2012年普通高中学业水平考试数学试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高中学业水平考试数学试题

第一卷(选择题 共45分)

一.选择题(15'×3=45')

1.已知角的终边经过点(3,4-),则tan x 等于( ) A.34 B.34- C.43

D.43- 2.已知lg 2,lg3a b ==,则3lg 2

等于( )

A.a b -

B.b a -

C.b a

D.a b 3.设集合{}(1,2)M =,则下列关系成立的是( )

A.1∈M

B.2∈M

C.(1,2)∈M

D.(2,1)∈M

4.直线30x y -+=的倾斜角是( )

A.300

B.450

C.600

D.900

5.底面半径为2,高为4的圆柱,它的侧面积是( )

A.8π B .16π C .20π D .24π

6.若b<0

A.b 2

B.11b a

> C.b a -<- D.a b a b ->+ 7.已知4,0,cos 25x x π⎛⎫∈-= ⎪⎝⎭

,则tan x 等于( ) A.34 B.34- C.43

D.43- 8.已知数列{}n a 的前n 项和12n n S n +=

+,则3a 等于( ) A.120 B.124 C.128

D.132 9.在ΔABC 中,sin sin cos cos 0A B A B -<则这个三角形一定是( )

A.锐角三角形

B.钝角三角形

C.直角三角形

D.等腰三角形

10.若函数1()(2)2

f x x x =

≠-,则()f x ( ) A.在(2,)-+∞内单调递增 B.在(2,)-+∞内单调递减 C.在(2,)+∞内单调递增 D.在(2,)+∞内单调递减

11.在空间中,,,a b c 是两两不重合的三条直线,,,αβγ是两两不重合的三个平面,下列命题正确是

( )

A.若两直线,a b 分别与平面α平行,则//a b .

B.若直线a 与平面β内的一条直线b 平行,则//a β.

C.若直线a 与平面β内的两条直线b 、c 都垂直,则a ⊥β.

D.若平面β内的一条直线a 垂直平面γ,则γ⊥β.

12.不等式(1)(2)0x x ++<的解集是( ) A.{}21x x -<<- B.{}21x x x <->-或 C.{}12x x << D.{}12x x x <>或

13.正四棱柱ABCD-A 1B 1C 1D 1中,A 1 C 1与BD 所在直线所成角的大小是( )

A.300

B.450

C.600

D.900

14.某数学兴趣小组共有张云等10名实力相当的组员,现用简单随机抽

样的方法从中抽取3人参加比赛,则张云被选中的概率是( )

A.10%

B.30%

C.33.3%

D.37.5%

15.如图所示的程序框图,如果输入三个实数a,b,c ,要求输出这三个数中

最大的数,那么在空白处的判断框中,应该填入下面四个选项中的

( )(注:框图中的赋值符号“=”也可以写成“←”或“:=”)

A.c x >

B.x c >

C.c b >

D.b c >

第二卷(非选择题共55分)

二.填空题(5'×4=20')

16.已知0,0,1a b a b >>+=则ab 的最大值是____.

17.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于____.

18.已知函数2,(4)()(1),(4)x x f x f x x ⎧<=⎨-≥⎩

,那么(5)f 的值为_____. 19.在[],ππ-内,函数sin()3

y x π=-为增函数的区间是______. 20.设12,9,542a b a b ==⋅=-则a 和b 的夹角θ为____.

三.解答题(共5小题,共35分)

21.已知(2,1),(,2),a b λ==-⑴若a b ⊥求λ的值;⑵若//a b 求λ的值.

22.(本题6分)已知一个圆的圆心坐标为(1,2)-,且过点(2,2)P -,求这个圆的标准方程.

23.(本题7分)已知{}n a 是各项为正数的等比数列,且1231,6a a a =+=,求该数列前10项的和n S .

24.(本题8分)已知函数31()cos ,2

f x x x x R =

-∈,求()f x 的最大值,并求使()f x 取得最大值时x 的集合. 25.(本题8分)已知函数()f x 满足()(),0,(2)1,xf x b cf x b f =+≠-=-且(1)(1)f x f x -=-+对两边都有意义的任意 x 都成立.⑴求()f x 的解析式及定义域;⑵写出()f x 的单调区间,并用定义证明在各单调区间上是增函数还是减函数?

参考答案

一、1.D2.B3.C4.B5.B6.D7.B8.A9.B10.D11.D12.A13.D14.B15.A

二、16、41 17、31 18、8 19、 [6π-,65π] 20、4

3π 三、21、解:∵a ⊥b ,∴a •b=0,又∵a=(2,1),b =(λ,-2),∴a •b=2λ-2=0,∴λ=1

22、解:依题意可设所求圆的方程为(x+1)2+(y-2)2=r 2。

∵点P (2,-2)在圆上,

∴ r 2=(2+1)2+(-2-2)2=25

∴所求的圆的标准方程是(x+1)2+(y-2)2=52 。

23、解:设数列{}n a 的公比为q ,由a 1=1,a 2+a 3=6得:

q+q 2=6,即q 2+q-6=0,

解得q=-3(舍去)或q=2

∴S 10=1023122

1211)1(1010

101=-=--=--q q a 24解:∵)6sin(6sin cos 6cos sin cos 21sin 23)(πππ-=-=-=x x x x x x f ∴f(x)取到最大值为1 当时即Z k k x Z k k x ∈+=∈+=-,3

22,,226πππππ

,f(x)取到最大值为1 ∴f(x)取到最大值时的x 的集合为⎩⎨⎧

⎬⎫∈+=Z k k x x ,│.322ππ 25、解:(1)由xf(x)=b+cf(x),b≠0,

∴x≠c ,得()b f x x c

=-, 由f(1-x)=-f(x+1)得

11b b x c x c =---+- ∴c=1

由f(2)=-1,得-1=

21b - ,即b=-1 ∴11()11f x x x

-==--, ∵1-x≠0,∴x≠1

即f(x)的定义域为}{

1x x ≠│

(2)f(x)的单调区间为(-∞,1),(1,+∞)且都为增区间

证明:当x ∈(-∞,1)时,设x 1

则1- x 1>0,1- x 2>0

相关文档
最新文档