斐波那契数列

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斐波那契数列算法分析

斐波那契数列算法分析

背景:假定你有一雄一雌一对刚出生的兔子,它们在长到一个月大小时开始交配,在第二月结束时,雌兔子产下另一对兔子,过了一个月后它们也开始繁殖,如此这般持续下去。每只雌兔在开始繁殖时每月都产下一对兔子,假定没有兔子死亡,在一年后总共会有多少对兔子?

在一月底,最初的一对兔子交配,但是还只有1对兔子;在二月底,雌兔产下一对兔子,共有2对兔子;在三月底,最老的雌兔产下第二对兔子,共有3对兔子;在四月底,最老的雌兔产下第三对兔子,两个月前生的雌兔产下一对兔子,共有5对兔子;……如此这般计算下去,兔子对数分别是:1, 1, 2, 3, 5, 8, 13, 21, 34, 55,89, 144, ...看出规律了吗?从第3个数目开始,每个数目都是前面两个数目之和。这就是著名的斐波那契(Fibonacci)数列。有趣问题:

1,有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?

答:这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种方法……所以,1,2,3,5,8,13……登上十级,有89种。

2,数列中相邻两项的前项比后项的极限是多少,就是问,当n趋于无穷大时,F(n)/F(n+1)的极限是多少?

答:这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是所谓的黄金分割点,也是代表大自然的和谐的一个数字。

数学表示:

Fibonacci数列的数学表达式就是:

F(n) = F(n-1) + F(n-2)

F(1) = 1

F(2) = 1

递归程序1:

Fibonacci数列可以用很直观的二叉递归程序来写,用C++语言的描述如下:

long fib1(int n)

{

if (n <= 2)

{

return 1;

}

else

{

return fib1(n-1) + fib1(n-2);

}

}

看上去程序的递归使用很恰当,可是在用VC2005的环境下测试n=37的时候用了大约3s,而n=45的时候基本下楼打完饭也看不到结果……显然这种递归的效率太低了!!

递归效率分析:

例如,用下面一个测试函数:

long fib1(int n, int* arr)

{

arr[n]++;

if (n <= 2)

{

return 1;

}

else

{

return fib1(n-1, arr) + fib1(n-2, arr);

}

}

这时,可以得到每个fib(i)被计算的次数:

fib(10) = 1 fib(9) = 1 fib(8) = 2 fib(7) = 3

fib(6) = 5 fib(5) = 8 fib(4) = 13 fib(3) = 21

fib(2) = 34 fib(1) = 55 fib(0) = 34

可见,计算次数呈反向的Fibonacci数列,这显然造成了大量重复计算。

我们令T(N)为函数fib(n)的运行时间,当N>=2的时候我们分析可知:

T(N) = T(N-1) + T(N-2) + 2

而fib(n) = fib(n-1) + fib(n-2),所以有T(N) >= fib(n),归纳法证明可得:

fib(N) < (5/3)^N

当N>4时,fib(N)>= (3/2)^N

标准写法:

显然这个O((3/2)^N)是以指数增长的算法,基本上是最坏的情况。

其实,这违反了递归的一个规则:合成效益法则。

合成效益法则(Compound interest rule):在求解一个问题的同一实例的时候,切勿在不同的递归调用中做重复性的工作。

所以在上面的代码中调用fib(N-1)的时候实际上同时计算了fib(N-2)。这种小的重复计算在递归过程中就会产生巨大的运行时间。

递归程序2:

用一叉递归程序就可以得到近似线性的效率,用C++语言的描述如下:

long fib(int n, long a, long b, int count)

{

if (count == n)

return b;

return fib(n, b, a+b, ++count);

}

long fib2(int n)

{

return fib(n, 0, 1, 1);

}

这种方法虽然是递归了,但是并不直观,而且效率上相比下面的迭代循环并没有优势。

迭代解法:

Fibonacci数列用迭代程序来写也很容易,用C++语言的描述如下:

//也可以用数组将每次计算的f(n)存储下来,用来下次计算用(空间换时间)

long fib3 (int n)

{

long x = 0, y = 1;

for (int j = 1; j < n; j++)

{

y = x + y;

x = y - x;

}

return y;

}

这时程序的效率显然为O(N),N = 45的时候<1s就能得到结果。

矩阵乘法:

我们将数列写成:

Fibonacci[0] = 0,Fibonacci[1] = 1

Fibonacci[n] = Fibonacci[n-1] + Fibonacci[n-2] (n >= 2)

可以将它写成矩阵乘法形式:

将右边连续的展开就得到:

相关文档
最新文档