缘位置和细节,但是算法的实现相对线性滤波比较困难。

平滑处理的时候经常会使图像的边缘变的模糊,图像锐化处理的作用就是使灰度反差增强,从而使模糊图像变得更加清晰。

图像处理是面向对象和问题的一门学科。

图像处理的研究,也就是针对某一问题最多也就是某一类型问题的算法的研究。

图像处理广阔的领域中,还有很多需要研究和探索的领域。

相关文档
最新文档