MATLAB实验报告-遗传算法解最短路径以及函数最小值问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硕士生考查课程考试试卷
考试科目: MATLAB教程
考生姓名:考生学号:
学院:专业:
考生成绩:
任课老师 (签名) 考试日期:20 年月日午时至时
《MATLAB 教程》试题:
A 、利用MATLA
B 设计遗传算法程序,寻找下图11个端点的最短路径,其中没有连接的端点表示没有路径。要求设计遗传算法对该问题求解。
a
d e
h
k
B 、设计遗传算法求解f (x)极小值,具体表达式如下:
3
21231(,,)5.12 5.12,1,2,3
i i i f x x x x x i =⎧=⎪⎨⎪-≤≤=⎩
∑ 要求必须使用m 函数方式设计程序。
C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河?
D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。
以上四题任选一题进行实验,并写出实验报告。
选择题目: A 一、问题分析(10分)
1
4
10
11
如图如示,将节点编号,依次为1.2.3.4.5.6.7.8.9.10.11,由图论知识,则可写出其带权邻接矩阵为:
0 2 8 1 500 500 500 500 500 500 500 2 0 6 500 1 500 500 500 500 500 500 8 6 0 7 500 1 500 500 500 500 500 1 500 7 0 500 500 9 500 500 500 500 500 1 500 500 0 3 500 2 500 500 500 500 500 1 500 3 0 4 500 6 500 500 500 500 500 9 500 4 0 500 500 1 500 500 500 500 500 2 500 500 0 7 500 9 500 500 500 500 500 6 500 7 0 1 2 500 500 500 500 500 500 1 500 1 0 4 500 500 500 500 500 500 500 9 2 4 0 注:为避免计算时无穷大数吃掉小数,此处为令inf=500。
问题要求求出任意两点间的最短路径,Floyd 算法采用的是在两点间尝试插入顶点,比较距离长短的方法。我思考后认为,用遗传算法很难找到一个可以统一表示最短路径的函数,但是可以对每一对点分别计算,然后加入for 循环,可将相互之间的所有情况解出。观察本题可发现,所有节点都是可双向行走,则可只计算i 到j 的路径与距离,然后将矩阵按主对角线翻折即可得到全部数据。 二、实验原理与数学模型(20分)
实现原理为遗传算法原理:
按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使得适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。
数学模型如下: 设图G 由非空点集合12{,...}n V V V V = 和边集合12{,...}m E e e e = 组成,其中
121221(,)e ,P ,)(P ,P ),i i i i i i i i e P P E P =∈≠且若(则G 为一个有向图; 又设i e 的值为
i a ,12{,...},m A a a a = 故G 可表示为一个三元组{,,}G P E A =
则求最短路径的数学模型可以描述为:
1
min *..
n
i i
i i i A E s t A A E E
=⎧
⎪⎨⎪∈∈⎩∑ 实验具体:
第一:编码与初始化
因采用自然编码,且产生的编码不能重复,于是我采用了randperm 函数产生不重复的随机自然数。因解题方法是使用的是计算每一对点,则我们编码时将第一个节点单独放入,合并成完整编码。
因为节点有11个,可采用一个1行11列的矩阵储存数据,同时,由于编号为数字,可直接使用数字编码表示路径的染色体。具体如下:
采用等长可变染色体的方式,例如由2到9的路径,染色体编码可能为(2,5,1,8,4,6,9,3,10,7,11),超过9之后的编码,用来进行算子的运算,不具备实际意义。
第二:计算适应度,因取最短路径值,即最小值,常用方法为C-F(x)或C/F(x)(C 为一常数),此处采用前一种方式。于是,可进一步计算相对适应度。
第三:选择与复制
采用轮盘赌算法,产生一个随机值,比较它与累计相对适应度的关系,从而选择出优良个体进入下一代。
第四:交叉。
因编码是不重复的数字,所以采用传统的交叉方法,即上一行与下一行对位交叉,会产生无效路径,于是,采用了不同的交叉方法,具体如下:
(1)在表示路径的染色体Tx 和Ty 中,随机选取两个基因座(不能为起点基因座)i 和j, 即将i 个基因座和第j 个基因座之间的各个基因座定义为交叉域,并将交叉的内容分别记忆为temp1和temp2。
(2)根据交叉区域中的映射关系,在个体Tx 中找出所有与temp2相同的元素,在个体Ty 中找出所有与temp1相同的元素,全部置为0。
(3)将个体Tx 、Ty 进行循环左移,遇到0就删除,直到编码串中交叉区域的左端不再有0:然后将所有空位集中到交叉区域,而将交叉区域内原有的基因依次向后移动。因0元素可能较多,在程序实现时,我是将非零元素提出,后面再合成。
(4)将temp2插入到Tx 的交叉区域,temp1插入到Ty 的交叉区域。形成新的染色体[1]。
第五:变异
染色体编码为从1到11的无重复编码,所以不能采用一般的生成一个随机数替代的办法。此处采用交换变异法。即随机产生两个数,交换两个节点的顺序。例:[1,2,3,4,5,6,7,8,9,10,11],13,28p K K === 则新染色体编码为:
[1,2,8,4,5,6,7,3,9,10,11]p =
三、实验过程记录(含基本步骤、程序代码及异常情况记录等)(60分)
首先,写程序,修复Bug 。
然后,调试种群数量,遗传代数,交叉概率,变异概率等,不断运行程序,以达到较理想的状态。