图像增强理论简述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像增强方法研究
一、图像增强研究现状
图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。处理的结果使图像更适应于人的视觉特性或机器的识别系统。
二、图像增强所要借助的软件MATLAB
MATLAB 是MATrix LABoratory(“矩阵实验室”)的缩写,是由美国MathWorks 公司开发的集数值计算、符号计算和图形可视化三大基本功能于一体的,功能强大、操作简单的语言。是国际公认的优秀数学应用软件之一。
三、图像增强方法分类
1、频域图像增强方法
2、小波域图像增强方法
3、空域图像增强方法
(一)频域图像增强方法
频域图像增强是对图像经傅立叶变换后的频谱成分进行操作,然后逆傅立叶变换获得所需结果。其原理如下图所示:
频域图像增强原理图
1、平滑噪声
有些图像是通过扫描仪扫描输入、或传输通道传输过来的。图像中往往包含有各种各样的噪声。这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。这些噪声的存在直接影响着后续的处理过程,使图像失真。图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采用均值滤波或中值滤波,均值滤波是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波;中值滤波是一种非线性空间滤波,其与均值滤波的区别是掩模中心对应像素点的灰度值用掩模内所有像素点灰度值的中间值代替。
2、锐化
平滑噪声时经常会使图像的边缘变的模糊,针对平均和积分运算使图像模糊,可对其进行反运算采取微分算子使用模板和统计差值的方法,使图像增强锐化。图像边缘与高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,通过高通滤波器去除低频分量,也可以达到图像锐化的目的。
(二)小波域图像增强方法
小波是近几年发展起来的一种时频分析工具,它同时具有时频局部化能力和多分辨率分析的能力,因此它更适用于信号处理领域。
之前的图像降噪大多采用低通滤波器直接滤除高频信息,因此使得在去除噪声的同时,也去掉了一些有用的高频信息,损失了图像的细节。而采用小波进行去噪,由于其多分辨率特性,它用不同中心频率的带通滤波器对信号进行滤波,把主要反映噪声频率的尺度系数去掉,再
把剩余尺度的系数结合起来做反变换,从而使得噪声得到很好的抑制。
(三)空域图像增强方法
空域是指组成图像的像素的集合,空域图像增强直接对图像中像素灰度值进行运算处理,基本上是以灰度映射变换为基础的。
1、直方图均衡化
有些图像在低值灰度区间上频率较大,使得图像中较暗区域中的细节看不清楚。这时可以通过直方图均衡化将图像的灰度范围分开,并且让灰度频率较小的灰度级变大,通过调整图像灰度值的动态范围,自动地增加整个图像的对比度,使图像具有较大的反差,细节清晰。
2、对比度增强法
有些图像的对比度比较低,从而使整个图像模糊不清。这时可以按一定的规则修改原来图像的每一个象素的灰度,从而改变图像灰度的动态范围。
三、小结
数字图像增强技术是数字图像处理的基本技术,图像增强的目的是突出图像中人或者机器感兴趣的特征部分,为后续的图像识别、理解、输出显示等服务。
图像增强的方法有很多种,针对不对图像的情况运用不同的增强技术,使图像更容易让人识别、更清晰,是本课题主要的研究目的。
对比度增强法适合于对比度较低的图像,通过线性和非线性的变化,修改每一个像素的灰度,从而改变图像的动态范围达到图像增强的目的。
直方图均衡化针对在低值灰度区间上频率较大、图像中较暗区域中细节看不清楚的图像,有较好的增强效果。但是上述两种方法的缺点都是不能抑制噪声
对于图像中呈孤立分散分布的噪声点,可以用平滑的方式去除
其中线性滤波实现简单,去噪效果明显,但是去噪的同时会导致结果图像边缘位置的改变和细节模糊甚至丢失;非线性滤波能够较好的保持图像边缘位置和细节,但是算法的实现相对线性滤波比较困难。
平滑处理的时候经常会使图像的边缘变的模糊,图像锐化处理的作用就是使灰度反差增强,从而使模糊图像变得更加清晰。
图像处理是面向对象和问题的一门学科。图像处理的研究,也就是针对某一问题最多也就是某一类型问题的算法的研究。图像处理广阔的领域中,还有很多需要研究和探索的领域