集合课件完整版整理.ppt

合集下载

高中数学集合ppt课件

高中数学集合ppt课件

描述法
总结词
通过描述集合中元素的共同特征来展 示集合的方法。
详细描述
描述法适用于集合元素数量较多,无 法一一列举的情况。例如,集合 B={x|x>2},可以通过描述法表示为 {x|x>2}。
韦恩图法
总结词
通过图形表示集合及其关系的方法。
详细描述
韦恩图法是一种直观的表示方法,通过圆圈、椭圆等图形来 表示不同的集合,以及它们之间的关系。这种方法有助于理 解集合的并、交、差等运算。
总结词
表示两个或多个集合中共有的元 素
详细描述
交集是指两个或多个集合中共有 的元素组成的集合。可以用符号 "∩"表示交集,例如A∩B表示集合 A和集合B的交集。
并集
总结词
表示两个或多个集合中所有的元素, 不考虑重复
详细描述
并集是指两个或多个集合中所有的元 素组成的集合,不考虑重复。可以用 符号"∪"表示并集,例如A∪B表示集 合A和集合B的并集。
互异性
• 互异性是指集合中的元素互不相同,即集合中不会有重复的元素。例如,集合 {1,2,3}中没有重复的元素,而集合{1,2,2,3,3}中有重复的元素2和3。
05
集合的应用
在数学中的应用
1 2
3
集合论
集合论是数学的基础理论之一,它为数学概念提供了一种抽 象的描述方式。通过集合,数学中的许多概念,如函数、数 列、平面几何等都可以被统一地表达和描述。
在经济学中,集合的概念也经常被使 用。例如,可以将一组商品看作一个 集合,然后对这组商品进行分析和比 较。
计算机科学
在计算机科学中,集合的概念被广泛 应用于数据结构和算法的设计。例如 ,数组、链表、栈、队列等数据结构 都是基于集合的。

集合的概念ppt课件

集合的概念ppt课件
反之,如果X是一个奇数,那么X除以2的余数为1,它能表示为 X=2k+1(k∈Z)的形式。所以,X=2k+1(k∈Z)是所有奇 数的一个共同特征,于是奇数集可以表为 {X∈Z|X=2k+1, k∈Z}.
再如,实数集,有限小数和无限循环小数都具有q╱p(p, q∈Z,p≠0)的形式,这些数组成有理数集,我们将它表示为 Q={X∈R|X=q╱p,p,q∈Z,p≠0}. 其中,X=q╱p(p,q∈Z,p≠0)就是所有有理数具有的共同 特征。
例如,
不等式X-7<3的解是X<10,因为满足X<10的实数有无数个, 所以X-7<3的解集无法用列举法表示。但是我们可以利用解集中 元素的共同特征,即:X是实数,且X<10,把解集表示为 {X∈R|X<10}.
又如,整数集Z可以分为奇数集和偶数集。对于每一个X∈Z,如 果它能表示为X=2k+1(k∈Z)的形式,那么X除以2的余数为1, 它是一个奇数;
(1)小于10的所有自然数组成的集合
解:设小于10的所有自然数组成的集合为A,那么A={0,1,2,3, 4,5,6,7,8,9}.
注,由于元素完全相同的两个集合相等,而与列举的顺序无关,因 此一个集合可以有不同的列举方法,故以上例题的集合还可以写成 A={9,8,7,6,5,4,3,2,1,0}.
集合E={X∈Z|X=2k+1,k∈Z}也可表示为E={X| X=2k+1,k∈Z}.
练习
1.判断下列元素的全体是否组成集合,并说明理由: (1)A,B是平面α内的定点,在平面α内与A,B等距离的点; (2)高中学生中的游泳能手. 2.用符号“∈”或“∉”填空: 0_N; -3_N; 0.5_Z; √2_Z; 1╱3_Q; π_R.

集合课件ppt课件

集合课件ppt课件

函数与映射
集合在函数和映射的概念中起着关键 作用。函数可以看作是一种特殊的集 合关系,其中每个输入元素都与输出 元素相关联。
在计算机科学中的应用
数据结构
在计算机科学中,集合常被用作实现各种数据结构的基础 ,如哈希表、队列和栈等。集合提供了快速插入、删除和 查找等操作的方法。
算法设计与分析
在Hale Waihona Puke 法设计和分析中,集合用于表示问题实例、状态和转 换等。通过集合运算,我们可以实现各种算法逻辑,如排 序、搜索和图算法等。
统计学与社会学
在统计学和社会学中,集合用于描述人口分布、市场调查和民意调查 等。通过集合运算,我们可以分析数据并得出有意义的结论。
05 集合的扩展知识
无限集
无限集定义
无限集是包含无穷多个元素的集 合,无法完全列举其所有元素。
无穷大与无穷小
无限集中的元素可以按其数量大小 分为无穷大和无穷小,分别表示集 合中元素的数量趋于无穷和趋于零 。
A⊆B。
02
超集定义
如果集合A中的所有元素都是集合B中的元素,并且B中至少有一个元素
不属于A,则称B是A的超集,记作B⊇A。
03
子集与超集的性质
子集和超集之间存在互补关系,即对于任意集合A,存在一个与之对应
的超集A',使得A和A'的并集等于全集。
THANKS FOR WATCHING
感谢您的观看
数据库与信息检索
在数据库和信息检索中,集合用于表示数据记录、查询条 件和结果等。通过集合运算,可以实现高效的数据检索和 管理。
在日常生活中的应用
分类与分组
在日常生活中,集合的概念用于分类和分组事物。例如,将一组物 品分成几组、将人群分为不同年龄段或职业类别等。

集合ppt教学课件.ppt

集合ppt教学课件.ppt
是同一个集合吗?
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
课堂小结
1.集合的定义; 2.集合元素的性质:确定性,互
异性,无序性; 3.数集及有关符号; 4. 集合的表示方法;
5. 集合的分类.。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
33
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
1画轴.画x轴,y轴,z轴,三轴交于点O,使xOy=45 ,
xOz 90 .
Z
y
O
x
34
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(1) 若c ∈ C,问是否有a ∈ A,b ∈ B,使得 c=a+b; (2)对于任意a ∈ A,b ∈ B,是否 一定有a+b ∈ C ?并证明你的结论;
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
• 练习与思考 1、教材P5练习1、2 2、集合{x|y=x+1,x∈R } 、{y|y=x+1} {(x、y)|y=x+1、,x、y∈R} 、{y=x+1}
30
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

1.1.1 集合 课件(共24张PPT) (2024)高一数学湘教版必修第一册

1.1.1 集合  课件(共24张PPT) (2024)高一数学湘教版必修第一册
1.1.1 集合
《三国志》记Βιβλιοθήκη :“布有良马名曰赤兔。”据《三国演义》描述,这匹宝马
后来跟随关羽并大展神威。
思考:下面三句话里的“是”各自的含义是什么?
A.关羽千里走单骑的坐骑是赤兔马
B.赤兔马是红马
C.红马是马
第一个“是”的含义相当于“=”;
第二个和第三个“是”的含义是前者是后者中的一部分,表示“属于”。
{x|x具有性质p}。
二、表示集合的方法
a
b
思考一下:如何用集合表示上图数轴所示的范围呢?
数学中常用的一类集合叫区间;
如图所示,设a, b是两个实数,a < b,所有大于a并且小于b的实数组成的集合
叫作开区间,记作(a, b),实数a, b 分别叫作上述区间的左端点和右端点;
用符号表示就是( a, b )={x ∈ R|a < x < b}。
全体自然数组成的集合叫自然数集,记作N;
全体整数组成的集合叫整数集,记作Z;
全体有理数组成的集合叫有理数集,记作Q;
全体实数组成的集合叫实数集,记作R.
二、表示集合的方法
表示一个集合,就是把它有哪些元素交代清楚。
在生活中,其实会遇到很多类似表示集合元素的方法,你能想到哪些呢?
可以把集合中的元素一一列举出来,比如菜单、花名册等;
(1)一元二次方程x 2 + 1 = 0的全体实根之集;
(2)所有素数之集;
(3)满足条件x + y = 0和xy ≠ 0的所有实数组(x,y)之集;
(4)满足条件x 2 + y 2 = 0和xy ≠ 0的所有实数组(x,y)之集。
答案:(1)和(4)是空集,(2)和(3)是无限集。

集合课件PPt

集合课件PPt

集合的传递性、吸收性、反对称性
传递性
如果A包含B,B包含C,则A包含C。
吸收性
如果A包含B,则A并B等于A。
反对称性
如果A包含B,B包含A,则A等于B。
集合运算的应用
用于解决数学问题中 的分类和合并问题。
用于逻辑推理和证明 中的概念和定理的表 述和证明。
用于处理集合之间的 关系和运算,如交、 并、补等。
集合的表示方法
列举法
将集合的元素一一列举出来,用 大括号{}括起来。例如:{1,2,3}表 示一个包含三个元素的集合。
描述法
通过描述集合中元素的共同特征 来表示集合。例如:{x|x是正方形 }表示所有正方形的集合。
集合的分类
01
02
03
有限集
包含有限个元素的集合。 例如:{1,2,3}是一个有限 集。
无限集
包含无限个元素的集合。 例如:自然数的集合N是 一个无限集。
空集
不包含任何元素的集合。 例如:{}是一个空集。
02 集合运算
交集、并集、补集
交集
由两个集合中共有的元素 组成的集合称为这两个集 合的交集。
并集
由两个或两个以上集合的 所有元素组成的集合称为 这些集合的并集。
补集
在集合A中,不属于A的元 素组成的集合称为A的补 集。
应用
关系在数据库、人工智能和自然语言处理等领域都有广泛的应用。
等价关系与划分
定义
等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。自反性指任何元素都 与自己有这种关系,对称性指如果a与b有这种关系,则b与a也有这种关系,传递性指如 果a与b有这种关系,b与c也有这种关系,则a与c也有这种关系。
证明数学定理

高一数学集合ppt课件.pptx

高一数学集合ppt课件.pptx
第一节 集合
1.1.1 集合的含义与表示
• 1.集合与元素的定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,通常用大写拉丁字母A,B,C等表
示集合,用拉丁小写字母a,b,c等表示集合中的元素。如果a是A中的元素,就表示为a∈A,读作a属于A, 反之a∉A,读作a不属于A * 2.集合的三要素: 1、确定性,集合中的元素是确定的,要么在集合中要么不在,二者必居其一;(判断是否能组成集合的 方法) 2、互异性,集合里相同的元素不允许重复出现,比如{a,a,b,b,c,c}是错误的写法,应该写成{a,b,c}.(警示我 们做题后要检查) 3、无序性,集合里的元素的排列不考虑顺序问题,例如{a,b,c}与{a,c,b}表示同一个集合。(方便定义集合 相等)
• 2.交集的符号语言: A∩B={x|x∈A,且x∈B}
并集、交集的性质
• 集合交换律 A∩B=B∩A A∪B=B∪A • 集合结合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) • 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) • A∩ Ø = Ø ,A∪ Ø = Ø
全集与补集
• 全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集,通常记作U
• 补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A的补集,记作CuA 符号语言:CuA={x|x∈U,且x ∉A}
例5
• 1.设集合U={1,2,3,4,5,6},M={1,3,5},则CuM=______。 • 2.已知全集U={0,1,2},A={x|x-m=0},如果CuA={0,1},则m=______。

高一数学集合ppt课件最新版

高一数学集合ppt课件最新版

05
02
解析
对于A,解方程(x-1)(x+2)=0得到x=1或x=2,所以A={1,-2};对于B,解方程x^2-2x3=0得到x=3或x=-1,所以B={3,-1}。
04
解析
1.5不是自然数,所以1.5∉N;√2是 无理数,所以√2∉Q;π是实数,所以 π∈R。
06
解析
解方程x^2-4=0得到x=2或x=-2,所以 A={2,-2},又B={-2,2},所以A=B。
03
不等式与区间表示法
一元一次不等式解法
03
移项法
将不等式中的常数项移至右侧,使左侧只 含有一个未知数。
系数化为1
将未知数的系数化为1,得到标准形式的 不等式。
求解集
根据不等式的性质,求解出未知数的取值 范围。
一元二次不等式解法
配方法
通过配方将一元二次不等 式转化为完全平方形式, 从而求解。
公式法
解析
(1)因为f(-x)=(-x)^2=x^2=f(x), 所以f(x)=x^2是偶函数;(2)因为 sin(-x)=-sinx=-f(x),所以f(x)=sinx 是奇函数;(3)因为|-x|=|x|=f(x), 所以f(x)=|x|是偶函数。
05
指数函数与对数函数
指数函数性质及应用
指数函数定义及图像特征 指数函数的值域和定义域
练习题与解析
解析
1. 由等差数列求和公式得 $S = frac{n}{2} times (a_1 + a_n)$,其中 $a_1 = 2, a_n = 29, n = 10$(因为 $29 = 2 + (n - 1) times 3$),所以 $S = frac{10}{2} times (2 + 29) = 155$。

集合的含义及表示ppt课件.ppt

集合的含义及表示ppt课件.ppt

思考3:我们用符号“ A B”表示集合A与B的 并集,并读作“A并B”,那么如何用描述法 表示集合A B? A B { x |x A ,或 x B }
思考4:如何用venn图表示 A B ?
A
B
思考5:集合A、B与集合A B的关系如何? A B与B A的关系如何?
AA B BA B ABBA
理论迁移
例1 写出满足 { 1 ,2 } A { 1 ,2 ,3 ,4 }的所有集 合A.
{1,2},{1,2,3},{1,2,4},{1,2,3,4}
例2 已知集合 A{y|y(x1 )2,x0 }, B {y|yx2x 1 ,x R },试确定集合A与 B的关系.
A B
例3 设集合 A {2, a2} ,B{1,2,a},若 A B , 求实数 a 的值. -1或0
1.1.1 集合的含义与表示
第二课时 集合的表示
问题提出
1.集合中的元素有哪些特征?
确定性、无序性、互异性
2.元素与集合有哪几种关系? 属于、不属于
3.用自然语言描述一个集合往往是不简明的, 如“在平面直角坐标系中以原点为圆心,2 为半 径的圆周上的点”组成的集合,那么,我们可以 用什么方式表示集合呢?
称集合A是集合B的真子集.
思考4:如果集合A是集合B的真子集,我们怎 样用符号表示?
AB或 B A
思考5:若集合A是集合B的子集,则集合A一 定是集合B的真子集吗?若集合A是集合B的 真子集,则集合A一定是集合B的子集吗?
知识探究(二)
考察下列集合: (1){x|x是边长相等的直角三角形}; (2){xR|x210} ; (3){xR||x|20}.
思考1:上述三个集合有何共同特点? 集合中没有元素

集合的概念ppt课件

集合的概念ppt课件
04
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质

数学集合课件ppt课件

数学集合课件ppt课件
无限集
具有无限数量元素的集合。例如,自 然数集合N包含无限多的元素,因此N 是一个无限集。
幂集的性质
幂集是原集合所有子集的集合。
对于任何集合A,其幂集记为 P(A),包含了A的所有子集。
幂集的性质表明,一个集合的元 素个数等于其幂集中元素的个数 。因此,一个集合的幂集总是比
原集合大或相等。
04
集合的应用
数学集合课件ppt
目录 Contents
• 集合的基本概念 • 集合的运算 • 集合的性质 • 集合的应用基本概念
集合的定义
总结词
集合是由确定的、不同的元素所组成的总体。
详细描述
集合是数学中一个基本概念,它是由一组确定的、不同的元素所组成。这些元 素可以是数字、字母、图形等,它们被用来描述具有某种特性的事物。
集合中的元素具有互异性,即集合中不会有重复的元素。此外,集合中的元素是 无序的,即集合中元素的排列顺序并不影响集合本身。
02
集合的运算
集合的交集
01
02
03
总结词
表示两个集合中共有的元 素组成的集合
详细描述
设集合A和集合B,它们的 交集记作A∩B,表示同时 属于A和B的元素组成的集 合。
举例
若A={1,2,3,4}, B={3,4,5,6},则 A∩B={3,4}。
在计算机科学中的应用
数据结构与算法
集合在计算机科学中被广泛应用于数据结构和算法的设计 。例如,集合可以用来表示动态数据结构中的元素,如哈 希表和并查集等。
数据库系统
在数据库系统中,集合用来表示数据表中的行或记录,通 过集合操作来实现数据的查询、插入、删除和更新等操作 。
离散概率论与离散随机过程
离散概率论和离散随机过程是计算机科学中研究随机现象 的重要工具,集合在这个领域中也被广泛应用。

集合的概念ppt课件

集合的概念ppt课件

(2) 设x B, 则x是整数,则x Z,且10 x 20. 因此, 用描述法表示为: B { x Z | 10 x 20}
因此,用列举法表示为 B {11, 12, 13, 14, 15, 16, 17, 18, 19}.
学习新知
我们约定, 如果从上下文的关系看, x R, x Z 是明确的, 那么, x R, x Z 可以省略, 只写其元素x.
学习新知
在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?如:
自然数的集合
有理数的集合
不等式的解的集合
到一个定点的距离 等于定长的点的集合
到一条线段的两个端点 距离相等的点的集合
......
学习新知
观察下列实例:
1 1~10以内的所有奇数 2 方程x2-9=0的实数根 3 小于8的素数
集合
设A是一个集合,我们把集合A中,所有具有共同特征P(x)的元素x所组成的
集合表示为:
x A P(x)
我们称这种方法为描述法。
x为该集合的代表元素
P(x)表示该集合中的元素x所具有的性质
学习新知
例如,实数集R 中,有限小数和无限循环小数都具有 q ( p, q Z, p 0) 的 p
形式,这些数组成有理数集,我们将它表示为:
{0}.
(4) b
{a,b,c}.
【总结提升】求解此类问题必须要做到以下两点: ①熟记常见的数集的符号; ②正确理解元素与集合之间的“属于”关系。
总结新知 判断元素与集合关系的两种方法
直接法:
如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否 出现即可,此时应先明确集合是由哪些元素构成的。
总结新知 思考:除字母表示法和自然语言之外,还能用什么方法表示集合?

高一数学集合ppt课件

高一数学集合ppt课件

03
集合的性质
集合的无序性
总结词
集合中的元素无顺序要求,即集合中元素的排列顺序不影响集合本身。
详细描述
在集合中,元素的顺序并不重要,无论元素以何种顺序排列,它们都属于同一个集合。例如,集合 {1,2,3}和集合{3,2,1}表示的是同一个集合。
集合的确定性
总结词
集合中的元素具有明确性,每个元素都属于或者不属于某个集合。
集合的并集
总结词
表示两个集合中所有的元素(不考虑重复)
详细描述
并集是指两个集合中所有的元素组成的集合,记作A∪集
总结词
表示属于某个集合但不属于另一个集 合的元素组成的集合
详细描述
补集是指属于某个集合但不属于另一 个集合的元素组成的集合,记作A-B 。补集的概念对于理解集合之间的关 系非常重要。
是小于5的偶数}。
基础习题2
判断以下两个命题的真假:P1:5 不属于集合A,P2:集合A和集合 B的交集为空集。
基础习题3
已知集合M = {x | x = 3k, k ∈ Z}, N = {x | x = 2k, k ∈ Z},求M和N 的交集。
进阶习题
进阶习题1
已知集合U = {x | x 是小于10的正整数} ,A ⊆ U,B ⊆ U,且A和B的并集等于U ,求A和B的交集。
集合的表示方法
总结词
集合可以用大括号{}、圆括号()、尖 括号<>或方括号[]来表示。
详细描述
在数学中,我们通常用大括号{}、圆括 号()、尖括号<>或方括号[]来表示集 合。例如,集合A可以表示为{a, b, c} 。
集合的分类
总结词
根据元素的特点和性质,集合可以分为有限集、无限集和空 集。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② A={长方形}, B={平行四边形方形};
③ A={x|x2-3x+2=0},
B={1,2}.
课件
练习1:观察下列各组集合,并指明两个
集合的关系
① A=N+ ,B=N;
AB
② A={长方形}, B={平行四边形方形};
③ A={x|x2-3x+2=0},
B={1,2}.
课件
练习1:观察下列各组集合,并指明两个
课件
第一讲 集合的含义及其表示
课件
知识点
1. 1到5正整数; 2. 中国古典四大名著; 3. 高一10班的全体学生; 4. 我校篮球队的全体队员;
课件
1.集合的概念: 我们把研究对象统称为元素.把一些
元素组成的全体叫做集合,简称“集”.
课件
2.分辨集下合列是否能构成集合
高一2班很高的男生 中国很长的河流 接近于0的数
显然这个集合没有元素.我们把这样的 集合叫做空集,记作.
课件
7.重要的数集:
➢ N:自然数集(含0) ➢ N+:正整数集(不含0) ➢ Z:整数集 ➢ Q:有理数集 ➢ R:实数集
课件
例题
• 例题1下列各项中,不可以组成集合的是 ()
• A.所有的正数 • B.等于2的数 • C.接近于0的数 • D.不等于0的偶数
B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
课件
课件
3.集合的表2 示方法: 集合常用大写字母表示 元素常用小写字母表示
描述法、列举法
课件
课件
课件
4.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A.
如果a不是集合A的元素,就说a不属 于集合A,记作aA.
例如:A表示方程x2=1的解. 2A,1∈A.
课件
例4已知集合 A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1. 当a≠0时,=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课件
课堂小结
1.集合的含义(判断集合) 2.集合的表示 3.集合与元素的关系 4.集合元素的性质 5.集合的分类 6.重要数集
集合?
课件
重点练习:元素互异性问题
课件
课件
6.集合的分类:
课件
6.集合的分类: 有限集、无限集
课件
6.集合的分类: 有限集、无限集
问题2:我们看这样一个集合: { x |x2+x+1=0},它有什么特征?
课件
6.集合的分类: 有限集、无限集
问题2:我们看这样一个集合: { x |x2+x+1=0},它有什么特征?
课件
例4已知集合 A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素. 解:当a=0时,x=-1.
课件
例4已知集合 A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1. 当a≠0时,=16-4×4a=0. a=1. 此时x=-2.
课件
判断指定的对象能不能构成集合,关键 在于能否找到一个明确的标准!!!
课件
练习1.下列指定的对象,能构成一个集合
的是
()
①很小的数 ②不超过 30的非负实数
③直角坐标平面的横坐标与纵坐标相等的点
④的近似值 ⑤高一年级优秀的学生
⑥所有无理数 ⑦大于2的整数
⑧正三角形全体
A. ②③④⑥⑦⑧ C. ②③⑥⑦
{a, d},{a, c}, {b, d}, {c, d}, {a,b,c},{a,b,d}, {b,c,d}, {a,d,c} {a,b,c,d},.
课件
讲解:⑴写出集合{a,b}的所有子集; ⑵写出所有{a,b,c}的所有子集; ⑶写出所有{a,b,c,d}的所有子集.
一般地,集合A含有n个元素, 则A的子集共有2n个,A的真子集 共有2n-1个.
课件
讲解: ⑴写出集合{a,b}的所有子集;
⑵写出所有{a,b,c}的所有子集;
⑶写出所有{a,b,c,d}的所有子集.
⑴{a},{b},{a,b},; ⑵{a},{b},{c},{a,b},{a,b,c},
{a,c},{b, c},; ⑶{a},{b},{c},{d},{a, b},{b, c},
课件
讲解:⑴写出集合{a,b}的所有子集; ⑵写出所有{a,b,c}的所有子集; ⑶写出所有{a,b,c,d}的所有子集.
一般地,集合A含有n个元素, 则A的非空子集共有2n-1个,A的非空 真子集共有2n-2个.
课件
题型二 集合的子集个数问题
课件
课件
题型三 利用集合关系求值问题
例题1
课件
课件
集合的关系
① A=N+ ,B=N;
AB
② A={长方形}, B={平行四边形方形}; AB
③ A={x|x2-3x+2=0},
B={1,2}.
课件
练习1:观察下列各组集合,
AB
② A={长方形}, B={平行四边形方形}; AB
③ A={x|x2-3x+2=0},
A表示的是x+y=2上的所有的点; B为空集.
规定:空集是任何集合的子集,空集 是任何非空集合的真子集. B是A的真子集.
课件
题型一集合关系问题
课件
课件
(2)
A
x
/
x
n 2
,
n
Z
B
x/x
n
1 2
,n
Z
课件
讲解: ⑴写出集合{a,b}的所有子集; ⑵写出所有{a,b,c}的所有子集; ⑶写出所有{a,b,c,d}的所有子集.
课件
1.并 集 定义:由所有属于集合A或B的元素组成 的集合,称为集合A与集合B的并集,
B={1,2}.
A=B
课件
示例3:A={1, 2, 7},B={1, 2, 3, 7},
课件
3.真子集 示例3:A={1, 2, 7},B={1, 2, 3, 7},
如果AB,但存在元素x∈B,且 x∈A,称A是B的真子集.
课件
3.真子集 示例3:A={1, 2, 7},B={1, 2, 3, 7},
课件
4.空 集 示例4:考察下列集合,并指出集合中的 元素是什么? A={(x, y)| x+y=2}; B={x| x2+1=0,x∈R}.
A表示的是x+y=2上的所有的点; B为空集.
规定:空集是任何集合的子集,空集 是任何非空集合的真子集.
课件
4.空 集
示例4:考察下列集合,并指出集合中的 元素是什么? A={(x, y)| x+y=2}; B={x| x2+1=0,x∈R}.
课件
课堂小结
课件
第三讲 集合的基本运算
课件
新课
示例:观察下列各组集合 A={1,3,5} B={2,4,6} C={1,2,3,4,5,6}
课件
新课
示例:观察下列各组集合 A={1,3,5} B={2,4,6} C={1,2,3,4,5,6}
集合C是由集合A或属于集合B的 元素组成的,则称C是A与B的并集.
课件
5.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
课件
5.集合元素的性质:
课件
例题
例2若x∈R,则数集{1,x,x2}中元素x 应满足什么条件.
课件
例题
例2x∈R,则数集{1,x,x2}中元素x 应满足什么条件. 解:∵x≠1且x2≠1且x2≠x,
课件
例题
例2若x∈R,则数集{1,x,x2}中元素x 应满足什么条件. 解:∵x≠1且x2≠1且x2≠x, ∴ x≠1且x≠-1且x≠0.
课件
1.子 集 A={1,2,3} B={1,2,3,4,5} C={1,2,7}
这时, 我们说集合A是集合B的子集. (若x A, 则x B, 则A B) 而从B与C来看,显然B不包含C.
课件
示例2: A={ x|x是两边相等的三角形}, B={ x|x是等腰三角形},
课件
2.集合相等 示例2:
课件
1.子 集 一般地,对于两个集合,如果A中
任意一个元素都是B的元素,称集合A 是集合B的子集,记作AB.
BA
课件
1.子 集 一般地,对于两个集合,如果A中
任意一个元素都是B的元素,称集合A 是集合B的子集,记作AB.读作“A包 含于B”或“B包含A”.
BA
课件
1.子 集
一般地,对于两个集合,如果A中 任意一个元素都是B的元素,称集合A 是集合B的子集,记作AB.读作“A包 含于B”或“B包含A”.这时说集合A是集 合B的子集.
A={ x|x是两边相等的三角形}, B={ x|x是等腰三角形}, 有AB,BA,则A=B.
课件
2.集合相等 示例2:
A={ x|x是两边相等的三角形}, B={ x|x是等腰三角形}, 有AB,BA,则A=B.
若AB,BA,则A=B.
课件
练习1:观察下列各组集合,并指明两个 集合的关系 ① A=N+ ,B=N;
课件
第二节 集合之间的关系

课件
新课
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
课件
新课
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
相关文档
最新文档