等量关系练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级列方程解应用题找等量关系经典练习
姓名:班级:学号:
一、译式法
将题目中的关键性语句翻译成等量关系。
(一)从关键语句中寻找等量关系。
1、关键句是“求和”句型的.
例:先锋水果店运来苹果和梨共720千克,其中苹果是270。运来的梨有多少千克?理解:720千克由两部分组成:一部分是苹果,一部分是梨子。
苹果+梨=720
270+x=720
2、关键句是“相差关系”句型。
关键词:比一个数多几,比一个数少几,
例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元?理解:苹果与橘子相比较,多用了0.6元。
(推荐)直译法列式:从“比”字后面开始列:
橘子+0.6=苹果
2x+0.6=7.4
比较法列式:较大数-较小数=相差数:
苹果-橘子=0.6元
7.4-2x=0.6
3、关键句是“倍数关系”句型。
饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只?理解:公鸡是1
倍数,要求,母鸡是1.5倍数,为2400只。
(推荐)列乘法式:(从“是”字后面开始列)
公鸡×2=母鸡
X×2=2400
列除法式:
母鸡÷公鸡=2倍
2400÷x=2
4、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。(必考考点)一般把“和差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。(1倍数设为x,几倍数设为几x。)
如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。(把较小数设为x,则较大数为x+a。)
例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵?解:设梨树为x棵,则桃树为2x棵。桃树+梨树=2402x+x=240
例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。又知鸭比鹅多27只,鹅和鸭各多少只?
解:设鹅为x只,则鸭为4x只。
鹅+27只=鸭鸭-鹅=27
只
x+27=4x4x-x=27
例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包?解:设下午运了x包,则上午运了x+14包。上午+下午=全天共运的(x+14)
+x=986
(二)没有关键句,找关键字上,寻找等量关系式。“一共”、“还剩”
例:网球场一共有1428个网球,每筒装5个,还剩3个。装了多少筒?理解:网球分成了两个部分,一部分数装了的,另一部分是还剩下没装的。
共有的-装了的=还剩的装了的+剩下的=共有的
1428-5x=35x+3=1428
例:一辆公共汽车上有乘客38人,在火车站有12人下车,又上来一些人,这时车上有乘客54人。在火车站上车的有多少人?
原有人数-下车人数+上车人数=现有人数
38-12+54=54
(三)从常见的数量关系中找等量关系。
这种方法一般适用于工程问题、路程问题、价格问题。
工作效率×工作时间=速度×时间=单价×件数=总价
例:两辆汽车同时从相距的两个车站相向开出,3小时两车相遇,一辆汽车每小时行68km,另一辆汽车每小时行多少千米?
理解:这是典型的相遇问题(行程问题)。
速度和×相遇时间=相遇路程甲速度×时间+乙速度×时间=相遇路程
(68+x)×3=49868×3+3x=498
(四)从公式中找等量关系。
例:一幅画长是宽的2倍,做画框共用了的木条,求这幅画的面积是多少?理解:“做画框共用了的木条”这句话是告诉我们画框的周长。解:设宽为x米,则长为2x米。(根据长宽倍数关系设未知量)
长方形的周长公式:(长+宽)×2=周长
(2X+X)×2=1.8
(五)从隐蔽条件中找等量关系。
例:鸡和兔数量相同,两种动物的腿共有48条,求鸡和兔各有多少只?理解:题中隐藏了两个重要的条件:鸡和2条腿,兔有4条腿。
解:设鸡腿为x只,则兔腿也为x只。
鸡的腿数+兔的腿数=48
2X+4X=48
例:两个相邻的奇数之和是176,这两个数各是多少?理解:题中隐藏的条件:大奇数比小奇数多2。
解:设小奇数为x,则大奇数为x+2.
小奇数+大奇数=176
x+(x+2)=176
二、列表法。
将已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。
例:某工地有一批钢材,原计划每天用6吨,可以用70天,现在每天节约0.4吨,这样一来可以用多少天?
每天用量天数
原计划670
实际6-0.4x
原计划总量=实际总量
6×70=(6-0.4)x
以上所举只是一些比较简单的应用题。如果遇到较复杂的应用题,还要采取灵活的方法,如“抓住不变量解”、“换一种说法解”、“根据题意逐步解”、“逆向思考推导解”等等。这些都要求学生在解决具体问题时,采取不同的方法,以求顺利解答..
第一讲、找到等量关系解决问题(强化训练)
1.某数的2倍比这个数小1,求这个数。
2.某数的3倍比这个数的一半大2,求这个数。
3.六(1)班有16名女生,女生比男生的1.5倍少2人,男生有多少人?
4.甲、乙两组共50人,且甲队人数比乙队人数的2倍少10人,求两队各有多少人?
5.小王买了6斤苹果,他给了老板50元,老板找回他26元,求苹果的单价。
6.李先生买了6支铅笔和2个文具盒,共花了50元,已知铅笔和文具盒的单价之和为15元,求文具盒的单价。