沪科版九年级数学上册知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)性质:两个相似三角形中,对应角相等、对应边成比例。
3)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。
如△ABC与△DEF相似,记作△ABC∽△DEF。相似比为k。
4)判定:①定义法:对应角相等,对应边成比例的两个三角形相似。
②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。
三.平行线分线段成比例定理
1.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.
2.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. (即利用比例式证平行线)
3.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.
2.合比性质: (分子加(减)分母,分母不变)
3.等比性质:(分子分母分别相加,比值不变.)
如果 ,那么 .
二.黄金分割
1)定义:在线段AB上,点C把线段AB分成两条线段AC和BC(AC>BC),如果 ,即AC2=AB×BC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。其中 ≈0.618 。
(2)余弦值随着角度的增大(或减小)而减小(或增大)
(3)正切值随着角度的增大(或减小)而增大(或减小)
②位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)。
③每对位似对应点与位似中心共线,不经过位似中心的对应线段平行。
锐角三角函数的概念
1、如图,在△ABC中,∠C=90°
①锐角A的对边与斜边的比叫做∠A的正弦,记为sinA,即
②锐角A的邻边与斜边的比叫做∠A的余弦,记为cosA,即
③锐角A的对边与邻边的比叫做∠A的正切,记为tanA,即
2、锐角三角函数的概念
锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数
3、一些特殊角的三角函数值
三角函数

30°
45°
60°
90°
sinα
0
1
cosα
1
0
tanα
0
1
不存在
4、锐角三角函数的增减性
当角度在0°~90°之间变化时,
(1)正弦值随着角度的增大(或减小)而增大(或减小)
4.平行线等分线段定理:三条平行线截两条直线,如果在一条直线上截得的线段相等,难么在另一条直线上截得的线段也相等。
四.三角形一边的平行线性质定理
1定理:平行于三角形一边的直线截其他两边所得的线段对应成比例。
2三角形一边的平行线性质定理推论
平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.
沪科版九年级数学上册知识点总结
二次函数基本知识
一.二次函数 的性质
1. 当 时,抛物线开口向上,对称轴为 ,顶点坐标为 .
当 时, 随 的增大而减小;当 时, 随 的增大而增大;当 时, 有最小值 .
2. 当 时,抛物线开口向下,对称轴为 ,顶点坐标为 .当 时, 随 的增大而增大;当 时, 随 的增大而减小;当 时, 有最大值 .
⑵ 当 时,抛物线与 轴的交点为坐标原点,即抛物线与 轴交点的纵坐标为 ;
⑶ 当 时,抛物线与 轴的交点在 轴下方,即抛物线与 轴交点的纵坐标为负.
总结起来, 决定了抛物线与 轴交点的位置.
总之,只要 都确定,那么这条抛物线就是唯一确定的.
相似三角形基本知识
一.比例性质
1.基本性质: (两外项的积等于两内项积)
②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比).
③相似三角形对应面积的比等于相似比的平方.
2、相似的应用:位似
1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
2)性质:①位似图形首先是相似图形,所以它具有相似图形的一切性质。
4.三角形一边的平行线的判定定理
三角形一边平行线判定定理 如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.
三角形一边的平行线判定定理推论 如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
5.平行线分线段成比例定理
1.平行线分线段成比例定理:
两条直线被三条平行的直线所截,截得的对应线段成比例.
2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等.
五.相似三角形
1、相似三角形
1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
三角形相似的判定定理:
判定定理1::两角对应相等,两三角形相似.(此定理用的最多)
判定Байду номын сангаас理2:两边对应成比例且夹角相等,两三角形相似.
判定定理3::三边对应成比例,两三角形相似.
直角三角形相似判定定理:.斜边与一条直角边对应成比例的两直角三角形相似。
相似三角形的性质
①相似三角形对应角相等、对应边成比例.
二.二次函数解析式的表示方法
1. 一般式: ( , , 为常数, );
2. 顶点式: ( , , 为常数, );
3. 两根式: ( , , 是抛物线与 轴两交点的横坐标).
4. 一次项系数
的符号的判定:对称轴 在 轴左边则 ,在 轴的右侧则 ,概括的说就是“左同右异”
5. 常数项
⑴ 当 时,抛物线与 轴的交点在 轴上方,即抛物线与 轴交点的纵坐标为正;
相关文档
最新文档