典型物理模型及方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●典型物理模型及方法
◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类
问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程
隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
F=21221m m (m m g)(m m ++F=12212
m (m )m (m m m g ++F=A B m (m )m m m g ++F 1>F 2 m 1>m 2 N 1 N 5对6=F M m (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm 12)m -(n ◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动) (圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥 3 ③飞机做俯冲运动时,飞行员对座位的压力。 ④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。 ⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的) (1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。由于外轨略高于内轨,使得 火车所受重力和支持力的合力F 合提供向心力。 为转弯时规定速度)(得由合002 0sin tan v L Rgh v R v m L h mg mg mg F ===≈=θθR g v ⨯=θtan 0 (是内外轨对火车都无摩擦力的临界条件) ①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合 2m v ③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R 2m v 即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏R 2 .解决匀速圆周运动问题的一般方法 (1)明确研究对象,必要时将它从转动系统中隔离出来。 (2)找出物体圆周运动的轨道平面,从中找出圆心和半径。 (3)分析物体受力情况,千万别臆想出一个向心力来。 (4)建立直角坐标系(以指向圆心方向为x轴正方向)将力正交分解。 (5) ⎪ ⎩ ⎪ ⎨ ⎧ = ∑ = = = ∑ 2 2 2 2 y x F R T m R m R v m F) ( 建立方程组 π ω 3.离心运动 在向心力公式F n=mv2/R中,F n是物体所受合外力所能提供的向心力,mv2/R是物体作圆周运动所需要的向心力。当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动。其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。 ◆3斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) ◆4.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 如图:杆对球的作用力由运动情况决定只有θ=arctg(g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? (未完待续) 假设单B 下摆,最低点的速度V B = R 2g ⇐mgR=2 2 1B mv 整体下摆2mgR=mg 2R +'2 B '2A mv 21mv 2 1+ 'A 'B V 2V = ⇒ ' A V = gR 53 ; 'A 'B V 2V ==gR 25 6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 ◆ .通过轻绳连接的物体 ①在沿绳连接方向(可直可曲),具有共同的v 和a 。 特别注意:两物体不在沿绳连接方向运动时,先应把两物体的v 和a 在沿绳方向分解,求出两物体的v 和a 的关系式, ②被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。 讨论:若作圆周运动最高点速度 V 0< gR ,运动情况为先平抛,绳拉直时沿绳方向的速度消失 即是有能量损失,绳拉紧后沿圆周下落机械能守恒。而不能够整个过程用机械能守恒。 求水平初速及最低点时绳的拉力? 换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒 例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低 点A 时绳子受到的拉力是多少? ◆5.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a) 难点:一个物体的运动导致系统重心的运动 1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? ◆6.碰撞模型 : 两个相当重要典型的物理模型,后面的动量守恒中专题讲解 图9