抵押贷款的违约损失率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抵押贷款的违约损失率(LGD )研究
分类:金融、保险与证券监管
管理与经济学
文章提交者:何自力 发表时间:2006-01-28
字号:大 中 小
抵押贷款的违约损失率(LGD )研究(本文已发表于《南方金融》2006年第1期)
何自力
(广东,广州 510120)
摘要:新巴塞尔资本协定将违约概率(PD )和违约损失率(LGD )纳入监管资本衡量的基本框架,国际活跃银行内部风险管理指标已从不良贷款率转向PD 和LGD 。本文简要综述了国际上LGD 理论与实证研究的成果,并对国内商业银行抵押贷款LGD 进行了实证研究,得出了一些重要结论与管理建议。
关键词:新巴塞尔资本协定,抵押,违约损失率
自巴塞尔新资本协定将违约概率(PD )和违约损失率(LGD )一同纳入监管资本衡量的基本框架以来,违约损失率(LGD )引起了监管界、业界和理论界的高度重视。
一、关于违约损失率(LGD )的研究综述
违约损失率LGD (或1—回收率)是指预期违约的损失占风险暴露(exposure )的百分比,违约时风险暴露(EAD ,exposure at default )是指由于债务人违约所导致的可能承受风险的信贷业务的余额 。反映信用风险的重要指标—预期损失率(Expected Loss, EL )是LGD
和PD的乘积,即:预期损失率(EL)=LGD × PD。
(一)国外及港台的研究
企业举债取得资金的主要渠道有直接融资和间接融资。直接融资的各项公司债具有次级市场价格,违约后可以通过该债务工具违约后一定时点的市场价格为基础估算违约损失率。对于间接融资,则需依靠银行积累的违约贷款数据资料来推估违约损失率。公开市场资料较易取得,因此违约损失率的研究也以此为基础发展起来。
Robert C. Merton于1974年发表的“on the Pricing of Corporate Debt: the Risk Structure of Interest Rates”一文是现代信贷违约概率和回收率分析的理论基础文章。其不足之处是没有解决信用资产质量的实际观测问题,在实证中的应用受到限制,这也是模型诞生后大量后续工作的重心所在。
针对Merton(1974)模型在实证应用领域的困难,有若干文献尝试提供变通的解决办法。Crouhy和Galai(1997)将不能直接观测的Merton (1974)模型表达为信贷违约概率和回收率的函数,从而使信用风险管理的核心简化为对PD和LGD的观测分析,产生了较大影响。
观测度量金融工具LGD的途径大致有三类(刘宏峰,杨晓光,2003): Market LGD(市场LGD,以实际违约事件发生后违约债券或可交易贷款的市场价格为依据);Workout LGD(清算LGD,清算及追讨过程产生的一系列现金流估计值的现值与风险暴露的比
值); Implied Market LGD(市场隐含LGD,利用资产估价模型,按同类未违约债券的利差与价格计算)。事实上,基于债券二级市场或贷款二级市场(如证券化的个人住房抵押贷款)的实证研究较多,而对普通的银行贷款的实证研究很少,其原因一是研究方法的复杂性,二是数据的非公开性。
1、美国市场的研究
由于数据获得性的原因,目前的文献以美国市场为研究对象的居多。
Asarnow及Edwards (1995)使用违约事件发生后产生的所有经济损失衡量银行贷款的预期损失。其以花旗银行1970——1993年间一般工商业贷款及受监控贷款(Structured loans)共831个违约样本计算出的LIED分别为34.79%和12.75%。研究的一个重要发现就是其分布为“双模型分布”(bi-model),样本集中在高、低两端。
Carty及Lieberman(1996)以穆迪公司1989-1996年间58例优先担保违约银行贷款为对象,根据其次级市场交易价格进行实证研究,结果表明平均回收率为71%,中位数为77%,标准差为32%。研究未观察到“双模型分布”(bi-model),但发现回收率明显向高端偏离。
Hamilton及Carty(1999)以市场法求算159家破产案例为研究样本的偿还率,结果平均偿还率为56.7%,中位数偿还率为56%,标准差则为29.3%。
Gupton、Daniel Gates及Carty于2000年采用121例违约贷款样本的研究结果表明:优先担保和优先未担保的银行贷款违约时平均价值分别为69.5%和52.1%,但实践经验中对这些平均价值的偏离也是显著的。
Gupton和Stein(2002)首次推出了一个市场价值预测基础上LGD预测模型LossCalc ,该模型是一个关于美国债券、银行贷款和优先股LGD的多因素统计模型。
Til Schuermann(2004年)介绍了穆迪公司1970-2003所有债券和贷款的回收率分布,并对双峰分布的形成原因进行了解释,如下图1:图1:穆迪公司1970-2003所有债券和贷款的回收率分布
上图中LGD分布呈现出双峰(two humps or bimodal)特征。对此,Til Schuermann通过对不同债务与担保类型下LGD分布的研究尝试进行解释。不同债务与担保类型下LGD分布如下图2:
图2中,除优先担保类外的各种类型债务(优先从属、优先无担保、从属)均基本为单峰形式的分布,优先担保债务显示出近似对称的分布,几种类型的债务工具综合叠加后才表现出双峰分布。
Michel A., M. Jocobs Jr., P. Varshey (2004)采用JP摩根•大通1982-1999年间的贷款损失历史资料(共3761例违约客户)对LGD 进行研究,平均会计LGD 和经济LGD 分别为27.0%和39.8%。该研究同时对抵押贷款LGD进行了分析。通过对1982年1季度至1999年4季度共1705个样本的研究,抵押贷款(1279个样本)的LGD均值为27.7%,标准差35.3%,无抵押贷款LGD均值40.3%,标准差42.5%,研究公布了不同类型抵押物LGD均值和标准差。
2、其他市场的LGD实证研究
花旗银行的Hurt和Felsovalyi(1998)对拉丁美洲1970-1996年27个国家的1149笔银行贷款研究显示,平均违约回收率为68.2%,LGD 呈偏态分布,宏观经济和贷款金额是回收率的影响因素之一,金额越大,回收率越低;
La Porta等人(2003)研究了墨西哥的关联借款的PD和LGD,1995-1999年非关联借款的平均回收率为46%,而关联借款为27%。分