统编人教版小学精品教学资料:第6课时 容积和容积单位(2)(教案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6课时容积和容积单位(2)

【教学内容】

求不规则物体的体积(课本第39页的例6及第41页练习九的第7~13题)。【教学目标】

1.使学生进一步熟练掌握求长方体和正方体容积的计算方法。

2.能根据实际情况,应用排水法求不规则物体的体积。

3.通过学习,让学生体会数学与生活的紧密联系,培养学生在实践中的应变能力。【重点难点】

运用具体方法求不规则物体的体积。

【教学准备】

一个雪花梨,一个量杯,一块橡皮泥。

【复习导入】

1

1.填空

6.7m3=( )dm3=( )cm3

2L=( )mL3 450mL=( )L

0.82L=( )mL=( )dm3

提问:单位换算你是怎样想的?

2.判断

(1)容积的计算方法与体积的计算方法是完全相同的。

(2)容积的计算方法与体积的计算方法是完全相同的,但要从里面量出长、宽、高。

(3)一个量杯能装水10mL,我们就说量杯的容积是10mL。

(4)一个量杯最多能装水100mL,我们就说量杯的容积是100mL。

(5)一个纸盒体积是60cm3,它的容积也是60cm3。

通过判断的练习,要让学生理解容积与体积的区别与联系。

【新课讲授】

出示课本第39页教学例题6。

2

(1)出示一块橡皮泥。

提问:你能求出它的体积吗?(把它捏成一个长方体或正方体,用尺子量出它的长、宽、高,就可以算出它的体积)

(2)出示一个雪花梨。

提问:你能求出这个雪花梨的体积吗?

学生展开讨论交流并汇报。

最优方法:把它扔到水里求体积。

(3)给每个小组一个量杯,一个雪花梨,一桶水,请大家动手实验,把实验的步骤记录下来,让学生分工合作。

(4)汇报试验过程,请一个组一边汇报过程,一边演示,先往量杯里倒入一定量的水,估计倒入的水要能浸没雪花梨,看一下刻度,并记下。接着把雪花梨放入量杯,要让其完全浸没再看一下刻度,并记下。最后把两次刻度相减就是雪花梨的体积。

即:450-200=250(mL)=250(cm3)

(5)提问:为什么上升那部分水的体积就是雪花梨的体积?学生展开讨论后并回答。

(6)用排水法求不规则物体的体积要注意什么?要记录哪些数据?(要注意把物体完全浸入到水中,要记录没有浸入之前的刻度和完全浸入之后的刻度)

3

(7)想一想,可以利用上面的方法测量乒乓球、冰块的体积吗?为什么?也是可以的,但必须把它们完全浸入水中。

【课堂作业】

完成课本第41页练习九第7~13题。

第7题:教师引导学生理解题意,要根据已知条件算出水深是13cm时水和土豆合在一起形成的长方体的体积,放入土豆后高是13cm,根据“底面积×高”的公式,可以求出放入土豆后的体积,再从中减去5L水,就得出土豆的体积。

第13题:一个大圆球加一个小圆球排出的水是12mL,一个大圆球加四个小圆球排出的水是24mL,这样可知3个小圆球共排出的水是24-12=12(mL),由此可得出3个小圆球的体积是12cm3,则1个小圆球的体积为4cm3,所以大圆球的体积为12-4=8(cm3)

第16题:这是个思考题,教师引导学生弄清图意,让学生在四人小组内进行交流、讨论,全班反馈时,可让学生说说思维过程。

【课堂小结】

今天这节课,同学们都能用学到的知识解决生活中常见的问题,希望大家在今后的计算中要多加小心。

【课后作业】

4

完成练习册中本课时练习。

第6课时容积和容积单位(2)

不规则物体的体积

↓排水法

把物体扔到水里,两次的体积差则是不规则物体的体积。

在教学时,教师通过复习理清容积与体积的区别与联系。再引入课题求不规则物体的体积,让学生展开讨论交流实验得出“排水法”,这样让学生理解了不规则物体的求法,并能用所学的知识解决生活中的问题,培养学生在实践中的应变能力。

5

相关文档
最新文档