命题与证明的知识点总复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题与证明的知识点总复习

一、选择题

1.下列命题中,真命题的是()

A.两条直线被第三条直线,同位角相等

B.若a⊥b,b⊥c,则a⊥c

C.点p(x,y),若y=0,则点P在x轴上

D a,则a=﹣l

【答案】C

【解析】

【分析】

根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断.

【详解】

A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题;

B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;

C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题;

D a,则a=0或a=1,所以D选项为假命题.

故选:C.

【点睛】

本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.

2.现给出下列四个命题:

①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;

③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()

A.1个 B.2个 C.3个 D.4个

【答案】C

【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;

②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;

③根据菱形的面积公式,错误;

④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.

综合以上分析,不正确的命题包括①②③.

故选C.

3.下列命题正确的是( )

A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的. B.两个全等的图形之间必有平移关系.

C.三角形经过旋转,对应线段平行且相等.

D.将一个封闭图形旋转,旋转中心只能在图形内部.

【答案】A

【解析】

【分析】

根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】

解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;

B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;

C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;

D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.

故选:A.

【点睛】

本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.

4.下列命题中,正确的命题是()

A.度数相等的弧是等弧

B.正多边形既是轴对称图形,又是中心对称图形

C.垂直于弦的直径平分弦

D.三角形的外心到三边的距离相等

【答案】C

【解析】

【分析】

根据等弧或垂径定理,正多边形的性质一一判断即可;

【详解】

A、完全重合的两条弧是等弧,错误;

B、正五边形不是中心对称图形,错误;

C、垂直于弦的直径平分弦,正确;

D、三角形的外心到三个顶点的距离相等,错误;

故选:C.

【点睛】

此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.

5.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.

A.5个B.4个C.3个D.2个

【答案】D

【解析】

【分析】

利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.

【详解】

解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;

②两直线平行,内错角相等,故错误,是假命题;

③两点之间线段最短,正确,是真命题;

④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;

⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D.

【点睛】

本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.

6.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设()

A.三角形的三个外角都是锐角

B.三角形的三个外角中至少有两个锐角

C.三角形的三个外角中没有锐角

D.三角形的三个外角中至少有一个锐角

【答案】B

【解析】

【分析】

反证法的步骤中,第一步是假设结论不成立,反面成立.

【详解】

解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,

故选B.

【点睛】

.在假设结论不成立时要注意考虑结考查了反证法,解此题关键要懂得反证法的意义及步骤

论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.

7.以下说法中:(1)多边形的外角和是360 ;(2)两条直线被第三条直线所截,内错

相关文档
最新文档