常微分方程习题及解答
常微分方程计算题及答案
计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。
常微分方程习题与答案
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
()2 •微分方程的通解中包含了它所有的解。
()3. 函数y =3si nx-4cosx是微分方程y,y=0的解。
()4. 函数y = x2・e x是微分方程y';"-2y ' y = 0的解。
()5. 微分方程xy"T nx=0的通解是y =丄(1 nx)2+C (C为任意常数)。
()26. y"=siny是一阶线性微分方程。
()7. / = x3y3 xy不是一阶线性微分方程。
()8 . /-2/ 5^0的特征方程为『-2—5=0。
()9. dy = 1 x y2 xy2是可分离变量的微分方程。
()dx、填空题1 .在横线上填上方程的名称①y _ 3 ln xdx _ xdy 二0 是__________________________ 。
②xy2 x dx y _ x2 y dy = 0 是__________________________ 。
③x-d^ = y l n 丫是。
dx x④xy := y x2 sin x 是__________________ 。
⑤y y -2y =0是________________________ 。
2 . y si nxy"-x=cosx的通解中应含____________ 个独立常数。
3. _____________________________________ y “ = e Qx的通解是。
4. ______________________________________ y = sin 2x - cos x 的通解是。
5. _______________________________ x^ 2x2y 2,x3y=x4,1是阶微分方程。
6•微分方程y y - y Q =0是________________ 阶微分方程。
i7. y-丄所满足的微分方程是。
常微分方程试题及答案
常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
(完整版)常微分方程基本概念习题及解答
(完整版)常微分方程基本概念习题及解答§1.2 常微分方程基本概念习题及解答1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =y e y 2e x 32 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx du u+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1)y(1+x 2y 2)dx=xdy2)y x dx dy =2222x -2 y x 2y+ 证明:令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1)1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。
数学必修二:常微分方程的应用习题答案
数学必修二:常微分方程的应用习题答案一、填空题1. 解微分方程 $\frac{dy}{dx}=\frac{x-y}{x+y}$,得到的特解为$y=$_____。
解答:首先,观察到该方程是一阶线性齐次方程的形式,所以我们假设解为 $y=ux$,代入原方程,得到 $\frac{du}{dx}=-\frac{1+u}{1-u}$。
化简后得到 $\frac{1+u}{u(1-u)}du=-dx$。
分离变量并两边积分,得到 $\ln\left|\frac{1+u}{u(1-u)}\right|=-x+c$,其中 $c$ 为常数。
进一步化简,得到 $\frac{1+u}{u(1-u)}=k\cdot e^{-x}$,其中 $k=\pm e^c$。
将$y=ux$ 代入,得到 $\frac{1+\frac{y}{x}}{\frac{y}{x}(1-\frac{y}{x})}=k\cdot e^{-x}$,整理后得到 $y=\frac{k\cdot x}{1-k\cdotx}$。
所以解为 $y=\frac{k\cdot x}{1-k\cdot x}$。
2. 解微分方程 $\frac{dy}{dx}=\frac{x^2+y^2}{2x+y}$,得到的特解为 $y=$_____。
解答:我们先观察到该方程是一个齐次方程的形式,所以我们可以做变换 $y=vx$,得到 $\frac{dv}{dx}=\frac{1+v^2}{2+v}$。
将分子移到右边并分离变量,得到 $\frac{dv}{1+v^2}=\frac{dx}{2+x}$。
对左边积分,得到$\arctan(v)=\ln|2+x|+c$,其中$c$ 为常数。
再次代入$y=vx$,得到 $\arctan\left(\frac{y}{x}\right)=\ln|2+x|+c$。
整理之后,得到$y=x\tan(\ln|2+x|+c)$。
所以解为 $y=x\tan(\ln|2+x|+c)$。
常微分方程习题及评分标准答案
常微分⽅程习题及评分标准答案常微分⽅程分项习题⼀、选择题(每题3分)第⼀章:1.微分⽅程''20y xy y +-=的直线积分曲线为()(A )1y =和1y x =- (B )0y =和1y x =- (C )0y =和1y x =+ (D )1y =和1y x =+ 第⼆章:2.下列是⼀阶线性⽅程的是()(A )2dy x y dx =- (B )232()0d y dy xy dx dx-+= (C )22()0dy dy x xy dx dx +-= (D )cos dy y dx= 3.下列是⼆阶线性⽅程的是()(A )222d y dyxx y dx dx +=- (B )32()()0dy dy xy dx dx -+= (C )2(1)0dy x xy dx +-= (D )22cos cos d y y x dx=4.下列⽅程是3阶⽅程的为()(A )'23y x y =+ (B )3()0dy xy dx+= (C )3223()0dy d yx y dx dx+-= (D )3cos dy y dx = 5.微分⽅程43()()0dy dy dyx dx dx dx+-=的阶数为()(A )1 (B )2 (C )3 (D )46.⽅程2342()20dy d yx y dx dx+-=的阶数为()(A )1 (B )2 (C )3 (D )4 7.针对⽅程dy x ydx x y-=+,下列说法错误的是().(A )⽅程为齐次⽅程(B )通过变量变换yu x=可化为变量分离⽅程(C )⽅程有特解0y =(D )可以找到⽅程形如y kx =的特解(1y x =- 8.针对⽅程2sin (1)y x y '=-+,下列说法错误的是().(A )为⼀阶线性⽅程(B )通过变量变换1u x y =-+化为变量分离⽅程(C )⽅程有特解12y x π=++(D )⽅程的通解为tan(1)x y x C -+=+ 9.伯努利⽅程n y x Q y x P dxdy)()(+=,它有积分因⼦为()(A )(1)()n P x dx e -? (B )()nP x dx e ?(C )(1)()n P x dx xe -? (D )()nP x dx xe ?10.针对⽅程2(cos sin )dyy y x x dx+=-,下列说法错误的是().(A )⽅程为伯努利⽅程(B )通过变量变换2z y =可化为线性⽅程(C )⽅程有特解0y =(D )⽅程的通解为1sin x y Ce x=-11.⽅程2()dy yxf dx x=经过变量变换()可化为变量分离⽅程。
《常微分方程》答案_习题4.2
习题4.21. 解下列方程(1)045)4(=+''-x x x 解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=tt t t e c e c e c e c --+++432221 (2)03332=-'+''-'''x a x a x a x 解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(=''-x x解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2 故通解为54232221c t c t c e c e c x t t ++++=-(4)0102=+'+''x x x解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i故通解为t e c t e c x t t 3sin 3cos 21--+= (5) 0=+'+'x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t ec t ec x t t 23sin 23cos 212211--+=(6) 12+=-''t s a s 解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=at at e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=at at e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ 故通解为s=t c c 21+-)3(612+t t(7) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1故通解为x=t t t te c e c e c 3221++-4-t (8) 322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321取特解行如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (9)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--取特解行如t B t A x sin cos ~+=代入原方程解得A=21,21-=B 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--)sin (cos 21t t +-(10) t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=t t e c e c 221-+ 因为+-2i 不是特征根取特解行如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B 故通解为x=t t e c e c 221-+t t 2sin 562cos 52-- (11)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- =λ1是特征方程的根,故t Ate x =~代入原方程解得A=31故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(12)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t tte c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t ++,当a ≠-1时,齐线性方程的通解为s=at atte c e c --+21,=λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (13)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c e c 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211 故通解为x=t t e c e c 521--++t e 2211 (14)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i故齐线性方程的通解为t e c t e c x t t 2sin 2cos21+=i ±-1不是特征方程的根, 取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos21+=+t e t t --)sin 414cos 415((15) t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+=t x x sin =+'',=1λi,是方程的解 )sin cos (~t B t A t x +=代入原方程解得 A=21- B=0 故t t x cos 21~-=t x x 2cos -=+'' t B t A x 2sin 2cos ~+=代入原方程解得 A=31B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=t t cos 21-t 2cos 31+习 题 6-11. 求出齐次线性微分方程组y t A dtdy)(=的通解,其中A (t )分别为:(1)⎪⎪⎭⎫ ⎝⎛=1011)(t A ;(2)⎪⎪⎭⎫⎝⎛-=0110)(t A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000010100)(t A 。
常微分方程课后习题答案
常微分方程课后习题答案常微分方程课后习题答案在学习常微分方程的过程中,课后习题是巩固知识和提高能力的重要环节。
通过解答习题,我们可以更好地理解和应用所学的概念和方法。
下面是一些常见的常微分方程习题及其答案,供大家参考。
一、一阶常微分方程1. 求解方程:dy/dx = 2x。
解:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解方程:dy/dx = x^2 - 1。
解:对方程两边同时积分,得到y = (1/3)x^3 - x + C,其中C为常数。
3. 求解方程:dy/dx = 3x^2 + 2。
解:对方程两边同时积分,得到y = x^3 + 2x + C,其中C为常数。
二、二阶常微分方程1. 求解方程:d^2y/dx^2 + 4dy/dx + 4y = 0。
解:首先求解特征方程:r^2 + 4r + 4 = 0,解得r = -2。
因此,方程的通解为y = (C1 + C2x)e^(-2x),其中C1和C2为常数。
2. 求解方程:d^2y/dx^2 + 2dy/dx + y = x^2。
解:首先求解特征方程:r^2 + 2r + 1 = 0,解得r = -1。
因此,方程的通解为y = (C1 + C2x)e^(-x) + (1/6)x^2 - (1/2)x + (1/2),其中C1和C2为常数。
3. 求解方程:d^2y/dx^2 + 3dy/dx + 2y = e^(-x)。
解:首先求解特征方程:r^2 + 3r + 2 = 0,解得r = -1和r = -2。
因此,方程的通解为y = (C1e^(-x) + C2e^(-2x)) + (1/3)e^(-x),其中C1和C2为常数。
三、应用题1. 一个物体在空气中的速度满足以下方程:dv/dt = -9.8 - 0.1v,其中v为速度,t为时间。
求物体的速度随时间的变化情况。
解:这是一个一阶线性常微分方程。
将方程改写为dv/(9.8 + 0.1v) = -dt,再两边同时积分,得到ln|9.8 + 0.1v| = -t + C,其中C为常数。
(完整版)常微分方程习题及解答
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
常微分方程习题及答案
第十二章常微分方程(A)一、就是非题1.任意微分方程都有通解。
()2.微分方程的通解中包含了它所有的解。
()3.函数y=3sin x-4cos x就是微分方程y''+y=0的解。
()4.函数y=x2⋅e x就是微分方程y''-2y'+y=0的解。
()5.微分方程xy'-ln x=0的通解就是y=12(ln x)2+C(C为任意常数)。
(6.y'=sin y就是一阶线性微分方程。
()7.y'=x3y3+xy不就是一阶线性微分方程。
()8.y''-2y'+5y=0的特征方程为r2-2r+5=0。
()9.dydx=1+x+y2+xy2就是可分离变量的微分方程。
()二、填空题1.在横线上填上方程的名称①(y-3)⋅ln xdx-xdy=0就是。
②(xy2+x)dx+(y-x2y)dy=0就是。
③x dydx=y⋅lnyx就是。
④xy'=y+x2sin x就是。
⑤y''+y'-2y=0就是。
2.y'''+sin xy'-x=cos x的通解中应含个独立常数。
3.y''=e-2x的通解就是。
4.y''=sin2x-cos x的通解就是。
5.xy'''+2x2y'2+x3y=x4+1就是阶微分方程。
6.微分方程y⋅y''-(y')6=0就是阶微分方程。
7.y=1x所满足的微分方程就是。
)8.y '=9.2y的通解为。
x dx dy +=0的通解为。
y x5dy 2y 10.-=(x +1)2,其对应的齐次方程的通解为。
dx x +111.方程xy '-(1+x 2)y =0的通解为。
12.3阶微分方程y '''=x 3的通解为。
三、选择题1.微分方程xyy ''+x (y ')-y 4y '=0的阶数就是( )。
常微分方程_习题集(含答案)
《常微分方程》课程习题集一、单选题1. 设函数(,),(,)M x y N x y 连续可微, 则方程(,)(,)0M x y dx N x y dy += 是全微分方程的充分必要条件是 . (A) M N y x ∂∂=∂∂, (B) ,M N x y ∂∂=∂∂ (C) ,M N y x ∂∂≠∂∂ (D) .M N x y ∂∂≠∂∂2. 下面的方程是全微分方程的是 . (A) 0ydx xdy x y-=+, (B) 220y dx x dy +=, (C) 220xy dx x ydy -=, (D)220ydx xdy x y -=-. 3. 设一阶方程2()()(),(()()0)dy p x y q x y r x p x r x dx=++≠,则它是 。
(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。
4. 设一阶方程()(),(0,1)n dy p x y q x y n dx=+≠,则它是 。
(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。
5. 形如'(')y xy y ϕ=+的一阶隐式方程称为 。
(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。
6. 二阶微分方程2100x x x '''++=的通解是 。
(A )12[cos3sin 3]t x e C t C t -=+,(B )312[cos sin ]t x e C t C t -=+,(C )12[cos sin ]t x e C t C t -=+,(D) 312[cos3sin 3]t x e C t C t -=+.7. 二阶微分方程250x x x '''++=的通解是 。
(A )12[cos sin ]t x e C t C t -=+,(B )212[cos sin ]t x e C t C t -=+,(C )12[cos 2sin 2]t x e C t C t -=+,(D) 212[cos 2sin 2]t x e C t C t -=+.8. 二阶微分方程440x x x '''-+=的通解是 。
常微分方程课后练习题含答案
常微分方程课后练习题含答案练习1:考虑动力学方程组:$$ \\begin{align} \\frac{dx}{dt}&=x(1-y)\\\\ \\frac{dy}{dt}&=y(1-x)\\end{align} $$a)画出相图b)确定方程组的固定点及其稳定性c)求出轨道在极限$\\lim\\limits_{t\\to\\infty}$时的行为答案1:a)相图如下所示:image-1b)如果(x,y)是方程组的一个固定点,则:$$ \\begin{aligned} \\frac{dx}{dt}&=0 \\\\ \\frac{dy}{dt}&=0\\end{aligned} $$由$\\frac{dx}{dt}=x(1-y)$得,固定点必须是x=0或y=1•当x=0时,$\\frac{dy}{dt}=y$,因此固定点为(0,0),是不稳定的。
•当y=1时,$\\frac{dx}{dt}=0$,因此固定点为(1,1),是稳定的。
综上,方程组的固定点为(0,0)和(1,1),其中(1,1)是稳定的。
c)当$t\\to\\infty$时,我们需要检查轨道的极限行为。
假设(x(t),y(t))是由方程组确定的轨迹,x0=x(0)和y0=y(0)是轨迹的起点。
轨迹的限制曲线由y(1−x)=x(1−y)确定,展开可得y=x或xy=0.5。
将方程组改写为$$ \\frac{dy}{dx}=\\frac{y(1-x)}{x(1-y)} $$则在y=x处,$$ \\frac{dy}{dx}=1 $$这意味着沿着这个轨道移动的速度是恒定的,因此轨迹沿着一条直线移动。
由$\\frac{dy}{dx}=\\frac{y(1-x)}{x(1-y)}$可知,在非负轴上,当y>1−x时$\\frac{dy}{dx}>0$,当y<1−x时$\\frac{dy}{dx}<0$。
(完整版)常微分方程练习试卷及答案
常微分方程练习试卷一、填空题。
1.方程 x 3 d2x 10 是阶(线性、非线性)微分方程 .dt 22. 方程 x dyf (xy ) 经变换 _______ ,能够化为变量分别方程.y dx3.微分方程 d 3 y y 2x 0 知足条件 y(0) 1, y (0)2 的解有个 .dx 34. 设 常 系 数 方程 yy*2 xxx,则此方程的系数ye x 的 一个 特解 y ( x) eexe,, .5. 朗斯基队列式 W (t )0是函数组 x 1(t), x 2 (t),L , x n (t ) 在 a x b 上线性有关的条件 .6. 方程 xydx (2 x 2 3y 2 20) dy 0 的只与 y 有关的积分因子为.7. 已知 X A(t) X 的基解矩阵为 (t ) 的,则 A(t ).8. 方程组 x '2 0.0 x 的基解矩阵为59. 可用变换 将伯努利方程化为线性方程 .10 . 是知足方程 y2 y 5y y 1 和初始条件的独一解 .11. 方程的待定特解可取的形式 :12. 三阶常系数齐线性方程 y 2 y y 0 的特点根是二、计算题1. 求平面上过原点的曲线方程 , 该曲线上任一点处的切线与切点和点 (1,0) 的连线互相垂直 .dy x y 1 2.求解方程.dxx y 3d 2 x dx 2。
3. 求解方程 x2( )dt dt4.用比较系数法解方程 . .5.求方程y y sin x 的通解.6.考证微分方程(cos x sin x xy 2 )dx y(1 x2 )dy0 是适合方程,并求出它的通解.311A X 的一个基解基解矩阵(t) ,求dXA X7.设 A,,试求方程组dX241dt dt 知足初始条件x(0)的解 .8.求方程dy2x13y2经过点 (1,0)的第二次近似解 . dx9.求dy)34xy dy8y20 的通解(dxdx10. 若A 21试求方程组 x Ax 的解(t ),(0)141,并求expAt2三、证明题1.若(t), (t ) 是 X A(t) X 的基解矩阵,求证:存在一个非奇怪的常数矩阵 C ,使得(t)(t )C .2.设 ( x) (x0 , x) 是积分方程y(x)y0x2 y( )]d ,x0 , x [ , ] [x0的皮卡逐渐迫近函数序列 {n (x)} 在 [,] 上一致收敛所得的解,而(x) 是这积分方程在 [ ,] 上的连续解,试用逐渐迫近法证明:在[,] 上( x)( x) .3. 设都是区间上的连续函数 ,且是二阶线性方程的一个基本解组 . 试证明 :(i)和都只好有简单零点(即函数值与导函数值不可以在一点同时为零);(ii)和没有共同的零点;(iii)和没有共同的零点.4. 试证:假如(t ) 是dXAX 知足初始条件(t0 )的解,那么(t) exp A(t t 0 ) dt.答案一 . 填空题。
常微分方程课后习题答案.doc
习题 3.4(一)、解下列方程,并求奇解(如果存在的话):1、422⎪⎭⎫ ⎝⎛+=dx dy x dx dyx y解:令p dxdy =,则422p x xp y +=,两边对x 求导,得dxdp px xpdxdp xp p 3244222+++=()02213=⎪⎭⎫⎝⎛++p dx dpxxp 从0213=+xp 得 0≠p 时,2343,21py px -=-=;从02=+p dxdp x得 222,c pc y pc x +==,0≠p 为参数,0≠c 为任意常数.经检验得⎪⎪⎩⎪⎪⎨⎧+==222c p c y p c x ,(0≠p )是方程奇解.2、2⎪⎭⎫⎝⎛-=dx dy y x解:令p dxdy =,则2p x y +=,两边对x 求导,得dxdp p p 21+=pp dxdp 21-=,解之得 ()c p p x +-+=21ln 2,所以()c p p p y +-++=221ln 2,且y=x+1也是方程的解,但不是奇解. 3、21⎪⎭⎫ ⎝⎛++=dx dy dxdy xy解:这是克莱洛方程,因此它的通解为21c cx y ++=,从⎪⎩⎪⎨⎧=+-++=01122c cx c cx y 中消去c, 得到奇解21x y -=.4、02=-+⎪⎭⎫⎝⎛y dx dy x dx dy 解:这是克莱洛方程,因此它的通解为 2c cx y +=,从⎩⎨⎧=++=022c x c cx y 中消去c, 得到奇解 042=+y y . 5、022=-+⎪⎭⎫⎝⎛y dx dy xdx dy 解:令p dxdy =,则22p xp y +=,两边对x 求导,得 dxdp pdxdp xp p 222++=22--=x pdpdx ,解之得 232-+-=cpp x ,所以 1231-+-=cpp y ,可知此方程没有奇解. 6、0123=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛dx dy y dx dy x解:原方21⎪⎭⎫⎝⎛-=dx dy dxdy xy ,这是克莱罗方程,因此其通解为21ccx y -=,从⎪⎩⎪⎨⎧=+-=-02132c x c cx y 中消去c ,得奇解042732=+y x .7、21⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=dx dy dx dy x y解:令p dxdy =,则()21p p x y =+=,两边对x 求导,得 22+-=-p ce x p , 所以 ()212+-+=-p e p c y p , 可知此方程没有奇解. 8、()022=--⎪⎭⎫ ⎝⎛a x dx dy x解:()xa x dx dy 22-=⎪⎭⎫ ⎝⎛xa x dxdy -±=dx x a x dy ⎪⎪⎭⎫⎝⎛-±= ⎪⎪⎭⎫ ⎝⎛-±=2123232axx y ()()22349a x x c y -=+可知此方程没有奇解. 9、3312⎪⎭⎫⎝⎛-+=dx dy dx dyx y解:令p dxdy =,则3312p p x y -+=, 两边对x 求导,得 dxdp pdxdp p 22-+=212pp dxdp --=解之得 ()c p p x +--+-=2ln 3222,所以 c p p p p y +------=2ln 6433123, 且 322-=x y 也是方程的解,但不是方程的奇解.10、()012=-++⎪⎭⎫⎝⎛y dx dy x dx dy 解:2⎪⎭⎫⎝⎛++=dx dy dx dydx dyx y这是克莱罗方程,因此方程的通解为2c c cx y ++=, 从⎩⎨⎧++++=cx c c cx y 212中消去c, 得方程的奇解()0412=++y x .(二)求下列曲线族的包络. 1、2c cx y +=解:对c 求导,得 x+2c=0, 2x c -=, 代入原方程得,442222xxxy -=+-=,经检验得,42xy -=是原方程的包络.2、0122=-+cx y c解:对c 求导,得 yxc x yc 2,0222-==+,代入原方程得0124424=--yxy yx,即044=+y x ,经检验得044=+y x 是原方程的包络. 3、()()422=-+-c y c x解:对c 求导,得 –2(x-c)-2(y-c)=0, 2y x c +=,代入原方程得()82=-y x .经检验,得 ()82=-y x 是原方程的包络.4、()c y c x 422=+-解:对c 求导,得 -2(x-c)=4, c=x+2,代入原方程得()2442+=+x y ,()142+=x y , 经检验,得()142+=x y 是原方程的包络.(三) 求一曲线,使它上面的每一点的切线截割坐标轴使两截距之和等于常数c.解:设所求曲线方程为y=y(x),以X 、Y 表坐标系,则曲线上任一点(x,y(x))的切线方程为()()()()x X x y x y Y -'=-,它与X 轴、Y 轴的截距分别为y y x X '-=,y x y Y '-=,按条件有 a y x y y y x ='-+'-,化简得y y a y x y '-'-'=1,这是克莱洛方程,它的通解为一族直线cac cx y --=1,它的包络是()⎪⎪⎩⎪⎪⎨⎧----=--=21101c acc a x c ac cx y ,消去c 后得我们所求的曲线()24a y x ax +-=.(四) 试证:就克莱洛方程来说,p-判别曲线和方程通解的c-判别曲线同样是方程通解的包络,从而为方程的奇解.证:克莱洛方程 y=xp+f(p)的p-判别曲线就是用p-消去法,从()()⎩⎨⎧'+=+=c f x c f cx y 0 中消去p 后而得的曲线;c-判别曲线就是用c-消去法,从通解及它对求导的所得的方程()()⎩⎨⎧'+=+=c f x c f cx y 0中消去c 而得的曲线, 显然它们的结果是一致的,是一单因式,因此p-判别曲线是通解的包络,也是方程的通解. 习题4.11. 设()t x 和()t y 是区间b t a ≤≤上的连续函数,证明:如果在区间b t a ≤≤上有()()≠t y t x 常数或()()t x t y 常数,则()t x 和()t y 在区间b t a ≤≤上线形无关。
数学必修二:常微分方程习题答案
数学必修二:常微分方程习题答案1. 问题1已知常微分方程dy/dx = x + y,求解该微分方程。
解答:将该微分方程重新整理,得到(dy/dx) - y = x。
这是一个一阶线性常微分方程。
首先求解其齐次方程(dy/dx) = y。
解齐次方程得到y = ce^x,其中c为任意常数。
然后我们利用常数变易法,假设原方程的特解形式为y = u(x)e^x,其中u(x)是待定函数。
将y代入原方程得到(u'e^x + u)e^x - u(x)e^x = x,化简可得u'e^x = x,解这个常微分方程得到u(x) = (1/2)x^2 + C1,其中C1为常数。
因此,原方程的通解为y = ce^x + (1/2)x^2 + C1e^x,其中c和C1为任意常数。
2. 问题2已知常微分方程 dy/dx = 2xy,求解该微分方程。
解答:将该微分方程进行整理,得到 dy/dx - 2xy = 0。
这是一个一阶线性齐次微分方程。
首先求解其齐次方程 dy/dx = 2xy,将其变形为 dy/y = 2x dx,并对两边同时积分,得到 ln|y| = x^2 + C,其中C为常数。
解出y为 y = Ce^(x^2),其中C为常数。
3. 问题3已知常微分方程 dy/dx + y = 3e^(-x),求解该微分方程。
解答:将该微分方程进行整理,得到 dy/dx = 3e^(-x) - y。
这是一个一阶非齐次线性微分方程。
首先求解其齐次方程dy/dx = -y,得到y = Ce^(-x),其中C为常数。
然后我们利用常数变易法,假设原方程的特解形式为y = u(x)e^(-x),其中u(x)是待定函数。
将y代入原方程得到 (u'e^(-x) - u)e^(-x) = 3e^(-x),化简可得 u' = 3,解这个常微分方程得到u(x) = 3x + C1,其中C1为常数。
因此,原方程的通解为 y = ce^(-x) + (3x + C1)e^(-x),其中c和C1为任意常数。
常微分方程第三版课后答案
3t15t=e ( e +c)5=c e 3t +15e 2t 是原方程的解ds 13. =-s cost + sin2tdt 2cos tdt 13dt解:s=e ( sin2t e dt c )=esint( sin t coste sin t dt c) sin tsint sint= e( sin tee c )常微分方程 习题 2.2求下列方程的解1. dy = y sin x dx解: y=e ( sinxe dx c)x1 x=e x [- e x (sinx cos x )+c]= ce sint sint 1 是原方程的解。
4.dy xy e x x n,n 为常数. dx n解:原方程可化为:dy xy e x x n dx n方程的解。
=c e(sinx cos x )是原yendxx x ( e x x e n n dx n xdx c)2.dx+3x=e 2tnxx (ec)dt 解:原方程可化为:dx=-3x+edt是原方程的解 .所以:3dtx=ee2te 3dt5.dy +1 22x y 1=0 dx x 2dt c)ds23P(x) ,Q(x) (x 1)3 x1P(x)dxee=(x+1) 2((x 21) c)即: 2y=c(x+21+)(x+14) 为方程的通解。
8.d dy x =x y y 33dx x+y 1 2 解: xy 2dy y yP(y)dy P(y)dy( e Q(y)dy c) =y( 1*y 2dy c)y3= y cy23即 x=y +cy 是方程的通解 ,且 y=0也是方程的解。
2解:原方程可化为:dy dx1x 22xy 1x7.dy 2y (x 1)3dx x 1 解:dy 2y(x 1)3 dx x 1 (x 1)2(ln x 2e方程的通解为:ln x 2 1( e x dx c)1= x 2(1 ce x )P(x)dx P(x)dxy=e ( e Q(x)dx c) =(x+1)(=(x+1)((x 11)2 *(x+1)3dx+c) (x+1)dx+c) 是原方程的解.x=edx c )2则P(y)=y 1,Q(y) y 2方程的通解9. dy ay x 1,a 为常数 dx x x解:(P x) a ,Q(x) x 1xP(x )dxeedx方程的通解为:y=(x)dx P (x)dx(e Q(x)dx=xa(1 x+1dx+c)x a时,x 方程的通解为11.dy xy x 3y 3 dx 解:dy xyx 3y 3dx 两边除以3y c)d 3y xy 2 x 3 ydxdy2( xy 2 x 3)y=x+ln/x/+c当 y=cx+xln/x/-1当 a 1时, 方程 的通解为a 0,1时,方程的通解为y=cxa x 1 +-1- a adx 令y 2 z dz 2( xz x 3) dx P(x) 2x,Q(x) 2x 3 epx dx e2xdxe x 2 方程的通解为:z= e dx( e dxQ(x)dx c)10.x d d x y y x 3解:d dy x 1x y x 3P(x) 1,Q(x) x =e =xx(e x (2x 3)dx c) 22ce x1故方程的通解为y :2(x 2 ce x 1) 1,且y 0也是方程的解。
常微分方程练习试卷及答案
常微分方程练习试卷及答案常微分方程练试卷一、填空题。
1.方程d2x/dt2+1=是二阶非线性微分方程。
2.方程xdy/ydx=f(xy)经变换ln|x|=g(xy)可以化为变量分离方程。
3.微分方程d3y/dx3-y2-x=0满足条件y(0)=1,y'(0)=2的解有一个。
4.设常系数方程y''+αy'+βy=γex的一个特解y(x)=e-x+e2x,则此方程的系数α=-1,β=2,γ=1.5.朗斯基行列式W(t)≠0是函数组x1(t),x2(t)。
xn(t)在[a,b]上线性无关的条件。
6.方程xydx+(2x2+3y2-20)dy=0的只与y有关的积分因子为1/y3.7.已知X'=A(t)X的基解矩阵为Φ(t),则A(t)=Φ(t)-1dΦ(t)/dt。
8.方程组x'=[2,5;1,0]x的基解矩阵为[2e^(5t),-5e^(5t);e^(5t),1]。
9.可用变换将伯努利方程y'+p(x)y=q(x)化为线性方程。
10.方程y''-y'+2y=2e^x的通解为y(x)=C1e^x+C2e^2x+e^x。
11.方程y'''+2y''+5y'+y=1和初始条件y(0)=y'(0)=y''(0)=0的唯一解为y(x)=e^-x/2[sin(5^(1/2)x/2)-cos(5^(1/2)x/2)]。
12.三阶常系数齐线性方程y'''-2y''+y=0的特征根是1,1,-1.二、计算题1.设曲线方程为y(x)=kx/(1-k^2),则曲线上任一点处的斜率为y'(x)=k/(1-k^2),切点为(0,0),切线方程为y=kx,点(1,0)的连线斜率为-1/k,因此k=-1,曲线方程为y=-x/(1+x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:齐次方程 的特征方程为
解之得, 。所以齐次方程的通解为
因为 是非齐次方程的两个解,有解的性质可得,
是对应齐次方程的解,也就是说存在适当的常数 使得
=
从而
2.证明:已知二阶非齐次方程 对应齐次方程的一个非零解 ,则该方程可以求得通解。
证明:对于二阶线性方程 ,经过变换 ,得到
再作变换 ,即
这是一个以 为未知函数的一阶线性非齐次方程,容易求出它的通解为
再积分
则该方程的解可表示为
那么齐次方程的解为:
然后利用常数变易法可以求得非齐次方程的一个特解
那么所求方程的通解为
即证该方程可以求得通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求 的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为 ,然后将常数 变易为 的待定函数 ,令 ,微分之,得到
,将上述两式代入方程中,得到
常微分方程习题及解答
————————————————————————————————作者:
———————————————————————————————— 日期:
ﻩ
常微分方程习题及解答
一、问答题:
1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?
答:微分方程就是联系着自变量,未知函数及其导数的关系式。常微分方程,自变量的个数只有一个。偏微分方程,自变量的个数为两个或两个以上。常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
答:设常系数方程组 的基解为 , 的基解为 ,由于两个常系数线性方程组有相同的基解矩阵,根据的解的性质知 ,则可得 , 为非奇异 的常数矩阵。
5.写出线性微分方程组的皮卡逐次逼近序列。
二、求下列方程(或方程组)的通解(或特解):
1.
解:方程可化为 ,当 时,
,是伯努利方程。
其中 。令 ,方程可化为,则Βιβλιοθήκη 将 代入上面的式子,可得 或者
也是方程的解。
2.
解:令 ,则原方程可化为
对 求导,可得 ,
则
那么: 或者
当 时,则
当 时,则 ,那么 ,可得 ,其中 是任意常数。
3.
解:方法一:方程两端同时乘以 ,转化为欧拉方程 。
它的特征方程 ,特征根为0,0,1.
方程的基本解组为 故其通解为
方法二:令 ,将方程转化为一阶线性方程 ,解之得 。
即
积分后得到 进而得到方程的通解
3.高阶线性微分方程和线性方程组之间的联系如何?
答: 阶线性微分方程的初值问题
其中 是区间 上的已知连续函数, , 是已知常数。它可以化为线性微分方程组的初值问题
但是需要指出的是每一个 阶线性微分方程可化为 个一阶线性微分方程构成的方程组,反之却不成立。
4.若常系数线性方程组 和 有相同的基本解矩阵,则 与 有什么关系?
即有 ,积分得 ,再积分得其通解为
4.
解:原方程可写成 ,
方程的左边可写成
则 积分可得,
那么
因为 ,所以 ,则
利用常数变易法可求得方程的解为:
5.
解:特征方程为
可得特征值为 。
对应于特征值 的特征向量为 ,
对应于特征值 的特征向量为 ,
对应于特征值 的特征向量为 。
令 ,可得方程组的基解为 。
三、证明题