上宝中学预备班第二学期数学周周测精选

合集下载

上宝中学预备班第二学期数学周周测精选(8)(可编辑修改word版)

上宝中学预备班第二学期数学周周测精选(8)(可编辑修改word版)

1、在道路两旁种树(两头都种),每隔3 米种一棵,到头还多3 棵,每隔2.5 米种一棵,到头还缺77 棵,这条路有多长?共有多少棵树?2、2002 年世界杯足球赛韩国组委会公布的四分之一决赛门票价格是:一等席300 美元,二等席200 美元,三等席125 美元。

某服装公司在促销活动中,组织奖得特等奖、一等奖的36 名顾客到韩国观看2002 年世界杯最球赛四分之一决赛,出去其他费用后,计划买两种门票,正好用完5025 美元,你能设计出几种购票方案供该服装公司选择?并说明理由3、某旅游团从甲地到相距100 千米的乙地,团体中的一部分人乘车,余下的人步行;先坐车的人到途中某处下车步行,汽车返回接先步行的那一部分人,已知步行的时速为8 千米,汽车的时速为40 千米,问:要使大家在下午4 时同时到达乙地,必须在什么时候出发?4、为准备国庆联欢会,小丽购买了1.5 千克苹果、3.5 千克橘子和0.5 千克糖,共用去了16.30 元,后邀请其他年级同学参加,需增购食品,小丽又按原价买回2 千克苹果、5 千克橘子和05.千克糖,营业员收了21.80 元。

小丽放学后又按原价买了苹果、橘子和糖各0.5 千克,带回家给父母尝一尝,营业员收款5.80 元。

小丽边走边想,发现最后一次营业员算错了账,请你算一下,是多收了还是少收了。

5、汽车在平路上每小时走30 千米,上坡路每小时走28 千米,下坡路每小时走35 千米,单程为142 千米,去时用了4 小时30 分,回来时用了4 小时42 分,问这段路程平路、去时、的上坡路和下坡路各多少千米?6、某企业为了适应市场经济需要,决定进行人员结构的调整。

该企业现有从事生产型行业人员100 人,平均每人全年可创造产值a 元,现要从中分流出x 人去从事服务型行业。

假设分流后,继续从事生产型行业的人员平均每人全年创造产值可增加20% ,而分流从事服务型行业的人员平均每人全年可创造产值3.5a 元,如果要保证分流后,该厂生产型行业的全年总产值不少于分流前生产型行业的全年总产值;而服务型行业的全年总产值不少于分流前生产型行业的全年总产值的一半,试确定分流后从事服务型行业的人数?7、小明带了10 块钱去超市买一包饼干和一袋牛奶。

上宝中学预备班第二学期数学周周测精选(3)

上宝中学预备班第二学期数学周周测精选(3)

1、()1232111x y x y +⎧=⎪⎨⎪+-=⎩2、361463102463361102x y x y +=-⎧⎨+=⎩3、4258mx y x y +=⎧⎨+=⎩ 4、5、1:14:3)4(:)(:)6(=+-+-y x y x x4.方程199119891990=-y x 的一组正整数解是( ) (A)12768,12785==y x (B)12770,12785==y x 11941,11936)(==y x C 12623,13827)(==y x D 5、已知a 是不为0的整数,并且关于x 的方程374ax a a =-+有整数根,求a 的值6、若k 是为正整数,则使得方程(k-2008)x=2010-2009x 的解也是正整数的值有多少个。

7、已知关于x y 、的方程组2647x ay x y -=⎧⎨+=⎩有整数解,即x y 、都是整数,a 是正整数, 求a 的值.8、已知关于x y 、的方程组()312y kx b y k x =+⎧⎪⎨=-+⎪⎩分别求出k,b 为何值时, 方程组的解为: ⑴有唯一解; ⑵有无数多个解; ⑶无解?9、今年6月初三(1)班同学毕业合影留念,拍摄一张宽幅彩色合影需支付底片费及摄影师劳务费合计58元;冲印一张彩照需3.5元,每位同学预定1张,惠赠6张母校留存;结果参加合影同学分摊的费用没超过5元,问参加合影的同学至少有多少人?10、某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生.(1) 求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2) 检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.。

上海市上宝中学数学八年级下学期-初二数学(下)期中复习一

上海市上宝中学数学八年级下学期-初二数学(下)期中复习一

初二数学(下)期中复习一4月13日周一 代数部分班级:__________姓名:__________ 学号:__________ 成绩:__________一、代数方程(一)含有字母系数的整式方程 注:(1)含有字母系数的式子去乘或除方程两边时,这个式子的值不能等于0;(2)在实数范围内,对含字母系数的式子开平方时,这个式子必须是非负数.1.当m ______时,关于x 的方程()211m x m -=-有实数根.2.解方程22ax ax a =-的解是.3.关于x 的方程2(12)1m x --=有两个实数根,求m 取值范围.4.解方程221kx x =-.5.解方程()224(52)60k x k x ---+=.(二)二项方程及高次方程二项方程:方程的一边有两项,一项是含有未知数的整式,另一项是非零常数项,方程的另一边为0.一般形式:0n ax b +=(0ab ≠,n 是正整数)6.方程4(32)810x --=的根是__________________.高次方程:次数大于2的整式方程(三)分式方程注意:分式方程是有理方程 so 1=不是______方程而是______方程. 1.常见的解分式方程的方法:(1)______;(2)______.2.增根是指适合变形后的整式方程,但不适合原分式方程的根,它必须满足两个条件.(1)___________;(2)___________.7.用换元法解方程2213521x x x x --=-,设21x y x-=,则得到关于y 的整式方程为_________. 8.下列说法中,正确的是( )A10+= B.210x -+=是无理方程 C .20x =是二项方程 D .2230x xy y --=是二元二次方程 9.以下说法中正确的是( )A .如果分式方程可转化为一元一众方程,那么它的根就不需要检验B .分式方程的增根也是分式方程的根C .存在分式方程,它没有增根,也没有根D .若有一个数便得分式方程的公分母为零,则这个数称为分式方程的增根10.解分式方程(1)26311933x x x x +=---+;(2)□□;(3)□□.(4)222261244144444y y x y y y y y +--+=-++-+-. (5)9872322(2)125(2)23x y x y x y x y x y⎧-=⎪+-⎪⎨-⎪+=-⎪+⎩11.若关于x 的方程2211k x kx x x x x +-=--只有一个解,求k 的值.12.当a 取何值时,方程2122212x x x a x x x x --++=-+--的解为负数.(四)无理方程常见的解无理方程的方法:(1)观察法 (2)去分母 (3)换元法(1)观察法 挖掘二次根式的双重非负性 a 大于等于00.只含有一个根号的单独放一边 2x =2x =+再平方求解.含有两个根号的,等号一边放一个 2=-化为=2+再平方求解.(2)换元法 用换元法解无理方程通常整个根号一锅端,全部换掉.130=的解是___________.(一定记得检根)14.若关于x 的方程40k =有实数解,则k 的取值范围是___________.15.关于x 1k =-有一个根1,则k =______.常见的解二元二次方程组的方法:(1)代入消元 (2)因式分解降次法 (3)加减消元法.16.把方程2261170x xy y --=化成两个二元一次方程为___________.(不能用大括号联结,应用“或”字联结) 17.若方程组2(1)021k x y x y ⎧-+=⎨+=⎩有两组不同的实数解,则k 的取值范围___________.18.方程组2221025x y xy x y ⎧+--=⎨+=⎩(因式分解法或带入消元法).19.22120210x xy xy y ⎧+-=⎨--=⎩(方程组的特点,没有一次项,故消掉常数项).20.22222422021x y x y x y x y ⎧-+-+=⎨-++=⎩ (对应项系数成比例,加减消元将含有未知数x 的项全部消掉).21.2226165x xy y ⎧+-=⎪=(仔细思考,方程有什么特征呢?)。

上海市上宝中学数学八年级下学期-初二下数学练习卷(二)

上海市上宝中学数学八年级下学期-初二下数学练习卷(二)

初二下数学练习卷(二)2015.3.16 班级:__________ 姓名:__________ 学号:__________成绩:__________一、选择题:(本大题共6题,每题3分,满分18分) 1.如图,正方形ABCD ,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 中点,O 是EG 、HF 的交点,OA OD +=( )A .OHB .ADC .ABD .FH2.下列结论中,正确的是( )A .零向量只有大小,没有方向B .对任意一个向量a ,则||0a >C .||||AB BA =D .若向量a 、b ,则||||||a b a b +=+3.下列命题中,正确的有( )(1)若四边形ABCD 是平行四边形,则AB DC =;(2)若//a b ,//b c ,则//a c ;(3)若AB CD =,则||||AB CD =,且AB CD ∥;(4)若非零向量a 与b 的方向相同或相反,则a b +的方向必与a 、b 之一方向相同(5)有两个角相等的题型是等腰梯形A .0个B .1个C .2个D .3个4.顺次连接等腰梯形各边中点所围成的四边形是( )A .平行四边形B .矩形C .菱形D .正方形5.在等腰梯形ABCD 中,AD BC ∥,对角线AC BD ⊥于点O ,AE BC ⊥,DF BC ⊥,垂足分别为E 、F ,设AD a =,BC b =,则四边形AEFD 的周长是( )A .3a b +B .2()a b +C .2b a +D .4a b +6.四边形ABCD 中,E 、F 分别是边AB 、CD 中点,则AD 、BC 和EF 的关系是( )A .2AD BC EF +>B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤二、填空题:(本大题共12题,每题3分,满分36分)7.化简:AB CB DC ED ---=______;AB AC BD CD -+-=______.8.在ABCD 中,已知AC 、BD 交于点O ,AB a =,AD b =,则AO =______,DO =______. 9.如图,梯形ABCD 中,AB DC ∥,点E 在AB 上, EC AD ∥,则AE EC CD +++BE =______. 10.在菱形ABCD 中,两个相邻的内角之比是1:2,||2AB =,则||BC DC +=______.11.三角形一条中位线分三角形所成的新三角形与原三角形周长之和为60cm ,则原三角形的周长为______.12.梯形的两腰分别为3和6,一底边长为8,则另一条底边长x 的取值范围是__________.13.已知等腰梯形的两个内角之比为1:3,上底为7,高为4,梯形的两条对角线分梯形中位线成三部分,则这三部分线段长之比为__________.14.已知一个等腰梯形的一条对角线将它所在的一个下底角平分,若梯形的上、下底边长之比为3:5,且面积为22,则这个梯形的周长等于______.15.小明作出了边长为□的第一个正111A B C △,算出了正111A B C △的面积,然后分别取111A B C △得三边中点2A 、2B 、2C ,作出了第2个正222A B C △算出了正222A B C △的面积.用同样的方法,作出了第3个正333A B C △,算出了正333A B C △的面积……,由此可得,第10个正101010A B C △的面积是______.16.如图,梯形ABCD 中,ABP △的面积为20平方厘米,CDQ △的面积为35平方厘米,则阴影四边形的面积等于______.17.梯形ABCD 中,AB CD ∥,90ADC BCD ∠+∠=度,以AB 、AB 、BC 为斜边向外作等腰直角三角形,其面积分别为1S 、2S 、3S ,且1324S S S +=,则CD =______AB .18.用长为1、4、4、5的线段为边作梯形,可以做成______个梯形.在这些梯形中,面积最小的梯形的两条对角线长度之和是______.三、解答题(本大题共6题,满分46分)19.(5分)如图,a 、b 、c 、d ,求作向量a b c d +++.20.(5分)如图,某船从A 点出发以/时的速度向垂直于对岸的方向行驶,同时河水的流速为2千米/时.求船实际航行的速度的大小与方向.21.(5分)如图,点D 是射线AB 上一点,过点D 作DE AC ∥,交BAC ∠平分线交于点E ,过点D 作DP AE ⊥垂足为F ,DF 交AC 于点G .①按要求在所给图中将图形补全,然后判断四边形ADEG 的形状,不用证明;②标出有向线段AD 、AF 、AG ,记向量AD a =,AF b =,试用a 、b 表示向量AG .22.(6分)如图,在梯形ABCD 中,AB DC ∥,DB 平分ADC ∠,过点A 作AE BD ∥,交CD 的延长线于点E ,且2C E ∠=∠.(1)求证:梯形ABCD 是等腰梯形;(2)若BDC 30∠=︒,5AD =,求CD 的长.23.(7分)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形,如菱形就是和谐四边形.(1)如图,梯形ABCD 中,AD BC ∥,120BAD ∠=度,75C ∠=度,BD 平分ABC ∠.求证:BD 是梯形的和谐线(2分)(2)在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC ,点A 、B 、C 均在格点上,请在答题纸上给出的两个网格图上各找一个点D ,使得A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(2分)(3)四边形ABCD 中,AB AD BC ==,BAD 90∠=︒,AC 是四边形ABCD 的和谐线,写出BCD ∠的度数______(3分)24.(7分)在直角梯形OABC 中,CB OA ∥,90COA ∠=︒,3CB =,6OA =,BA =分别以OA 、OC 边所在直线为x 轴、y 轴建立如图所示的平面直角坐标系.(1)写出点B 的坐标_______(1分)(2)已知D 、E 分别为线段OC 、OB 上的点,5OD =,2OE EB =,直线DE 交x 轴于点F ,求直线DE 的解析式(3分)(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一点N ,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请直接求出点N 的坐标,若不存在,请说明理由(3分)25.(11分)已知,如图,四边形ABCD 是等腰梯形,AD BC ∥,2AD =,4BC =,2AB CD ==,点M 从点B 开始,以每秒1个单位的速度向点C 运动;点N 从D 出发,沿D A B --方向,以每秒1个单位的速度向点B 运动.若M 、N 同时开始运动,其中一点到达终点时,另一点也停止运动,运动时间为t ,过N 作NP BC ⊥于P ,交BD 于Q .(1)点D 到BC 的距离是______(1分)(2)求出t 为何值时, QM AB ∥(2分)(3)设BMQ △的面积为S ,求S 与t 的关系(4分)(4)求出t 为何值时,BMQ △为直角三角形(4分)。

上宝中学预备班第二学期数学周周测精选(7)

上宝中学预备班第二学期数学周周测精选(7)

1、已知关于x的方程612()4xx k+=+的解也是不等式5(2)53x x-≤-的解,求k的取值范围2、已知关于x的不等式1310.5[(4)3] 2.534xa a--⨯-----≤有三个正整数解,求a的取值范围3、若不等式组2xx a>⎧⎨≥⎩的解集是2x>,求a的取值范围4、若不等式组2xx a≤⎧⎨≥⎩无解,求a的取值范围5、若不等式组2xx a≤⎧⎨≥⎩解集为2a x≤≤,求a的取值范围6、如果不等式组650320x ax b-≥⎧⎨-<⎩的非负整数解仅为1、2、3,那么适合这个不等式组的整数a、b的有序数对(a,b)共有多少对7、对于x,[x]表示不大于x的最大整数,则满足关系式377x+⎡⎤⎢⎥⎣⎦= 4的整数值有几个8、已知不等式组112326x mx m⎧-<⎪⎨⎪-<⎩的解集是63x m<+,求m的取值范围9、已知不等式组1x ax a-<⎧⎨->⎩的解集中任意x的值均不在25x≤≤中,求a的取值范围(请具体写出)。

备战2020中考【6套模拟】上海市上宝中学中考第二次模拟考试数学试题

备战2020中考【6套模拟】上海市上宝中学中考第二次模拟考试数学试题

备战2020中考【6套模拟】上海市上宝中学中考第二次模拟考试数学试题中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择题1.解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选:C.2.解:2.6万用科学记数法表示为:2.6×104,故选:D.3.解:A、4x3•2x2=8x5,故原题计算正确;B、a4和a3不是同类项,不能合并,故原题计算错误;C、(﹣x2)5=﹣x10,故原题计算正确;D、(a﹣b)2=a2﹣2ab+b2,故原题计算正确;故选:B.4.解:由主视图定义知,该几何体的主视图为:故选:A.5.解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.6.解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.7.解:利用作法可判断OC平分∠AOB,所以OP为△AOB的角平分线.故选:C.8.解:如图,连接OA,OB,将△OAB绕点A逆时针旋转90°得到△PAD,则OA=PD=4,∠OAP=90°,∴OP==4,∵四边形ABCD为正方形,∴AB=AD,∠DAB=99°,∴∠DBP=∠BAO,∴△DBP≌△ABO(SAS),∴PD=OA=4,∵OD+PD≥OP,∴OD≥OP﹣PD=4﹣4.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.10.解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,则cos∠B AC==,故答案为:.11.解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)12.解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.13.解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.14.解:由一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<2,故答案为:x<2.15.解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.16.解:反比例函数y=﹣图象在二、四象限,点A在第二象限,y1>0,点B、C都在第四象限,在第四象限,y随x的增大而增大,且纵坐标为负数,所以y2<y3<0,因此,y2<y3<0<y1,即:y1>0>y3>y2.故答案为:y1>y3>y2.17.解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O ﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.18.解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.三.解答题(共10小题,满分96分)19.解:(1)原式=2×﹣1﹣2﹣9=1﹣1﹣2﹣9=﹣11;(2)解不等式①得:x≥﹣2,解不等式②得:x<5,∴不等式组的解集为:﹣2≤x<5,∴不等式组的整数解为﹣2,﹣1,0,1,2,3,4.20.解:()•(x 2﹣1) ==2x +2+x ﹣1=3x +1, 由x 2﹣4x +3=0得x 1=1,x 2=3,当x =1时,原分式中的分母等于0,使得原分式无意义,当x =3时,原式=3×3+1=10.21.解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).22.解:(1)∵垃圾要按A ,B ,C 、D 类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A 、B 、C 、D ,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.23.解:(1)设甲种救灾物品每件的价格x元/件,则乙种救灾物品每件的价格为(x﹣10)元/件,可得:,解得:x=90,经检验x=90是原方程的解,答:甲单价 90 元/件、乙 80 元/件.(2)设甲种物品件数y件,可得:y+3y=4000,解得:y=1000,所以筹集资金=90×1000+80×3000=330000 元,答:筹集资金330000 元.24.(1)证明:∵AF∥ED,AE∥DF,∴四边形AEDF为平行四边形,∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵点E是边BC的中点,∴BE=CE,在△ABE和△DCE中,∴△ABE≌△DCE,∴EA=ED,∴四边形AEDF为菱形;(2)解:当AB:BC=1:2,菱形AEDF为正方形.理由如下:∵AB:BC=1:2,而点E是边BC的中点,∴AB=EA,∴△ABE为等腰直角三角形,∴∠AEB=45°,∵△ABE≌△DCE,∴∠DEC=45°,∴∠AED=90°,∵四边形AEDF为菱形,∴菱形AEDF为正方形.故答案为1:2.25.证明:连接DB、DF,∵∠A的平分线AD交圆于D,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DFB=∠DFC=90°,∠BAD=∠CAD,∴DB=DC,∴在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.26.解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,﹣(x﹣5)2+5=,所以水面上涨的高度为米.27.解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=,∴sinα=,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或(舍去a=2),AD=HF=10﹣2﹣4a=;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=x2﹣x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=x2﹣x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα===,即:5x+8y=80,将上式代入①式并解得:x=;③当FC=FD,则∠FCD=∠FDC=α,而∠ECF=α≠∠FCD,不成立,故:该情况不存在;故:AD的长为6和.28.解:(1)∵点A在线段OE上,E(8,0),OA=2 ∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'=MN+NG+GF+FM=MN+N'G+GF+FM'∴C四边形MNGF∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小=MN+M'N'==2+10=12∴C四边形MNGF∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x设点P坐标为(t, t2﹣4t)(0<t<8),则点E(t,﹣3t)①如图2,当0<t<2时,点P在点D左侧∴PE=y E﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t∴S△ODP =S△OPE+S△DPE=PE•x P+PE•(x D﹣x P)=PE(x P+x D﹣x P)=PE•x D=PE=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h∴﹣t2+t=×2×方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP =S△OPE﹣S△DPE=PE•x P﹣PE•(x P﹣x D)=PE(x P﹣x P+x D)=PE•x D=PE=t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,0)连接AC,交KL于点H∵S△ACD =S四边形ADLK=S矩形ABCD∴S△AHK =S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择题1.解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选:C.2.解:2.6万用科学记数法表示为:2.6×104,故选:D.3.解:A、4x3•2x2=8x5,故原题计算正确;B、a4和a3不是同类项,不能合并,故原题计算错误;C、(﹣x2)5=﹣x10,故原题计算正确;D、(a﹣b)2=a2﹣2ab+b2,故原题计算正确;故选:B.4.解:由主视图定义知,该几何体的主视图为:故选:A.5.解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.6.解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.7.解:利用作法可判断OC平分∠AOB,所以OP为△AOB的角平分线.故选:C.8.解:如图,连接OA,OB,将△OAB绕点A逆时针旋转90°得到△PAD,则OA=PD=4,∠OAP=90°,∴OP==4,∵四边形ABCD为正方形,∴AB=AD,∠DAB=99°,∴∠DBP=∠BAO,∴△DBP≌△ABO(SAS),∴PD=OA=4,∵OD+PD≥OP,∴OD≥OP﹣PD=4﹣4.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.10.解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,则cos∠B AC==,故答案为:.11.解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)12.解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.13.解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.14.解:由一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<2,故答案为:x<2.15.解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.16.解:反比例函数y=﹣图象在二、四象限,点A在第二象限,y1>0,点B、C都在第四象限,在第四象限,y随x的增大而增大,且纵坐标为负数,所以y2<y3<0,因此,y2<y3<0<y1,即:y1>0>y3>y2.故答案为:y1>y3>y2.17.解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O ﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.18.解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.三.解答题(共10小题,满分96分)19.解:(1)原式=2×﹣1﹣2﹣9=1﹣1﹣2﹣9=﹣11;(2)解不等式①得:x≥﹣2,解不等式②得:x<5,∴不等式组的解集为:﹣2≤x<5,∴不等式组的整数解为﹣2,﹣1,0,1,2,3,4.20.解:()•(x 2﹣1) ==2x +2+x ﹣1 =3x +1,由x 2﹣4x +3=0得x 1=1,x 2=3,当x =1时,原分式中的分母等于0,使得原分式无意义, 当x =3时,原式=3×3+1=10.21.解:(1)调查的总人数是:224÷40%=560(人),故答案是:560; (2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).22.解:(1)∵垃圾要按A ,B ,C 、D 类分别装袋,甲投放了一袋垃圾, ∴甲投放的垃圾恰好是A 类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A 、B 、C 、D , 画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.23.解:(1)设甲种救灾物品每件的价格x元/件,则乙种救灾物品每件的价格为(x﹣10)元/件,可得:,解得:x=90,经检验x=90是原方程的解,答:甲单价 90 元/件、乙 80 元/件.(2)设甲种物品件数y件,可得:y+3y=4000,解得:y=1000,所以筹集资金=90×1000+80×3000=330000 元,答:筹集资金330000 元.24.(1)证明:∵AF∥ED,AE∥DF,∴四边形AEDF为平行四边形,∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵点E是边BC的中点,∴BE=CE,在△ABE和△DCE中,∴△ABE≌△DCE,∴EA=ED,∴四边形AEDF为菱形;(2)解:当AB:BC=1:2,菱形AEDF为正方形.理由如下:∵AB:BC=1:2,而点E是边BC的中点,∴AB=EA,∴△ABE为等腰直角三角形,∴∠AEB=45°,∵△ABE≌△DCE,∴∠DEC=45°,∴∠AED=90°,∵四边形AEDF为菱形,∴菱形AEDF为正方形.故答案为1:2.25.证明:连接DB、DF,∵∠A的平分线AD交圆于D,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DFB=∠DFC=90°,∠BAD=∠CAD,∴DB=DC,∴在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.26.解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,﹣(x﹣5)2+5=,所以水面上涨的高度为米.27.解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=,∴sinα=,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或(舍去a=2),AD=HF=10﹣2﹣4a=;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=x2﹣x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=x2﹣x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα===,即:5x+8y=80,将上式代入①式并解得:x=;③当FC=FD,则∠FCD=∠FDC=α,而∠ECF=α≠∠FCD,不成立,故:该情况不存在;故:AD的长为6和.28.解:(1)∵点A在线段OE上,E(8,0),OA=2 ∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'=MN+NG+GF+FM=MN+N'G+GF+FM'∴C四边形MNGF∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小=MN+M'N'==2+10=12∴C四边形MNGF∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x设点P坐标为(t, t2﹣4t)(0<t<8),则点E(t,﹣3t)①如图2,当0<t<2时,点P在点D左侧∴PE=y E﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t∴S△ODP =S△OPE+S△DPE=PE•x P+PE•(x D﹣x P)=PE(x P+x D﹣x P)=PE•x D=PE=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h∴﹣t2+t=×2×方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP =S△OPE﹣S△DPE=PE•x P﹣PE•(x P﹣x D)=PE(x P﹣x P+x D)=PE•x D=PE=t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,0)连接AC,交KL于点H∵S△ACD =S四边形ADLK=S矩形ABCD∴S△AHK =S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;。

八年级数学上册周周练及答案全册

八年级数学上册周周练及答案全册

八年级数学上册周周练及答案全册一、简介八年级数学上册周周练及答案全册是为八年级学生编写的一套数学学习辅助材料。

本文档旨在为学生提供全册周周练习题及其答案,帮助学生巩固和提升数学知识和解题能力。

二、周周练习题第一周练习题1.求下列式子的值:a)$4 + 7 \\times 2 =$b)$\\frac{3}{4} \\times 2 + \\frac{2}{5} =$c)$\\frac{1}{3} + \\frac{1}{4} - \\frac{1}{6} =$2.简化下列代数表达式:a)x+2x+3x=b)2(x+x)−3x=c)$(2a + 3b) \\cdot 4 =$3.解下列方程:a)2x+5=15b)$\\frac{x}{4} = 6$c)3x+2=5x−3第二周练习题1.计算下列式子的值:a)$\\frac{3}{5} \\times \\frac{4}{9} +\\frac{2}{3} \\times \\frac{1}{2} =$b)$(\\frac{1}{2})^3 \\times (\\frac{1}{2})^{-2}=$c)$\\sqrt{16} + \\sqrt{25} =$2.求下列代数式的值:a)3x−2,当x=4时b)2x2+x−1,当x=−3时c)x3−3x2+2x,当x=1时3.解下列方程组:\\end{cases}$b)$\\begin{cases} 3x - 2y = 1 \\\\ x + y = 4\\end{cases}$c)$\\begin{cases} 2x - y = 3 \\\\ 3x + 4y = 8\\end{cases}$第三周练习题1.计算下列式子的值:a)$(\\frac{5}{8})^2 \\div (\\frac{7}{10})^3 =$b)$\\frac{3}{5} \\div (\\frac{2}{3} +\\frac{1}{4}) =$c)$\\sqrt{36} - \\sqrt{49} =$2.求下列代数式的值:a)2x2−3xx+5,当x=2,x=3时b)$\\frac{(a-b)^2}{a^2 - ab + b^2}$,当x=3,x=1时c)3x3+2x2−x,当x=−1时3.解下列方程组:\\end{cases}$b)$\\begin{cases} 2x - 3y = 1 \\\\ 4x + y = 5\\end{cases}$c)$\\begin{cases} x + 2y = -3 \\\\ 3x + 4y = 2\\end{cases}$三、答案第一周练习题答案1.求下列式子的值:a)$4 + 7 \\times 2 = 4 + 14 = 18$b)$\\frac{3}{4} \\times 2 + \\frac{2}{5} =\\frac{6}{4} + \\frac{2}{5} = \\frac{12}{8} +\\frac{2}{5} = \\frac{15}{10} + \\frac{4}{10} =\\frac{19}{10} = 1.9$c)$\\frac{1}{3} + \\frac{1}{4} - \\frac{1}{6} =\\frac{2}{6} + \\frac{3}{12} - \\frac{2}{12} =\\frac{4}{12} + \\frac{3}{12} - \\frac{2}{12} =\\frac{5}{12}$2.简化下列代数表达式:a)x+2x+3x=6xb)2(x+x)−3x=2x+2x−3x=2x−xc)$(2a + 3b) \\cdot 4 = 8a + 12b$3.解下列方程:a)2x+5=15解得x=5b)$\\frac{x}{4} = 6$解得x=24c)3x+2=5x−3解得 $x = \\frac{5}{2}$第二周练习题答案1.计算下列式子的值:a)$\\frac{3}{5} \\times \\frac{4}{9} +\\frac{2}{3} \\times \\frac{1}{2} = \\frac{12}{45} +\\frac{2}{6} = \\frac{12}{45} + \\frac{15}{45} =\\frac{27}{45} = \\frac{3}{5}$b)$(\\frac{1}{2})^3 \\times (\\frac{1}{2})^{-2}= \\frac{1}{8} \\times \\frac{1}{(\\frac{1}{2})^2} =\\frac{1}{8} \\times 4 = \\frac{4}{8} = \\frac{1}{2}$c)$\\sqrt{16} + \\sqrt{25} = 4 + 5 = 9$2.求下列代数式的值:a)3x−2,当x=4时解得 $3 \\times 4 - 2 = 12 - 2 = 10$b)2x2+x−1,当x=−3时解得 $2 \\times (-3)^2 + (-3) - 1 = 2 \\times 9 -3 - 1 = 18 - 3 - 1 = 14$c)x3−3x2+2x,当x=1时解得 $1^3 - 3 \\times 1^2 + 2 \\times 1 = 1 - 3 + 2 = 0$3.解下列方程组:a)$\\begin{cases} 2x + 3y = 7 \\\\ 4x - 5y = -2\\end{cases}$解得 $x = \\frac{19}{17}$, $y = \\frac{1}{17}$b)$\\begin{cases} 3x - 2y = 1 \\\\ x + y = 4\\end{cases}$解得 $x = \\frac{9}{5}$, $y = \\frac{11}{5}$c)$\\begin{cases} 2x - y = 3 \\\\ 3x + 4y = 8\\end{cases}$解得 $x = \\frac{20}{17}$, $y =\\frac{31}{17}$第三周练习题答案1.计算下列式子的值:a)$(\\frac{5}{8})^2 \\div (\\frac{7}{10})^3 =\\frac{25}{64} \\div \\frac{343}{1000} =\\frac{25}{64} \\times \\frac{1000}{343} =\\frac{25000}{21952}$b)$\\frac{3}{5} \\div (\\frac{2}{3} +\\frac{1}{4}) = \\frac{3}{5} \\div \\frac{8}{12} =\\frac{3}{5} \\times \\frac{12}{8} = \\frac{9}{10}$c)$\\sqrt{36} - \\sqrt{49} = 6 - 7 = -1$2.求下列代数式的值:a)2x2−3xx+5,当x=2,x=3时解得2(2)2−3(2)(3)+5=8−18+5=−5b)$\\frac{(a-b)^2}{a^2 - ab + b^2}$,当x=3,x=1时解得 $\\frac{(3-1)^2}{3^2 - 3(3)(1) + (1)^2} = \\frac{2^2}{9 - 9 + 1} = \\frac{4}{1} = 4$c)3x3+2x2−x,当x=−1时解得3(−1)3+2(−1)2−(−1)=−3+2+1= 03.解下列方程组:a)$\\begin{cases} 3x + 2y = 4 \\\\ 5x - 3y = 7\\end{cases}$解得 $x = \\frac{23}{19}$, $y = \\frac{2}{19}$b)$\\begin{cases} 2x - 3y = 1 \\\\ 4x + y = 5\\end{cases}$解得 $x = \\frac{17}{11}$, $y = \\frac{9}{11}$c)$\\begin{cases} x + 2y = -3 \\\\ 3x + 4y = 2\\end{cases}$解得 $x = -\\frac{14}{5}$, $y = \\frac{11}{5}$四、总结本文档提供了八年级数学上册周周练习题及其答案,涵盖了多个知识点和题型,并且给出了详细的解题步骤和答案,帮助学生巩固和提升数学知识和解题能力。

上海市上宝中学初中数学八年级下期中经典测试题(培优练)

上海市上宝中学初中数学八年级下期中经典测试题(培优练)

一、选择题1.(0分)[ID :9930]下列运算中,正确的是( ) A .235+=; B .2(32)32-=-; C .2a a =;D .2()a b a b +=+.2.(0分)[ID :9911]如图,由四个全等的直角三角形拼成的图形,设CE =a ,HG =b ,则斜边BD 的长是( )A .a+bB .a ﹣bC .222a b +D .222a b - 3.(0分)[ID :9891]已知函数()()()()22113{513x x y x x --≤=-->,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0B .1C .2D .34.(0分)[ID :9878]如图,在平行四边形ABCD 中,AC 、BD 相交于点O ,下列结论:①OA =OC ;②∠BAD =∠BCD ;③AC ⊥BD ;④∠BAD +∠ABC =180°中,正确的个数有( )A .1个B .2个C .3个D .4个5.(0分)[ID :9877]周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米6.(0分)[ID :9876]△ABC 的三边分别是 a ,b ,c ,其对角分别是∠A ,∠B ,∠C ,下列条件不能判定△ABC 是直角三角形的是( )A .∠B = ∠A - ∠C B .a : b : c = 5 :12 :13 C .b 2- a 2= c 2D .∠A : ∠B : ∠C = 3 : 4 : 5 7.(0分)[ID :9864]如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .5 8.(0分)[ID :9859]下列各组数据中能作为直角三角形的三边长的是( )A .1,2,2B .1,1,3C .4,5,6D .1,3,2 9.(0分)[ID :9858]菱形ABCD 中,AC =10,BD =24,则该菱形的周长等于( ) A .13B .52C .120D .24010.(0分)[ID :9855]下列各式正确的是( )A .()255-=- B .()20.50.5-=-C .()2255-=D .()20.50.5-=11.(0分)[ID :9838]小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④12.(0分)[ID :9837]如图,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为( )A .36°B .18°C .27°D .9° 13.(0分)[ID :9833]下列各式中一定是二次根式的是( ) A .23-B .2(0.3)-C .2-D .x14.(0分)[ID :9863]如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .315.(0分)[ID :9851]下列各组数据中,不可以构成直角三角形的是( )A .7,24,25B .2223,4,5C .53,1,44D .1.5,2,2.5二、填空题16.(0分)[ID :10024]小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分. 17.(0分)[ID :10023]如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.18.(0分)[ID :10016]如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,且另外两条边长均为无理数,满足这样条件的点C 共__个.19.(0分)[ID :10012]已知菱形的周长为20㎝ ,两条对角线的比为3:4,则菱形的面积为___________.20.(0分)[ID :10003]已知51,x =-则226x x +-=____________________.21.(0分)[ID :9991]函数126x y x +=+的自变量x 的取值范围是_________. 22.(0分)[ID :9988]如图,正方形ABCD 的边长为3,点E 在BC 上,且CE=1,P 是对角线AC 上的一个动点,则PB+PE 的最小值为______.23.(0分)[ID :9983]△ABC 中,AB =13cm ,BC =10cm ,BC 边上的中线AD =12cm .则AC =______cm . 24.(0分)[ID :9972]已知211a aa a--=,则a 的取值范围是________ 25.(0分)[ID :9970]如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为______.三、解答题26.(0分)[ID :10129]如图,正方形网格中的每个小正方形边长都是l ,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)画出一个平行四边形,使其面积为6;(2)画出一个菱形,使其面积为4. (3)画出一个正方形,使其面积为5.27.(0分)[ID :10123]如图,∠MON =90°,正方形ABCD 的顶点A 、B 分别在OM 、ON 上,AB =13,OB =5,E 为AC 上一点,且∠EBC =∠CBN ,直线DE 与ON 交于点F . (1)求证BE =DE ;(2)判断DF 与ON 的位置关系,并说明理由; (3)△BEF 的周长为 .28.(0分)[ID :10108]如图,在44⨯的方格子中,ABC ∆的三个顶点都在格点上,(1)在图1中画出线段CD ,使CD CB ⊥,其中D 是格点, (2)在图2中画出平行四边形ABEC ,其中E 是格点.29.(0分)[ID :10106]如图,△ABC 中,D 、E 、F 分别在边BC 、AB 、AC 上,且 DE ∥AC ,DE=AF ,延长FD 到G ,使DG=DF ,求证:AG 和DE 互相平分.30.(0分)[ID :10089]定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.已知:在Rt ABC 中,90BAC ∠=︒,斜边5BC =,直角边3AB Rt ABC =,的准外心P 在AC 边上,试求PA 的长.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.D4.C5.C6.D7.C8.D9.B10.D11.C12.B13.B14.C15.B二、填空题16.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少17.10【解析】【分析】分别令x=0y=0可得AB坐标即可求出OAOB的长利用三角形面积公式即可得答案【详解】∵直线交x轴于点A交y轴于点B∴令则;令则;∴∴∴的面积故答案为10【点睛】本题考查一次函数18.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB为边画直角△ABC使点C在格点上满足这样条件的点C共8个故答案为819.【解析】【分析】【详解】解:已知菱形的周长为20㎝可得菱形的边长为5cm设两条对角线长分别为3x4x根据勾股定理可得()2+(2x)2=102解得x=2则两条对角线长分别为6cm8所以菱形的面积为故20.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型21.x>-3【解析】【分析】根据被开方数大于等于0分母不等于0列式计算即可得解【详解】解:由题意得2x+6>0解得x>-3故答案为x>-3【点睛】本题考查了函数自变量的范围一般从三个方面考虑:(1)当函22.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P23.13【解析】【分析】在△ABD中根据勾股定理的逆定理即可判断AD⊥BC然后根据线段的垂直平分线的性质即可得到AC=AB从而求解【详解】∵AD是中线AB=13BC=10∴∵52+122=132即BD224.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数25.【解析】【分析】【详解】解:如图作CE′⊥AB于E′甲BD于P′连接ACAP′首先证明E′与E重合∵AC关于BD对称∴当P与P′重合时PA′+P′E的值最小∵菱形ABCD 的周长为16面积为8∴AB=三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【解析】2=-误;a =,故错误; D.()2a b =+,正确;故选D.2.C解析:C 【解析】 【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b- ,得到BC=DE=22a b a ba -+-=,根据勾股定理即可得到结论. 【详解】设CD =x ,则DE =a ﹣x , ∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x , ∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b+,∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +,∴BD =222a b+,故选:C . 【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.3.D解析:D 【解析】 【分析】 【详解】 解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k 成立的x 值恰好有三个. 故选:D.4.C解析:C 【解析】试题分析:根据平行四边形的性质依次分析各选项即可作出判断. ∵平行四边形ABCD∴OA =OC ,∠BAD =∠BCD ,∠BAD +∠ABC =180°,但无法得到AC ⊥BD 故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.5.C解析:C 【解析】解:A .小丽从家到达公园共用时间20分钟,正确; B .公园离小丽家的距离为2000米,正确; C .小丽在便利店时间为15﹣10=5分钟,错误; D .便利店离小丽家的距离为1000米,正确. 故选C .6.D解析:D 【解析】 【分析】根据三角形内角和定理判断A 、D 即可;根据勾股定理的逆定理判断B 、C 即可. 【详解】A 、∵∠B=∠A-∠C , ∴∠B+∠C=∠A , ∵∠A+∠B+∠C=180°, ∴2∠A=180°,∴∠A=90°,即△ABC 是直角三角形,故本选项错误; B 、∵52+122=132,∴△ABC 是直角三角形,故本选项错误; C 、∵b 2-a 2=c 2, ∴b 2=a 2+c 2,∴△ABC 是直角三角形,故本选项错误;D 、∵∠A :∠B :∠C=3:4:5,∠A+∠B+∠C=180°, ∴∠A=45°,∠B=60°,∠C=75°,∴△ABC 不是直角三角形,故本选项正确; 故选D . 【点睛】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.7.C解析:C 【解析】 【分析】由直角三角形斜边上的中线求得AB 的长度,再根据含30°角直角三角形的性质求得AC 的长度,最后通过解直角△ACD 求得CD 的长度. 【详解】如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边上的中线,4CE =,28AB CE ∴==. 30B ∠=︒,60A ∴∠=︒,142AC AB ==. CD 是斜边上的高,30ACD ∠=︒122AD AC ∴== 22224223CD AC AD ∴=-=-=故选:C .【点睛】考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.8.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A 、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误; B 、∵12+12=2≠3)2,∴此组数据不能作为直角三角形的三边长,故本选项错误; C 、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误; D 、∵12+32=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确. 故选D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.9.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO =OD =12,AO =OC =5,2213AB OA BO ∴=+=,故菱形的周长为52.故选B.10.D解析:D【解析】【分析】【详解】解:因为(250.5===,所以A,B,C选项均错,故选D11.C解析:C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.12.B解析:B【解析】试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选B.13.B解析:B【解析】二次根式要求被开方数为非负数,易得B为二次根式.故选B.14.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE的长.【详解】如图所示:22125BE +=故选:C .【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.15.B解析:B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意; D 、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B .【点睛】 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题16.82【解析】【分析】设第三次考试成绩为x 根据三次考试的平均成绩不少于80分列不等式求出x 的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x ,根据三次考试的平均成绩不少于80分列不等式,求出x 的取值范围即可得答案.【详解】设第三次考试成绩为x ,∵三次考试的平均成绩不少于80分,∴7286803x ++≥, 解得:82x ≥, ∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.17.10【解析】【分析】分别令x=0y=0可得AB 坐标即可求出OAOB 的长利用三角形面积公式即可得答案【详解】∵直线交x 轴于点A 交y 轴于点B∴令则;令则;∴∴∴的面积故答案为10【点睛】本题考查一次函数解析:10【解析】【分析】分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.【详解】∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB 的面积1210102=⨯⨯=. 故答案为10【点睛】本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积. 18.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB 为边画直角△ABC 使点C 在格点上满足这样条件的点C 共8个故答案为8解析:4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.【详解】解:根据题意可得以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 共 8个.故答案为8.19.【解析】【分析】【详解】解:已知菱形的周长为20㎝可得菱形的边长为5cm 设两条对角线长分别为3x4x 根据勾股定理可得()2+(2x )2=102解得x=2则两条对角线长分别为6cm8所以菱形的面积为故解析:224cm .【解析】【分析】【详解】解:已知菱形的周长为20㎝ ,可得菱形的边长为5cm ,设两条对角线长分别为3x ,4x , 根据勾股定理可得(32x )2+( 2x )2=102, 解得,x=2, 则两条对角线长分别为6cm 、8,所以菱形的面积为2168242cm ⨯⨯=. 故答案为:224cm .【点睛】本题考查菱形的性质;勾股定理. 20.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型解析:-2【解析】【分析】直接代入,根据二次根式的运算法则即可求出答案.【详解】 解:当51x =时, 原式2(51)51)6=+-52512526=-+-2=-【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.21.x >-3【解析】【分析】根据被开方数大于等于0分母不等于0列式计算即可得解【详解】解:由题意得2x+6>0解得x>-3故答案为x>-3【点睛】本题考查了函数自变量的范围一般从三个方面考虑:(1)当函解析:x>-3.【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:由题意得,2x+6>0,解得x>-3.故答案为x>-3.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.22.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P解析:10【解析】【分析】已知ABCD是正方形,根据正方形性质可知点B与点D关于AC对称,DE=PB+PE,求出DE长即是PB+PE最小值.【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称,连接DE,交AC于点P,连接PB,则PB+PE=DE的值最小∵CE=1,CD=3,∠ECD=90°∴2222DE CE CD=++=1310∴PB+PE1010【点睛】本题考查正方形性质,作对称点,再连接,根据两点之间直线最短得结论.23.13【解析】【分析】在△ABD中根据勾股定理的逆定理即可判断AD⊥BC然后根据线段的垂直平分线的性质即可得到AC=AB 从而求解【详解】∵AD 是中线A B=13BC=10∴∵52+122=132即BD2解析:13【解析】【分析】在△ABD 中,根据勾股定理的逆定理即可判断AD ⊥BC ,然后根据线段的垂直平分线的性质,即可得到AC=AB ,从而求解.【详解】∵AD 是中线,AB=13,BC=10, ∴152BD BC ==. ∵52+122=132,即BD 2+AD 2=AB 2,∴△ABD 是直角三角形,则AD ⊥BC ,又∵BD=CD ,∴AC=AB=13.故答案为13.【点睛】本题考查的知识点是勾股定理的逆定理与线段的垂直平分线的性质,解题关键是利用勾股定理的逆定理证得AD ⊥BC .24.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数解析:01a <≤【解析】【分析】根据二次根式得非负性求解即可.【详解】 211a a a --=成立, 则有:10a ->,0a ≠ , 10aa ,即:0a >,∴01a <≤,故答案为:01a <≤.【点睛】本题考查的是二次根式的取值范围,在二次根式里被开方数,必须是非负数.25.【解析】【分析】【详解】解:如图作CE′⊥AB于E′甲BD于P′连接ACAP′首先证明E′与E重合∵AC关于BD对称∴当P与P′重合时PA′+P′E的值最小∵菱形ABCD的周长为16面积为8∴AB=解析:23.【解析】【分析】【详解】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,∵A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,∵菱形ABCD的周长为16,面积为83,∴AB=BC=4,AB·CE′=83,∴CE′=23,由此求出CE的长=23.故答案为3考点:1、轴对称﹣最短问题,2、菱形的性质三、解答题26.(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)平行四边形面积为6,则可以为底边长为3,高为2,具体图形如下;(2)菱形面积为4,则对角线长度为2和4,据此可画出菱形;(3)要使正方形面积为55.【详解】(1)图形如下:(2)图形如下:(3)图形如下:【点睛】本题考查根据条件绘制四边形,注意在绘制前,需要根据四边形的特点,适当进行分析,以辅助完成绘图.27.(1)见解析;(2)DF⊥ON,理由见解析;(3)24【解析】【分析】(1)根据正方形的性质证明△BCE≌△DCE即可;(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF⊥ON,又∵∠MON=90°,DG⊥OM,∴四边形OFDM是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE=DE,∴△BEF的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.28.(1)见解析;(2)见解析.【解析】【分析】,且点D是格点即可.(2)作一个△BEC与△BAC全等即可得出(1)过点C作CD CB图形.【详解】(1)解:如图,线段CD就是所求作的图形.(2)解:如图,ABEC就是所求作的图形【点睛】本题考查作图-应用与设计,平行四边形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.29.证明过程见解析.【解析】【分析】由一组对边平行且相等求解四边形AEGD 是平行四边形,即可得出结论.【详解】证明:∵DE ∥AC ,DE=AF∴四边形AEDF 是平行四边形∴AE=DF ,AE ∥DF∵DG=DF∴AE=DG∴四边形AEGD 是平行四边形∴AG 和DE 互相平分【点睛】本题主要考查了平行四边形的判定. 应熟练掌握平行四边形的判定定理.30.2PA =或78 【解析】【分析】 先利用勾股定理计算出AC=4,根据准外心分类讨论:当PA=PC 时,易得PA=12AC=2;当PB=PC 时,设PA=x ,则PC=PB=4-x ,利用勾股定理得x 2+32=(4-x )2,解得x=78;当PA=PB 时,此情况不成立,然后解方程求出x 即可.【详解】如图:3,5,BC AB ==224AC AB BC ∴=-,若,PB PC =设PA x =,则()22243,x x -=+ 78x ∴=,即78PA =,若,PA PC =则2,PA =若,PA PB =此情况不成立;综上,2PA =或78 【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.也考查了阅读理解能力.。

【精选试卷】上海市上宝中学中考数学专项练习经典测试题(培优练) (2)

【精选试卷】上海市上宝中学中考数学专项练习经典测试题(培优练) (2)

一、选择题1.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=2.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,153.如果关于x 的分式方程11222ax x x-+=--有整数解,且关于x 的不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A .7 B .8 C .4 D .54.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)5.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°6.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=0 7.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1 B .0,1C .1,2D .1,2,38.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .9.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°10.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数ky x=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 211.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .1212.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++=13.如图A ,B ,C 是⊙O 上的三个点,若∠AOC =100∘,则∠ABC 等于( )A .50°B .80°C .100°D .130° 14.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .715.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D16.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .1517.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y=4x ﹣12x 2刻画,斜坡可以用一次函数y=12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:218.已知二次函数y =ax 2+bx +c ,且a>b>c ,a +b +c =0,有以下四个命题,则一定正确命题的序号是( )①x=1是二次方程ax 2+bx +c=0的一个实数根; ②二次函数y =ax 2+bx +c 的开口向下;③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧; ④不等式4a+2b+c>0一定成立. A .①②B .①③C .①④D .③④19.-2的相反数是( ) A .2B .12C .-12D .不存在20.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形 21.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)22.方程21(2)304m x mx --+=有两个实数根,则m 的取值范围( ) A .52m >B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠23.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)24.cos45°的值等于( )A.2B.1C.32D.2225.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα26.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M 是第三象限内OB上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3227.估6√3−√27的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间28.下面的几何体中,主视图为圆的是()A.B.C.D.29.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额 10 20 30 50 100 人数24531A .众数是100B .中位数是30C .极差是20D .平均数是3030.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)二、填空题31.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.32.如图,⊙O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠A=30°,则劣弧BC 的长为 cm .33.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .34.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 35.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.36.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)37.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。

2020-2021上海民办上宝中学小学二年级数学下期中模拟试卷(含答案)

2020-2021上海民办上宝中学小学二年级数学下期中模拟试卷(含答案)

2020-2021上海民办上宝中学小学二年级数学下期中模拟试卷(含答案)一、选择题1.如果□×7=28,那么□里应填()。

A. 21B. 4C. 112.有两个数的积是72,差是1,这两个数是( )A. 6和7B. 7和8C. 8和93.7个小组共做42朵花()A. 每人做几朵?B. 每天做几朵?C. 平均每组做几朵?4.下面图形中是轴对称图形的是()。

A. B. C.5.是从哪张纸上剪下来的?()A. B. C. D.6.下面不能表示12÷4=3的是()。

A. B. C.7.算式“32÷8=”表示把32平均分成8份,每份是()。

A. 4B. 8C. 328.有25个,每次拿5个,拿( )次就拿完了。

A. 4B. 5C. 69.小红将一张正方形的纸对折两次,并在中央打一个孔,然后将其展开,展开后的图形不可能是()。

A. B. C.10.下面是某校参加课外活动小组人数统计表。

种类书法组足球组舞蹈组绘画组篮球组人数8人12人9人13人20人A. 足球组和绘画组B. 书法组和舞蹈组C. 书法组和篮球组11.红红调查同学们最喜欢吃的水果,结果如下:从统计图汇总可以看出,红红调查了()名同学。

A. 40B. 41C. 4212.从下面的统计图中可以看出小熊猫有()只A. 14B. 13C. 12二、填空题13.将下列算式按得数从大到小的顺序填在横线上。

35÷7 42÷6 2×7 72÷8 36÷6________>________>________>________>________14.空中缆车的运动可以看作是________现象,玩呼啦圈时哗啦圈的运动可以看作是________现象。

15.行驶中的自行车车轮的运动是________现象,电梯的上下移动是________现象。

16.18÷3=6表示把18平均分成________份,每份是________;还表示18里面有________个________。

上海市上宝中学数学八年级下学期-初二(下)数学试卷模拟测试三

上海市上宝中学数学八年级下学期-初二(下)数学试卷模拟测试三

初二(下)数学试卷模拟测试三(测试时间100分钟,满分100分)班级:__________ 姓名:__________ 学号:__________ 成绩:__________一、选择题(本大题共6题,每题3分,满分18分)1.下列方程中,属于无理方程的是( )A .20x x -=B 1=C .1x =D 0= 2.对于二项方程0(0,0)n ax b a b +=≠≠,当n 为偶数时,已知方程有两个实数根,那么下列不等式成立的是( )A .0ab <B .0ab ≤C .0ab >D .0ab ≥3.下列关于向量的等式中,正确的是( )A .0AB BA += B .AB AC BC -= C .AB BC CB +=D .0AB BC CA ++=4.已知一次函数31y x =-,则下列判断错误的是( )A .直线31y x =-在y 轴长的截距为1-B .直线31y x =-不经过第二象限C .直线31y x =-在x 轴上方的点的横坐标的取值范围是1x >D .该一次函数的函数值y 随自变量x 的值增大而增大5.已知四边形ABCD 中,90A B C ∠=∠=∠=︒,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .90D ∠=︒B .AB CD =C .BC CD = D .AC BD =6.在平行四边形、矩形、菱形、等腰梯形中任选两个图形,那么下列事件中为不可能事件的是( )A .这两个图形都是中心对称图形B .这两个图形都不是中心对称图形C .这两个图形都是轴对称图形D .这两个图形都是既为轴对称图形又为中心对称图形二、填空题(本大题共12题,每题2分,满分24分)7.已知直线y kx b =+平行于直线34y x =-,且在y 轴上的截距为3,那么这条直线的解析式是___________________.8.已知一次函数(1)y k x k =-+,函数值y 随自变量x 的值增大而减小,那么k 的取值范围是___________.9.如果a b ≠,那么关于x 的方程22()a b x a b -=-的解为x =___________.10.在方程221343x x x x+=--中,如果设23y x x =-,那么原方程可化为关于y 的整式方程,该整式方程是___________________.110=的根是___________.12.二元二次方程22280x xy y --=可以化成两个一次方程,那么这两个一次方程分别是__________________________________.13.为了解决“看病贵,药价高”的问题,国家相继降低了一批药品的价格,某种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,如果平均每次降价的百分率为x ,则根据题意所列方程为___________________.14.七边形的内角和是______度.15.已知:正方形ABCD 的边长等于8cm ,那么边AB 的中点M 到对角线BD 的距离等于_____cm .16.在梯形ABCD 中,//AD BC ,90B ∠=︒,4cm AB =,5cm CD =,5cm AD =,则BC 的长为______cm .17.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图像(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法是___________.18.如图,已知菱形ABCD 的边长为2,45A ∠=︒,将菱形ABCD 绕点A 旋转45︒,得到菱形111AB C D ,其中B 、C 、D 的对应点分别是1B 、1C 、1D ,那么点C 、1C 的距离为______.三、(本大题共7题,满分46分)19.(本题6分)解方程:228224x x x x x ++=+--.20.(本题6分)解方程组:222002,4.x y x xy y -=-⎧⎨+-=⎩21.(本题6分)如图,己知:在ABCD 中,点E 、F 在对角线BD 上,且BE DF =.(1)在图中画出向量AB BC -的差向量并填空:AB BC -=______;(2)图中与BC 平行的向量是:_____________________;(3)若AB a =,AD b =,BE c =,用a ,b ,c 表示DE =______________.22.(本题6分)从一副扑克牌中拿出红桃A 、红桃K 、黑桃A 共3张牌.(1)把3张牌洗匀后,从中任取2张牌.试写出所有可能的结果,并求取出的两张牌恰好是不同花色的概率;(2)把3张牌洗匀后,先从中任取出一张牌,放回洗匀后,再从中任取出一张牌.用树形图展现两次取出的牌可能出现的所有结果,并求两次取出的牌恰好是同花色的概率.23.(本题6分)如图,在ABCD 中,E 、F 分别为边ABCD 的中点,BD 是对角线,过A 点作AG DB ∥交CB 的延长线于点G .(1)求证:DE BF ∥;(2)若90G ∠=︒,求证:四边形DEBF 是菱形.24.(本题8分)某学校准备用2400元购买一批学习用品作为奖品奖励优秀学生,已知甲种学习用品的单价比乙种学习用品的单价少2元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,问:这两种学习用品的单价分别是多少元?25.(本题8分)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点.(1)判断点(1,2)M ,(4,4)N 是否为和谐点,并说明理由;(2)若和谐点(,3)P a 在直线y x b =-+(b 为常数)上,求点a ,b 的值.四、(本大题共1题,第(1)小题4分,第(2)小题4分,第(3)小题4分。

上海市上宝中学八年级数学下册第十六章《二次根式》经典测试题(培优练)

上海市上宝中学八年级数学下册第十六章《二次根式》经典测试题(培优练)

一、选择题1.下列各式变形中,正确的是( )A .236x x x ⋅=B xC .2211x x x x x ⎛⎫-⋅=- ⎪⎝⎭ D .2211234x x x ⎛⎫-+=- ⎪+⎝⎭2.是同类二次根式的是( )A B C D3.已知x ,y 为实数,y 2=,则y x 的值等于( ) A .6B .5C .9D .84. )A B C D 5.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=6.下列计算中正确的是( ).A =B 5=-C 4=D =7.下列式子中无意义的是( )A .B .C .D . 8.下列计算正确的是( )A . 3 BC .3=D 39. ) A .1个B .2个C .3个D .4个 10.下列运算正确的有( )个.①6-==②85042572+=+= ③13232=+- ④1y y y-= ⑤3242122⨯=⑥()()221312*********-=+-= A .1 B .2 C .3 D .411.下列二次根式中,能与2合并的是( )A .23B .48C .20D .18 12.下列各式计算正确的是( )A .235+=B .2236=()C .824+=D .236⨯= 13.下列二次根式中,最简二次根式是( )A .22a b -B .27C .32a a b -D .0.5a 14.若根式1x -在实数范围内有意义,则( ).A .1x ≤B .1x <C .1≥xD .1x ≠ 15.下列二次根式中,不能..与3合并的是( ) A .12 B .8 C .48 D .108二、填空题16.计算1248⨯的结果是________________. 17.使式子1x +有意义x 的取值范围是________.18.若二次根式26a +与33-是同类二次根式,则整数a 可以等于___________.(写出一个即可)19.如果最简二次根式123b a ++和3a b +是同类二次根式,则ab =____________. 20.计算:45325÷-=__.21.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.22.数轴上有A ,B ,C 三点,相邻两个点之间的距离相等,其中点A 表示,点B 表示1,那么点C 表示的数是________.23.已知1x =,求229x x ++=______.24.25.===…(a 、b 均为实数)则=a __________,=b __________.26.)0a >=______.三、解答题27.计算:(1)1301(2)(2)53π-⎛⎫+-⨯-+ ⎪⎝⎭;(2)21)-++-.28.计算:20201|1-29.计算:(1(2(3)201|5|1)3-⎛⎫--+- ⎪⎝⎭(4)2-.30.计算:(1); (2)()()()2322x x x +-+-.。

上海市上宝中学数学高一下期中经典测试题(培优练)

上海市上宝中学数学高一下期中经典测试题(培优练)

一、选择题1.(0分)[ID :12382]已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB 为等边三角形,三棱锥S ABC -的体积为433,则球O 的半径为( ) A .3 B .1 C .2 D .42.(0分)[ID :12378]已知平面//α平面β,直线m α,直线n β,点A m ∈,点B n ∈,记点A 、B 之间的距离为a ,点A 到直线n 的距离为b ,直线m 和n 的距离为c ,则 A .b a c ≤≤ B .a c b ≤≤ C . c a b ≤≤ D .c b a ≤≤3.(0分)[ID :12374]如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256πC .25πD .100π4.(0分)[ID :12372]已知正四面体ABCD 中,M 为棱AD 的中点,设P 是BCM ∆(含边界)内的点,若点P 到平面ABC ,平面ACD ,平面ABD 的距离相等,则符合条件的点P ( )A .仅有一个B .有有限多个C .有无限多个D .不存在 5.(0分)[ID :12357]如图是水平放置的平面图形的斜二测直观图,其原来平面图形面积是( )A . 22B . 42C .4D .8 6.(0分)[ID :12348]已知圆O :2224110x y x y ++--=,过点()1,0M 作两条相互垂直的弦AC 和BD ,那么四边形ABCD 的面积最大值为( )A .42B .24C .212D .67.(0分)[ID :12344]用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形 8.(0分)[ID :12396]若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b 9.(0分)[ID :12394]如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .10.(0分)[ID :12389]在长方体1111ABCD A B C D -中,11111,2AA A D a A B a ===,点P 在线段1AD 上运动,当异面直线CP 与1BA 所成的角最大时,则三棱锥11C PA D -的体积为( )A .34a B .33a C .32a D .3a 3a 11.(0分)[ID :12387]α,β为两个不同的平面,m ,n 为两条不同的直线,下列命题中正确的是( ) ①若α//β,m ⊂α,则m//β; ②若m//α,n ⊂α,则m//n ;③若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β ④若n ⊥α,n ⊥β,m ⊥α,则m ⊥β. A .①③ B .①④ C .②③ D .②④12.(0分)[ID :12371]若方程21424x kx k -=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦ B .13,34⎛⎫ ⎪⎝⎭ C .53,124⎛⎫ ⎪⎝⎭ D .53,12413.(0分)[ID :12365]如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB .32πC .4πD .34π 14.(0分)[ID :12418]如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立 15.(0分)[ID :12397]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭ C .()1,3 D .()2,3二、填空题16.(0分)[ID :12487]在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________.17.(0分)[ID :12474]如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD 沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是__________.18.(0分)[ID :12460]正方体1111ABCD A B C D -的棱长为1,P 为1CC 上的动点,Q 为1BD 上的动点,则线段PQ 的长度的最小值为______.19.(0分)[ID :12457]点(5,2)到直线()1(21)5m x m y m -+-=-的距离的最大值为________.20.(0分)[ID :12527]如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是_____21.(0分)[ID :12525]已知三棱锥P ABC -中,侧面PAC ⊥底面ABC ,90BAC ∠=︒,4AB AC ==,23PA PC ==,则三棱锥P ABC -外接球的半径为______.22.(0分)[ID :12522]在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,3AB =,4BC =,5PA =,则三棱锥P ABC -的外接球的表面积为__________23.(0分)[ID :12434]在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,且三棱锥的最长的棱长为2,则此三棱锥的外接球体积为_____________.24.(0分)[ID :12459]已知直线40Ax By A +-=与圆O :2236x y +=交于M ,N 两点,则线段MN 中点G 的轨迹方程为______.25.(0分)[ID :12496]如图,在体积为1V 的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为2V ,则21V V =__________.三、解答题26.(0分)[ID :12626]如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,//AB CD ,且22,22CD AB BC ===,90ABC ∠=︒,M 为BC 的中点.(1)求证:平面PDM ⊥平面PAM ;(2)若二面角P DM A --为30,求直线PC 与平面PDM 所成角的正弦值.27.(0分)[ID :12595]如图,在三棱锥S ABC -中,SAC ∆为等边三角形,4AC =,43BC =,BC AC ⊥,3cos 4SCB ∠=-,D 为AB 的中点.(1)求证:AC SD ⊥;(2)求直线SD 与平面SAC 所成角的大小.28.(0分)[ID :12562]如图,已知四棱锥P −ABCD 的底面ABCD 是菱形,PA ⊥平面ABCD ,点F 为PC 的中点.(1)求证:PA ∥平面BDF ;(2)求证:PC ⊥BD .29.(0分)[ID :12622]已知圆22C (4)4x y +-=:,直线:(31)(1)40l m x m y ++--=.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时直线l 的方程及最短弦长;(3)已知点M (-3,4),在直线MC 上(C 为圆心),存在定点N (异于点M ),满足:对于圆C 上任一点P ,都有||||PM PN 为一常数, 试求所有满足条件的点N 的坐标及该常数. 30.(0分)[ID :12611]已知过点()0,2P -的圆M 的圆心(),0a 在x 轴的非负半轴上,且圆M 截直线20x y +-=所得弦长为22(1)求M 的标准方程;(2)若过点()0,1Q 且斜率为k 的直线l 交圆M 于A 、B 两点,若PAB △的面积为33l 的方程.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.D3.C4.A5.C6.B7.A8.B9.A10.B11.B12.D13.A14.C15.B二、填空题16.3【解析】分析:先根据条件确定圆方程再利用方程组解出交点坐标最后根据平面向量的数量积求结果详解:设则由圆心为中点得易得与联立解得点的横坐标所以所以由得或因为所以点睛:以向量为载体求相关变量的取值或范17.【解析】当位于的中点点与中点重合随点到点由得平面则又则因为所以故综上的取值范围为点睛:立体几何中折叠问题要注重折叠前后垂直关系的变化不变的垂直关系是解决问题的关键条件18.【解析】【分析】首先根据数形结合分析可知线段的长度的最小值转化为在平面上投影线段的最小值然后转化为点到直线的距离的最小值【详解】当平面时线段与其在平面上投影相等当与平面不平行时是斜线段大于其在平面上19.【解析】【分析】先判断过定点可得点到直线的距离的最大值就是点与点的距离从而可得结果【详解】化简可得由所以过定点点到直线的距离的最大值就是点与点的距离为故答案为【点睛】本题主要考查直线过定点问题以及两20.【解析】设球半径为则故答案为点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体锥体或台体则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出则常21.【解析】【分析】设三棱锥外接球球心为半径为如图所示作辅助线设则解得答案【详解】设三棱锥外接球球心为半径为故在平面的投影为中点为中点故侧面底面故底面连接作于易知为矩形设则解得故答案为:【点睛】本题考查22.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球23.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接24.【解析】【分析】直线过定点设代入方程利用点差法计算得到答案【详解】直线过定点设则两式相减得到即故整理得到:故答案为:【点睛】本题考查了轨迹方程意在考查学生对于点差法的理解和掌握25.【解析】分析:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h再求详解:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h则故答案为:点睛:(1)本题主要考查圆锥圆柱体积的计算意在考查学生对这三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题.【详解】解:根据题意作出图形:设球心为O ,球的半径r .SC OA ⊥,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和.234312343S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.2.D解析:D【解析】【分析】根据平面与平面平行的判断性质,判断c 最小,再根据点到直线距离和点到直线上任意点距离判断a 最大.【详解】由于平面//α平面β,直线m 和n 又分别是两平面的直线,则c 即是平面之间的最短距离. 而由于两直线不一定在同一平面内,则b 一定大于或等于c ,判断a 和b 时,因为B 是上n 任意一点,则a 大于或等于b .故选D.【点睛】本题主要考查面面平行的性质以及空间距离的性质,考查了空间想象能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.3.C解析:C【解析】【分析】【详解】由三视图可知,这是三棱锥的三视图,如下图所示,三角形BCD为等腰直角三角形,其外心为BD中点1O,设O为AD中点,则O为外接球球心,半径长度为15 22 AD=,所以表面积为25π.4.A解析:A【解析】【分析】根据正四面体的对称性分析到平面ABC,平面ACD,平面ABD的距离相等的点的轨迹,与BCM∆所在平面的公共部分即符合条件的点P.【详解】在正四面体ABCD中,取正三角形BCD中心O,连接AO,根据正四面体的对称性,线段AO上任一点到平面ABC,平面ACD,平面ABD的距离相等,到平面ABC,平面ACD,平面ABD的距离相等的点都在AO所在直线上,AO与BCM∆所在平面相交且交于BCM ∆内部,所以符合题意的点P 只有唯一一个.故选:A【点睛】此题考查正四面体的几何特征,对称性,根据几何特征解决点到平面距离问题,考查空间想象能力.5.C解析:C【解析】分析:由三视图还原实物图,再根据三角形面积公式求解.详解:在斜二测直观图中OB=2,OA=2, 所以在平面图形中OB=2,OA=4, OA ⊥OB , 所以面积为12442S =⨯⨯=. 选C.点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据. 6.B解析:B【解析】【分析】设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==,12S AC BD =⋅=,利用均值不等式得到最值. 【详解】 2224110x y x y ++--=,即()()221216x y ++-=,圆心为()1,2O -,半径4r =. ()1,0M 在圆内,设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==.1122S AC BD =⋅=⨯=2212161624d d ≤-+-=,当22121616d d -=-,即122d d ==时等号成立.故选:B .【点睛】本题考查了圆内四边形面积的最值,意在考查学生的计算计算能力和转化能力.7.A解析:A【解析】【分析】【详解】画出截面图形如图显然A 正三角形C 正方形:D 正六边形可以画出三角形但不是直角三角形;故选A .用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A .8.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用x y c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.9.A解析:A【解析】【分析】利用线面平行判定定理可知B 、C 、D 均不满足题意,从而可得答案.【详解】对于B 项,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ ,又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ , 同理可证,C ,D 项中均有AB ∥平面MNQ .故选:A.【点睛】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.10.B解析:B【解析】【分析】当P 与A 重合时,异面直线CP 与BA 1所成的角最大,由此能求出当异面直线CP 与BA 1所成的角最大时,三棱锥C ﹣PA 1D 1的体积.【详解】如图,当P 与A 重合时,异面直线CP 与BA 1所成的角最大,∴当异面直线CP 与BA 1所成的角最大时,三棱锥C ﹣PA 1D 1的体积:11C PA D V -=11C AA D V -=1113AA D S AB ⨯⨯=1111132AA A D AB ⎛⎫⨯⨯⨯⨯ ⎪⎝⎭=11232a a a ⎛⎫⨯⨯⨯⨯ ⎪⎝⎭=33a .故选:B .【点睛】 求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法. ①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.11.B解析:B【解析】【分析】在①中,由面面平行的性质定理得m ∥β;在②中,m 与n 平行或异面;在③中,m 与β相交、平行或m ⊂β;在④中,由n ⊥α,m ⊥α,得m ∥n ,由n ⊥β,得m ⊥β.【详解】由α,β为两个不同的平面,m ,n 为两条不同的直线,知:在①中,若α∥β,m ⊂α,则由面面平行的性质定理得m ∥β,故①正确;在②中,若m ∥α,n ⊂α,则m 与n 平行或异面,故②错误;在③中,若α⊥β,α∩β=n ,m ⊥n ,则m 与β相交、平行或m ⊂β,故③错误; 在④中,若n ⊥α,m ⊥α,则m ∥n ,由n ⊥β,得m ⊥β,故④正确.故选:B .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想,是中档题.12.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 221k =+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.13.A解析:A【解析】【分析】设BC 的中点是E ,连接DE ,由四面体A′­BCD 的特征可知,DE 即为球体的半径.【详解】设BC 的中点是E ,连接DE ,A′E,因为AB =AD =1,BD 2由勾股定理得:BA⊥AD又因为BD⊥CD,即三角形BCD 为直角三角形所以DE 为球体的半径32DE = 234()32S ππ== 故选A【点睛】 求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.14.C解析:C【解析】【分析】利用空间中线线、线面、面面间的位置关系对选项进行一一验证,即可得答案.【详解】正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是直线BD 的动点,在A 中,不存在点G ,使PG EF ⊥成立,故A 错误;在B 中,不存在点G ,使FG EP ⊥成立,故B 错误;在C 中,不存在点G ,使平面EFG ⊥平面ACD 成立,故C 正确;在D 中,存在点G ,使平面EFG ⊥平面ABD 成立,故D 错误.故选:C.【点睛】本题考查命题真假的判断、考查空间中线线、线面、面面间的位置关系,考查转化与化归思想,考查空间想象能力.15.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】 解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增, ()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.二、填空题16.3【解析】分析:先根据条件确定圆方程再利用方程组解出交点坐标最后根据平面向量的数量积求结果详解:设则由圆心为中点得易得与联立解得点的横坐标所以所以由得或因为所以点睛:以向量为载体求相关变量的取值或范解析:3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫ ⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭, 由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法. 17.【解析】当位于的中点点与中点重合随点到点由得平面则又则因为所以故综上的取值范围为点睛:立体几何中折叠问题要注重折叠前后垂直关系的变化不变的垂直关系是解决问题的关键条件解析:1,12⎛⎫ ⎪⎝⎭ 【解析】当F 位于DC 的中点,点D 与AB 中点重合,1t =.随F 点到C 点,由CB AB ⊥,CB DK ⊥,得CB ⊥平面ADB ,则CB BD ⊥.又2CD =,1BC =,则BD =.因为1AD =,2AB =,所以AD BD ⊥,故12t =. 综上,t 的取值范围为1,12⎛⎫ ⎪⎝⎭. 点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.18.【解析】【分析】首先根据数形结合分析可知线段的长度的最小值转化为在平面上投影线段的最小值然后转化为点到直线的距离的最小值【详解】当平面时线段与其在平面上投影相等当与平面不平行时是斜线段大于其在平面上【解析】【分析】首先根据数形结合分析可知线段PQ 的长度的最小值转化为PQ 在平面ABCD 上投影线段的最小值,然后转化为点到直线的距离的最小值.【详解】当//PQ 平面ABCD 时,线段PQ 与其在平面ABCD 上投影相等,当PQ 与平面ABCD 不平行时,PQ 是斜线段,大于其在平面ABCD 上投影的长度, ∴求线段PQ 的最小值就是求其在平面ABCD 上投影的最小值,点P 在平面ABCD 的投影是点C ,点Q 在平面ABCD 的投影在BD 上,∴求线段PQ 的最小值转化为点C 到BD 的距离的最小值,连接,AC BD ,交于点O ,AC BD ⊥,∴点C 到BD 的距离的最小值2CO =.2 【点睛】 本题考查几何体中距离的最小值,意在考查空间想象能力和数形结合分析问题的能力,属于中档题型.19.【解析】【分析】先判断过定点可得点到直线的距离的最大值就是点与点的距离从而可得结果【详解】化简可得由所以过定点点到直线的距离的最大值就是点与点的距离为故答案为【点睛】本题主要考查直线过定点问题以及两 解析:13【解析】【分析】先判断()()1215m x m y m -+-=-过定点()9,4-,可得点(5,2)到直线()()1215m x m y m -+-=-的距离的最大值就是点(5,2)与点()9,4-的距离,从而可得结果.【详解】化简()()1215m x m y m -+-=-可得m ()()2150x y x y +--+-=,由2109504x y x x y y +-==⎧⎧⇒⎨⎨+-==-⎩⎩, 所以()()1215m x m y m -+-=-过定点()9,4-,点(5,2)到直线()()1215m x m y m -+-=-的距离的最大值就是点(5,2)与点()9,4-()224652213-+==故答案为13【点睛】本题主要考查直线过定点问题以及两点间距离公式的应用,考查了转化思想的应用,属于中档题. 转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本解法将求最大值的问题转化成了两点间的距离的问题来解决,转化巧妙.20.【解析】设球半径为则故答案为点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体锥体或台体则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出则常 解析:32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.21.【解析】【分析】设三棱锥外接球球心为半径为如图所示作辅助线设则解得答案【详解】设三棱锥外接球球心为半径为故在平面的投影为中点为中点故侧面底面故底面连接作于易知为矩形设则解得故答案为:【点睛】本题考查解析:2【解析】【分析】设三棱锥P ABC -外接球球心为O ,半径为R ,如图所示作辅助线,设1OO h =,则()2222221R PD h OH R h CO ⎧=-+⎪⎨=+⎪⎩,解得答案. 【详解】设三棱锥P ABC -外接球球心为O ,半径为R ,90BAC ∠=︒,故O 在平面ABC 的投影为BC 中点1O ,D 为AC 中点,PA PC =,故PD AC ⊥,侧面PAC ⊥底面ABC ,故PD ⊥底面ABC .连接1O D ,作OH PD ⊥于H ,易知1OO DH 为矩形,设1OO h =,则()2222221R PD h OH R h CO ⎧=-+⎪⎨=+⎪⎩,PD =,12OH DO ==,122CO,解得2R =.故答案为:2.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.22.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球 解析:50π【解析】 【分析】以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球,由此能求出三棱锥P ABC -的外接球的表面积. 【详解】由题意,在三棱锥P ABC -中,PA ⊥平面,,3,4,5ABC AB BC AB BC PA ⊥===, 以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球, 所以三棱锥P ABC -的外接球的半径为2221523452R =++=所以三棱锥P ABC -的外接球的表面积为22244()502S R πππ==⨯=. 【点睛】本题主要考查了三棱锥的外接球的表面积的计算问题,其中解答中根据几何体的结构特征,以,,AB BC PA 为长宽高构建长方体,得到长方体的外接球是三棱锥P ABC -的外接球是解答的关键,着重考查了数形结合思想,以及推理与运算能力.23.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接解析:43π 【解析】 【分析】根据题意可得,BC ⊥平面PAC ,所以BC PC ⊥,得出PB 为三棱锥的最长边,PA AB ⊥,根据直角三角形的性质,PB 边的中点到三棱锥的各顶点距离都相等,所以为球心,球直径即为PB . 【详解】PA ⊥平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥, ,,AC BC PA AC A BC ⊥=∴⊥平面PAC ,BC PC ⊥, ,,,,PB BC PB PC PA AC PC AC PC PA ∴>>⊥∴>>,所以三棱锥中最长边为2PB =,设PB 中点为O ,在,Rt PAB Pt PBC ∆∆中,12AO CO PB ==,所以三棱锥的外接球的球心为O , 半径为41,3V π∴=. 故答案为:43π. 【点睛】本题考查几何体的“切”“接”球问题,确定球心是解题的关键,考查空间垂直的应用,属于中档题.24.【解析】【分析】直线过定点设代入方程利用点差法计算得到答案【详解】直线过定点设则两式相减得到即故整理得到:故答案为:【点睛】本题考查了轨迹方程意在考查学生对于点差法的理解和掌握 解析:()2224x y -+=【解析】 【分析】直线40Ax By A +-=过定点()4,0,设()()1122,,,M x y N x y ,(),G x y ,代入方程利用点差法计算得到答案. 【详解】直线40Ax By A +-=过定点()4,0,设()()1122,,,M x y N x y ,(),G x y ,则221136x y +=,222236x y +=,两式相减得到()()()()121212120x x x x y y y y +-++-=,即220x ky +=. 故2204y x y x +=-,整理得到:()2224x y -+=.故答案为:()2224x y -+=. 【点睛】本题考查了轨迹方程,意在考查学生对于点差法的理解和掌握.25.【解析】分析:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 再求详解:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 则故答案为:点睛:(1)本题主要考查圆锥圆柱体积的计算意在考查学生对这解析:23【解析】分析:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h,再求21V V .详解:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h, 则222212222111()233.3r h r h h r h r hV V r hr hππππππ-+-===故答案为:23. 点睛:(1)本题主要考查圆锥圆柱体积的计算,意在考查学生对这些知识的掌握水平.(2)圆柱的体积为2V sh r h π==,圆锥的体积为21133V sh r h π==.三、解答题 26.(1)详见解析;(2【解析】 【分析】(1)在直角梯形ABCD 中,由条件可得222AD AM DM =+,即DM AM ⊥.再由PA ⊥面ABCD ,得DM PA ⊥,利用线面垂直的判定可得DM ⊥平面PAM ,进一步得到平面PDM ⊥平面PAM ;(2)由(1)知,,PM DM AM DM ⊥⊥,则PMA ∠为二面角P DM A --的平面角为30,求得tan301PA AM =⋅︒=.以A 为坐标原点,分别以,,AE AB AP 所在直线为,,x y z 轴建立空间直角坐标系,求出PC 的坐标及平面PDM 的一个法向量,由PC 与n 所成角的余弦值可得直线PC 与平面PDM 所成角的正弦值. 【详解】。

上海市上宝中学八年级数学下册第十七章《勾股定理》经典测试题(培优练)

上海市上宝中学八年级数学下册第十七章《勾股定理》经典测试题(培优练)

一、选择题1.下列条件不能判定一个三角形为直角三角形的是( )A .三个内角之比为1︰2︰3B .一边上的中线等于该边的一半C .三边为111,,12135D .三边长为()222220m n m n mn m n +->>、、 C解析:C【分析】根据直角三角形的判定条件分别判断即可;【详解】三个内角之比为1︰2︰3,三角形有一个内角为90︒,故A 不符合题意;直角三角形中,斜边上的中线等于斜边的一半,故B 不符合题意;22211112135⎛⎫⎛⎫⎛⎫=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 符合题意;三边长的关系为()()()()222222220m n m n mn m n +=-+>>,故D 不符合题意;故选:C .【点睛】本题主要考查了勾股定理逆定理和三角形内角和定理,准确分析判断是解题的关键. 2.如图,在ABC 中,2,30,105AC ABC BAC =∠=︒∠=︒,D 为AB 边上一点,连接CD ,15ACD =︒∠,把ACD △沿直线AC 翻折,得到ACD '△,CD '与BA 延长线交于点E ,则D E '的长为( )A 33+B 33-C 33+D 33- D 解析:D【分析】先根据三角形的内角和定理60CDE ∠=︒,再根据翻折的性质可得,60,15AD AD D CDE ACD ACD '''=∠=∠=︒∠=∠=︒,从而可得90,30CED D AE '∠=︒∠=︒,设D E x '=,然后利用直角三角形的性质、勾股定理可得()3,323AE x CE x ==+,最后在Rt ACE △中,利用勾股定理即可得.【详解】 3150,105,ABC B D A AC C ∠=︒∠=∠=︒︒,30018BCD ABC BAC ACD ∴∠=︒-∠-∠-∠=︒,60ABC BC CDE D ∴∠=∠+∠=︒,由翻折的性质得:,60,15AD AD D CDE ACD ACD '''=∠=∠=︒∠=∠=︒, 30DCE ACD ACD '∴∠=∠+∠=︒,90,9030CED D AE D ''∴∠=︒∠=︒-∠=︒,设D E x '=,则2,3AD AD x AE x '===,()23DE AD AE x ∴=+=+,在Rt CDE △中,()()222223,323CD DE x CE CD DE x ==+=-=+, 在Rt ACE △中,222AE CE AC +=,即()()()22233232x x ⎡⎤++=⎣⎦, 解得336x -=或3306x -+=<(不符题意,舍去), 即336D E '=-, 故选:D .【点睛】本题考查了翻折的性质、直角三角形的性质、勾股定理等知识点,熟练掌握翻折的性质是解题关键.3.如图,等腰直角三角形纸片ABC 中,∠C =90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE =1,AC =4,则下列结论一定正确的个数是( )①BC =2CD ;②BD >CE ;③∠CED +∠DFB =2∠EDF ;④△DCE 与△BDF 的周长相等.A .1个B .2个C .3个D .4个D解析:D【分析】 利用等腰直角三角形的相关性质结合勾股定理以及对角度关系的推导证明对应选项的结论.【详解】解:∵4AC =,1CE =,∴413AE AC CE =-=-=,∵折叠,∴3DE AE ==, 根据勾股定理,229122CD DE CE =-=-=, ∴2BC CD =,故①正确;422BD CB CD =-=-,∵4221->,∴BD CE >,故②正确;∵45A EDF ∠=∠=︒,∴290EDF ∠=︒,∵()()9090451351354590CED CDE CDF CDF DFB DFB ∠=︒-∠=︒-∠-︒=︒-∠=︒-∠+︒=︒-∠,∴902CED DFB EDF ∠+∠=︒=∠,故③正确;∵224DCE C CD CE DE =++=+,42422224BDF C BD DF BF BD AB =++=+=+-=+,∴DCE BDF C C =,故④正确.故选:D .【点睛】本题考查等腰直角三角形的性质和勾股定理的运用,解题的关键是掌握这些性质定理进行证明求解.4.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .45D解析:D【分析】 在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果.【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2,在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2,∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2)=AC 2−AB 2=45.故选:D .【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC 2和MB 2是本题的难点,重点还是在于勾股定理的熟练掌握.5.如图,在ABC 中,点D 是BC 上一点,连结AD ,将ACD △沿AD 翻折,得到AED ,AE 交BD 于点F .若2BD DC =,AB AD =,2AF EF =,2CD =,DFE △的面积为1,则点D 到AE 的距离为( )A .1B .65C .52D .2B解析:B【分析】 过A 作AG BC ⊥于点G ,根据2AF EF =可得3ADE ACD S S ∆∆==,再由勾股定理求得5AE AC ==,最后由三角形面积公式可求出点D 到AE 的距离.【详解】解:过A 作AG BC ⊥于点G∵1DFE S ∆=,2AF EF =∴2ADF S ∆=∴3ADE ACD S S ∆∆== ∵12ADC S CD AG ∆=⋅⋅ ∴3AG =∵AB AD =,AG BC ⊥∴2BD GB =由2BD CD =得,2GD CD ==∴224GC GD DC =+=+=在Rt AGC ∆中,225AC AG GC =+=∴5AE AC == ∴236255ADE S h AE ∆⨯=⋅== 故选:B .【点睛】 本题考查了折叠问题,勾股定理定理,等腰三角形的性质以及三角形面积公式的应用,熟练运用这些性质进行推理是本题的关键.6.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.8B解析:B【分析】 先根据勾股定理求得A 点坐标,再利用二分法估算即可得出13比较接近-3.6.【详解】解:∵长方形的长为3,宽为2,∴223213OA OB =+=∴A 所表示的数为13-∵23.612.9613=<,23.713.6913=>,∴13-3.6和-3.7之间,∵23.6513.322513=>,∴13-3.6,【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.7.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .64D解析:D【分析】 设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.8.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h = B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长=2234+=5cm ,高为12cm ,由勾股定理可得:杯里面管长=22512+=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤故选:B .【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.9.如图,在△ABC 中,∠C =90°,点D 在边BC 上,AD =BD ,DE 平分∠ADB 交AB 于点E .若AC =12,BC =16,则AE 的长为( )A .6B .8C .10D .12C解析:C【分析】 首先根据勾股定理求得斜边AB 的长度,然后结合等腰三角形的性质来求AE 的长度.【详解】解:如图,在△ABC 中,∠C=90°,AC=12,BC=16,由勾股定理知:2222121620AB AC BC =+=+=,∵AD=BD ,DE 平分∠ADB 交AB 于点E .∴1102AE BE AB ===, 故选:C .【点睛】本题主要考查了勾股定理和等腰三角形三线合一.在直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.等腰三角形腰长10cm ,底边长16cm ,则等腰三角形面积是( )A .296cmB .248cmC .224cmD .232cm B解析:B【分析】 如图:作AD ⊥BC 于D ,先根据等腰三角形的性质求得BD ,然后运用勾股定理求得AD ,最后运用三角形的面积公式解答即可 .【详解】解:如图:作AD ⊥BC 于D ,∵AB=AC=10,∴BD=DC=12BC=8cm , ∴AD=22221086AC CD -=-= ∴S △ABC =12BC·AD=48cm 2. 故答案为B .【点睛】本题主要考查了等腰三角形“三线合一”的性质以及勾股定理的应用,掌握等腰三角形“三线合一”的性质是解答本题的关键.二、填空题11.如图,在钝角ABC 中,已知A ∠为钝角,边AB ,AC 的垂直平分线分别交BC 于点D ,E ,若222BD CE DE +=,则A ∠的度数为________.【分析】如图中连接ADAE 首先证明∠DAE=90°易知∠DBA=∠DAB ∠EAC=∠C 根据三角形内角和定理可得推出由此即可解决问题【详解】解:如图连接∵的垂直平分线分别交于点∴∴∵∴∴∴∴∴∴故答案 解析:135【分析】如图中,连接AD 、AE .首先证明∠DAE=90°,易知∠DBA=∠DAB ,∠EAC=∠C ,根据三角形内角和定理可得2290180B C ∠+∠+=,推出45B C ∠+∠=,由此即可解决问题.【详解】解:如图,连接DA ,EA .∵AB ,AC 的垂直平分线分别交BC 于点D ,E ,∴AD BD =,CE AE =,∴DAB B ∠=∠,EAC C ∠=∠.∵222BD CE DE +=,∴222AD AE DE +=,∴90DAE ∠=,∴2290180B C ∠+∠+=,∴45B C ∠+∠=,∴45DAB EAC ∠+∠=,∴135BAC DAB DAE EAC ∠=∠+∠+∠=.故答案为:135.【点睛】本题考查了线段垂直平分线的性质和三角形内角和定理,根据线段垂直平分线作出辅助线,根据三角形内角和定理解决问题是关键.12.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-. >【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可. 【详解】解:由图可知,22125OB =+∴5OA OB ==A 表示的数为5- ∵225(5)()2<, ∴552<, ∴552->-, 故答案为:>.【点睛】本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.13.如图,在等腰直角ABC 中,90ACB ∠=︒,AC BC =,D 为BC 的中点,8AB =,点P 为AB 上一动点,则PC PD +的最小值为__________.【分析】根据勾股定理得到BC 由中点的定义求出BD 作点C 关于AB 对称点C′则PC′=PC 连接DC′交AB 于P 连接BC′此时DP+CP=DP+PC′=DC′的值最小由对称性可知∠C′BA=∠CBA=45 解析:210 【分析】根据勾股定理得到BC ,由中点的定义求出BD ,作点C 关于AB 对称点C′,则PC′=PC ,连接DC′,交AB 于P ,连接BC′,此时DP+CP=DP+PC′=DC′的值最小.由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:在等腰直角ABC 中,90ACB ∠=︒,AC BC =, 8AB =,∵AC 2+BC 2=AB 2,∴AC=BC=2422AB =. ∵D 为BC 的中点,∴BD=22.作点C 关于AB 对称点C′,交AB 于点O ,则PC′=PC ,连接DC′,交AB 于P ,连接BC′.此时DP+CP=DP+PC′=DC′的值最小.∵点C 关于AB 对称点C′,∴∠C′BA=∠CBA=45°,'42BC BC ==∴∠'90CBC =,∴()()2222''2242210DC BD BC =+=+=,故答案为:210.【点睛】此题考查了轴对称-线路最短的问题,等腰直角三角形的性质,以及勾股定理等知识,确定动点P 何位置时,使PC+PD 的值最小是解题的关键.14.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,25AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.【分析】根据中点的含义先求解作点C 关于AB 对称点则连接交AB 于P 连接此时的值最小由对称性可知于是得到再证明然后根据勾股定理即可得到结论【详解】解:为的中点作点C 关于AB 对称点交于则连接交AB 于P 连接解析:25【分析】根据中点的含义先求解,BD 作点C 关于AB 对称点C ',则OC OC '=,连接DC ',交AB 于P ,连接BC ',此时PD PC PD PC DC ''+=+=的值最小,由对称性可知45C BA CBA '∠=∠=︒,,AB CC '⊥于是得到90C BC '∠=︒,再证明4BC BC '==,然后根据勾股定理即可得到结论.【详解】解:4AC BC D ==,为BC 的中点,90ACB ∠=︒,2CD BD ∴==, 45CBA ∠=︒,作点C 关于AB 对称点C ',CC '交AB 于O ,则OC OC '=,连接DC ',交AB 于P ,连接BC '.此时PD PC PD PC DC ''+=+=的值最小.由对称性可知45C BA CBA '∠=∠=︒,,AB CC '⊥ ∴90C BC '∠=︒,∴BC BC '⊥,点C 关于AB 对称点C ',∴AB 垂直平分CC ',∴4BC BC '==,根据勾股定理可得 22422 5.DC '=+=故答案为:25.【点睛】此题考查了轴对称-线路最短的问题,等腰直角三角形的性质与判定,勾股定理的应用,确定动点P 何位置时,使PC+PD 的值最小是解题的关键.15.如图,已知正方形ABCD 的面积为4,正方形FHIJ 的面积为3,点D 、C 、G 、J 、I 在同一水平面上,则正方形BEFG 的面积为__________.7【分析】根据已知利用全等三角形的判定可得到△BCG ≌△GJF 从而得到正方形BEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积【详解】解:∵∠BGC+∠FGJ=90°∠GFJ+∠FGJ=90解析:7【分析】根据已知利用全等三角形的判定可得到△BCG ≌△GJF ,从而得到正方形BEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积.【详解】解:∵∠BGC +∠FGJ =90°,∠GFJ +∠FGJ =90°∴∠BGC =∠GFJ∵∠BCG =∠GJF ,BG =GF∴△BCG ≌△GJF∴CG =FJ ,BC =GJ ,∴BG 2=BC 2+CG 2=BC 2+FJ 2∴正方形DEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积=4+3=7.【点睛】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.16.如图,45,AOB AOB ∠=︒∠内有一定点P ,且1OP =,在OA 上有一动点Q ,OB 上有一动点R ,若PQR 周长最小,则最小周长是___________.【分析】作点P 关于OA 的对称点关于OB 的对称点连接与OAOB 分别相交于点QR 根据轴对称的性质可得从而得到△PQR 的周长并且此时有最小值连接再求出为等腰直角三角形再根据等腰直角三角形的性质求解即可【详 解析:2【分析】作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,根据轴对称的性质可得1PQ PQ =,2PR P R =,从而得到△PQR 的周长12PP =,并且此时有最小值,连接12,PO P O ,再求出12POP△为等腰直角三角形,再根据等腰直角三角形的性质求解即可.【详解】解:如图,作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,所以,1PQ PQ =,2PR P R =, 所以,PQR 的周长1212PQ QR PR PQ QR P R PP ++=++=,由两点之间线段最短得,此时PQR 周长最小,连接12,PO P O , 则1122,,AOP AOP OP OP BOP BOP OP OP ∠=∠=∠=∠=,,所以,12121224590OP OP OP POP AOB ===∠=∠=⨯︒=︒,,所以,12POP △为等腰直角三角,所以,22121222PP OP OP ===,即PQR 最小周长是2.故答案为2.【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于作辅助线得到与PQR 周长相等的线段.17.如图1是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A 、B 、C 、D 各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD 中6AB =,15CD =,那么BC =_____,AD =_______才能实现上述的折叠变化.39【分析】根据已知得出图形得出AC2+CD2=AD2以及AB+AD=CD+BC 进而组成方程组求出即可【详解】解:由图2的第一个图形得:AC2+CD2=AD2即(6+BC )2+152=AD2①又由图解析:39【分析】根据已知得出图形得出AC 2+CD 2=AD 2,以及AB+AD=CD+BC ,进而组成方程组求出即可.【详解】解:由图2的第一个图形得:AC 2+CD 2=AD 2,即(6+BC )2+152=AD 2①,又由图2的第三和第四个图形得:AB+AD=CD+BC ,即6+AD=15+BC②,联立①②组成方程组得:()222615615BC AD AD BC ⎧++=⎪⎨+=+⎪⎩, 解得:3039BC AD =⎧⎨=⎩, 故BC ,AD 分别取30和39时,才能实现上述变化,故答案为:30,39.【点睛】此题主要考查了翻折变换的性质以及勾股定理和二元二次方程组的解法,得出正确的等量关系是解题关键.18.已知直角坐标平面内的Rt △ABC 三个顶点的坐标分别为A (4,3)、B (1,2)、C (3,-4),则直角顶点是_________.B 【分析】先根据两点间的距离公式得到AB2BC2AC2的值然后根据勾股定理的逆定理即可解答【详解】解:∵A (43)B (12)C (3-4)∴AB2=(4-1)2+(3-2)2=10AC2=(3-4)2解析:B【分析】先根据两点间的距离公式得到AB 2、BC 2、AC 2的值,然后根据勾股定理的逆定理即可解答.【详解】解:∵A (4,3)、B (1,2)、C (3,-4),∴AB 2=(4-1)2+(3-2)2=10,AC 2=(3-4)2+(-4-3)2=50,BC 2=(3-1)2+(-4-2)2=40, ∴AC 2=AB 2+BC 2,∴△ABC 为直角三角形,∴∠B=90°,即该直角三角形的直角顶点为B .故答案为B .【点睛】本题主要考查勾股定理的逆定理、两点间的距离公式,正确的运用相关的定理、公式成为解答本题的关键.19.如图,以Rt ABC △的三边为直径,分别向外作半圆,构成的两个月牙形面积分别为1S 、2S , Rt ABC △的面积3S .若14S =, 28S =,则 3S 的值为 ________ .12【分析】根据勾股定理和圆的面积公式即可求得的值【详解】解:设Rt △ABC 的三边分别为abc 则观察图形可得:即∵∴=∴=4+8=12故答案为:12【点睛】本题考查了勾股定理圆的面积熟记圆的面积公式解析:12【分析】根据勾股定理和圆的面积公式即可求得3S 的值.【详解】解:设Rt △ABC 的三边分别为a 、b 、c ,则222+=a b c ,观察图形可得:222312111111()()()222222a b S S S c πππ⋅+⋅+=++⋅, 即222312111888a b S S S c πππ⋅+⋅+=++⋅,∵222+=a b c ,∴221188a b ππ⋅+⋅=218c π⋅, ∴312S S S =+=4+8=12,故答案为:12.【点睛】本题考查了勾股定理、圆的面积,熟记圆的面积公式,利用等面积法得出等量关系是解答的关键.20.如图,点A 是∠MON=45°内部一点,且OA=4cm ,分别在边OM ,ON 上各取一点B ,C ,分别连接A ,B ,C 三点组成三角形,则△ABC 最小周长为 ________ .4【分析】作A 关于OM 的对称点A´A 关于ON 的对称点A´´根据垂直平分线上的点到两端点的距离相等得AB=A´BAC=A´´COA=OA´=OA´´=4再由勾股定理求得A´A´´长由三角形周长公式结合 解析:2【分析】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,根据垂直平分线上的点到两端点的距离相等得AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,再由勾股定理求得A´A´´长,由三角形周长公式结合等量代换即可求得答案.【详解】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,如图,∴AB=A´B,AC=A´´C,OA=OA´=OA´´=4,∵∠MON=45°∴∠AOA´´=90°∴A´A´´=22=42(cm)44∴△ABC 周长=AB+AC+BC=A´B+A´´C+BC=A´A´´=42(cm)即△ABC的周长最小值为42故答案为:42.【点睛】本题考查了轴对称、垂直平分线、勾股定理的知识;解题的关键是熟练掌握轴对称、垂直平分线、勾股定理的性质,从而完成求解.三、解答题21.如图,平面直角坐标系中,横、纵坐标均为整数的点称为“格点”,如:点A、点B.请利用图中..的“格点”完成下列作图或解答.(1)点A的坐标为;(2)在第三象限内标出“格点”C,使得CA=CB;(3)在(2)的基础上,标出“格点”D,使得△DCB≌△ABC;(4)点E是y轴上一点,连接AE、BE,当AE+BE取最小值时,点E的坐标为.解析:(1)(1,3);(2)图见解析;(3)图见解析;(4)(0,2)【分析】(1)通过点A的位置,直接写出坐标,即可;(2)利用勾股定理和“格点”的定义,直接画出图形即可;(3)根据全等三角形的判定定理,直接作图,即可;(4)作点A 关于y 轴的对称点A′,连接BA′,交y 轴于点E ,即可求解.【详解】(1)由点A 在平面直角坐标系中的位置,可知:点A 的坐标为(1,3) ,故答案是:(1,3);(2)如图所示:CB=5,CA=22345+=,故点C 即为所求点;(3)如图所示:点D 即为所求点;(4)作点A 关于y 轴的对称点A′,连接B A′,交y 轴于点E ,此时AE +BE 取最小值,点E 的坐标为(0,2).故答案是:(0,2).【点睛】本题主要考查坐标与图形,熟练掌握勾股定理,轴对称的性质,全等三角形的判定定理,是解题的关键.22.如图,在ABC 中,2,1,20AB AC BAC AD BC ︒==∠=⊥于点D ,延长AD 至点E ,使DE AD =,连接BE 和CE .(1)补全图形;(2)若点F 是AC 的中点,请在BC 上找一点P 使AP FP +的值最小,并求出最小值. 解析:(1)见解析;(2)3【分析】(1)根据题意补全图形即可;(2)连接EF 交BC 于点P ,根据两点之间线段最短结合等边三角形的性质求解即可. 【详解】解:(1)补全图形如下:(2)连接EF 交BC 于点P ,此时AP FP +的值最小.DE AD AD BC =⊥,,BC ∴为AE 的垂直平分线.2,CA CE AP EP ∴===.AP FP EP PF ∴+=+.,120AB AC AD BC BAC ︒=⊥∠=,,60BAD CAD ∴∠=∠=︒.ACE ∴为等边三角形.∵点F 是AC 的中点,1EF AC AF CF ∴⊥==,.在Rt CEF △中,90,1,2CFE CF EC ∠=︒==,3EF ∴=. AP FP ∴+3【点睛】此题主要考查了等边三角形的判定与性质以及勾股定理等知识,熟练掌握相关性质和定理是解答此题的关键.23.如图,在直角坐标系内.(1)作出ABC ,其中(3,1)A ,(1,2)B ,(4,3)C ;(2)作ABC 关于x 轴的轴对称图形DEF ;(3)求ABC 的周长和面积,解析:(1)图见解析;(2)图见解析;(3)ABC 的周长为2510+,面积为52. 【分析】 (1)利用A ,B ,C 各点坐标在平面坐标系中描出即可;(2)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接可得;(3)利用割补法求解可得到面积,借助网格利用勾股定理分别求出三边即可求得周长.【详解】解:(1)ABC 如图所示;(2)DEF 如图所示;(3)1115231212132222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=, ABC 的周长=2222221212132510AB AC BC ++=+++++=+.【点睛】本题考查坐标与图形变换——轴对称,勾股定理.熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.如图,在△ABC中,AB=AC,AD是BC上的中线,AB的垂直平分线MN交AD于点O,连接BO并延长交AC于点E,AH⊥BE,垂足为H.(1)求证:△ABD≌△BAH.(2)若∠BAC=30°,AE=4,求BC的长;(3)如图,在△ABC中,AB=AC,∠A=40°,D是AC上的一点,且∠ABD=20°,若BC=12,请你直接写出AD的长.解析:(1)证明见解析;(2)4√2;(3)4√3【分析】(1)根据题意利用中线的性质和垂直平分线的性质,即可解答(2)根据题意和由(1)得到AH=EH,再利用勾股定理得到AH=2√2,最后利用全等三角形的性质,即可解答(3)作AE⊥BC于E,AH⊥BD于H,可得△ABE≌△BAH,设DH=x,则AD=2x,利用勾股定理即可解答【详解】(1)证明:∵AB=AC,AD是BC上的中线∴AD⊥BC又∵AH⊥BE∴∠ADB=∠H=90°∵MN是AB的垂直平分线∴AO=BO∴∠OAB=∠ABO又∵AB=BA∴在△ABD 与△BAH 中{∠ADB =∠H∠OAB =∠ABO AB =BA∴△ABD ≌△BAH (AAS )(2)解:∵AB=AC , AD 是BC 上的中线,∠BAC=30°∴∠BAD=15°由(1)知,∠ABO=15°∴∠AEH=∠ABO+∠BAC=45°∵AH ⊥BE∴∠EAH=45°∴AH=EH由AE=4可得AH=2√2∵△ABD ≌△BAH∴BD=AH∴BC=2BD=2AH=4√2 (3)如图,作AE ⊥BC 于E ,AH ⊥BD 于H仿(1)可得△ABE ≌△BAH且∠ADH=60°∴AH=BE=12BC =12×12=6 设DH=x ,则AD=2x在RtΔAHD 中62+x 2=(2x )2得x =2√3(负值舍去)∴AD=4√3【点睛】此题考查垂直平分线的性质,全等三角形的判定与性质,勾股定理,解题关键在于作辅助线25.如图,//,90AD BC A ∠=︒,E 是AB 上的点,且,12AD BE =∠=∠.(1)求证:ADE BEC ≌△△.(2)若30,3AED AE ∠=︒=,求线段CD 的长度.解析:(1)证明见详解;(2)26【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由30,3AED AE ∠=︒=,可求得AD 、DE 的长,再利用勾股定理求得CD 的长即可.【详解】(1)∵AD ∥BC ,∠A =90°,∴∠A =∠B =90°,∵∠1=∠2,∴DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .DE=CE ,∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.在Rt △ADE 中又∵30,3AED AE ∠=︒=设AD =x ,则DE =2x,由勾股定理222AD AE DE +=,即2294x x += 解得3x =∴3在Rt △CDE 中由勾股定理,DC 2=DE 2+CE 2∴()()22=23+23=26CD 【点睛】本题主要考查全等三角形的判定与性质的运用,熟练掌握等三角形的判定与性质的运用是解题关键.26.如图,地面上放着一个小凳子,点A 距离墙面40cm ,在图①中,一根细长的木杆一端与墙角重合,木杆靠在点A 处,50cm OA =.在图②中,木杆的一端与点B 重合,另一端靠在墙上点C 处.(1)求小凳子的高度;(2)若90cm OC =,木杆的长度比AB 长60cm ,求木杆的长度和小凳子坐板的宽AB .解析:(1)30cm ;(2)木杆长100cm ,AB =40 cm .【分析】(1)如图①,过A 作AM 垂直于墙面,垂足于点M ,由40cm AM =,利用勾股定理 在Rt AOM 中,2230(cm)OM AO AM =-=即可;(2)如图②,延长BA 交墙面于点N ,可得90BNC ∠=︒,利用勾股定理在Rt BCN △中,222BN CN BC +=构造方程222(40)60(60)x x ++=+求解即可.【详解】解:(1)如图①,过A 作AM 垂直于墙面,垂足于点M ,根据题意可得:40cm AM =,在Rt AOM 中,2222504030(cm)OM AO AM =-=-=,即凳子的高度为30cm ;(2)如图②,延长BA 交墙面于点N ,可得90BNC ∠=︒,设AB xcm =,则60CB x =+,40BN x =+,903060CN =-=,在Rt BCN △中,222BN CN BC +=,222(40)60(60)x x ++=+,40x =,6040100(cm)BC =+=.【点睛】本题考查勾股定理的应用,掌握勾股定理应用的条件与结论,关键是构造出符合条件的图形是解题关键.27.已知ABC 的三边长分别为a 、b 、c ,且18a =,32b =50c = (1)判断ABC 的形状,并说明理由;(2)如果一个正方形的面积与ABC 的面积相等时,求这个正方形的边长. 解析:(1)ABC 是直角三角形,理由见解析;(2)23【分析】(1)先比较根式的大小,再计算较小的两个边的平方和,与最大的平方比较,得出结论即可;(2)设这个正方形的边长为x ,由一个正方形的面积与ABC 的面积相等,构造方程2118322x =,解之即可. 【详解】解:(1)在ABC 1850<3250<2222(18)32)50a b +=+=,2250)50c ==,222a b c ∴+=,ABC ∴是直角三角形;(2)设这个正方形的边长为x ,∵一个正方形的面积与ABC 的面积相等, ∴2118322x =, 解得:23x =±0x ,23x ∴= 答:这个正方形的边长为23x =【点睛】本题考查勾股定理的逆定理,以及利用面积列方程解应用题,掌握勾股定理逆定理的应用条件与方法,会利用正方形的面积与ABC的面积相等构造方程解决问题是关键.28.如图,在△ABC中,AC=20,AD=16,CD=12,BC=15,求AB的长.解析:AB=25.【分析】先利用勾股定理的逆定理证得∠ADC=90°,再利用勾股定理求出BD即可.【详解】∵AC=20,AD=16,CD=12,∴CD2+AD2=AC2,∴∠ADC=90°,在Rt△BCD中,BC=15,CD=12,∴BD229,BC CD∴AB=AD+BD=25.【点睛】此题考查勾股定理及其逆定理,熟记定理的计算方法是解题的关键.。

上海市上宝中学小学数学二年级下册第六单元经典测试题(培优练)

上海市上宝中学小学数学二年级下册第六单元经典测试题(培优练)

一、选择题1.余数是4的算式是()。

A. 36÷8B. 10÷4C. 18÷6A解析: A【解析】【解答】选项A,36÷8=4……4,余数是4;选项B,10÷4=2……2,余数是2;选项C,18÷6=3。

故答案为:A。

【分析】根据题意,先利用乘法口诀口算出结果,然后根据余数选择。

2.在一个除法算式中,除数是8,商和余数相等,被除数最大是()。

A. 62B. 63C. 64B解析: B【解析】【解答】余数最大的是7,则商也是7。

被除数=7×8+7=56+7=63。

故答案为:B。

【分析】余数小于除数,被除数=除数×商+余数,要使被除数最大时,则需要商最大即余数最大,本题中除数是8,则余数最大是7。

3.余数是2的算式是()。

A. 15÷7B. 18÷4C. 16÷3B解析: B【解析】【解答】A:15÷7=2……1;B:18÷4=4……2;C:16÷3=5……1。

故答案为:B。

【分析】两位数除以一位数商是一位数,根据乘法口诀直接试商,用被除数减去商和除数的积确定余数,余数一定要比除数小。

4.某工地有38吨石子需要运走,用载重4.5吨的卡车运,需用()辆卡车才能一次运完。

A. 7B. 8C. 9C解析: C【解析】【解答】38÷4.5=8(辆)......2(吨);8+1=9(辆)。

故答案为:C。

【分析】石子总吨数÷每辆车拉的吨数=需要车的辆数+余下的吨数,需要车的辆数+1=一共需要的车的辆数。

5.在□÷9=7……○中,□内最大可以填()。

A. 71B. 70C. 69C解析: C【解析】【解答】解:9×7+6=63+6=69故答案为:C。

【分析】要使被除数最大,余数要最大,余数最大比7小1,用商乘除数,再加上最大的余数即可求出最大的被除数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、已知方程组3133
x y k x y +=+⎧⎨+=⎩的解x 、y,且2<k<4,则x-y 的取值范围是多少?
2、适当选择a 的取值范围,使1.7<x <a 的整数解:
(1) x 只有一个整数解;(2)x 一个整数解也没有.
3、当3
10)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.
4、已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.
5、当k 取何值时,方程组⎩
⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.
6、已知⎩⎨
⎧+=+=+1
22,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.
7、已知a 是自然数,关于x 的不等式组⎩⎨
⎧>-≥-0
2,43x a x 的解集是x >2,求a 的值.
8、关于x 的不等式组⎩
⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.
9、已知关于x ,y 的方程组⎩
⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.
10、若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 3
22,3215只有4个整数解,求a 的取值范围.
11、若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?
12、某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)若此车间每天所获利润为y(元),用x的代数式表示y.
(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?
13、某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.
(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.
(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?
14、2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:
(2)老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信
息:
(3)信息一:这三个班的捐款总金额是7700元;
(4)信息二:二班的捐款金额比三班的捐款金额多300元;
(5)信息三:一班学生平均每人捐款的金额大于
..51元.
..48元,小于
(6)请根据以上信息,帮助老师解决:
(1)二班与三班的捐款金额各是多少元?
(2)一班的学生人数是多少?
15、在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:
板房型号甲种板材乙种板材安置人数
A型板房54 m226 m2 5
B型板房78 m241 m28
问:这400间板房最多能安置多少灾民?。

相关文档
最新文档