数学建模中选址问题(Lingo程序)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P94,例选址问题
目录
题目......................................................... 错误!未定义书签。
第一步,旧址基础上只求运量的LP程序......................... 错误!未定义书签。
第二步,旧址基础上选择新址的NLP程序......................... 错误!未定义书签。题目
6个工地的地址(坐标表示,距离单位KM)及水泥用量(单位:吨)如下表,而在P(5,1)及Q(2,7)处有两个临时料场,日储量各有20t,如何安排运输,可使总的吨公里数最小?
新料场应选何处能节约多少吨公里数
第一步,旧址基础上只求运量的LP程序
MODEL:
Title Location Problem;
sets:
demand/1..6/:a,b,d;
supply/1..2/:x,y,e;
link(demand,supply):c;
endsets
data:
!locations for the demand(需求点的位置);
a=,,,,3,;
b=,,,5,,;
!quantities of the demand and supply(供需量);
d=3,5,4,7,6,11; e=20,20;
x,y=5,1,2,7;
enddata
init:
!initial locations for the supply(初始点);
endinit
!Objective function(目标);
[OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) );
!demand constraints(需求约束);
@for(demand(i):[DEMAND_CON] @sum(supply(j):c(i,j)) =d(i););
!supply constraints(供应约束);
@for(supply(i):[SUPPLY_CON] @sum(demand(j):c(j,i)) <=e(i); );
!@for(supply: @free(x);!@free(Y);!);
@for(supply: @bnd,X,; @bnd,Y,; );
END
运行可得到全局最优解
Global optimal solution found.
Objective value:
Total solver iterations: 1
Model Title: Location Problem
Variable Value Reduced Cost
X( 1)
X( 2)
Y( 1)
Y( 2)
E( 1)
E( 2)
第二步,旧址基础上选择新址的NLP程序
!选新址的NLP程序;
MODEL:
Title Location Problem;
sets:
demand/1..6/:a,b,d;
supply/1..2/:x,y,e;
link(demand,supply):c;
endsets
data:
!locations for the demand(需求点的位置);
a=,,,,3,;
b=,,,5,,;
!quantities of the demand and supply(供需量);
d=3,5,4,7,6,11; e=20,20;
enddata
init:
!initial locations for the supply(初始点);
!x,y=5,1,2,7;
endinit
!Objective function(目标);
[OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) );
!demand constraints(需求约束);
@for(demand(i):[DEMAND_CON] @sum(supply(j):c(i,j)) =d(i);); !supply constraints(供应约束);
@for(supply(i):[SUPPLY_CON] @sum(demand(j):c(j,i)) <=e(i); );
!@for(supply: @free(x);!@free(Y);!);
@for(supply: @bnd,X,; @bnd,Y,; );
END
求解结果
只得到局部最优解
Local optimal solution found.
Objective value:
Total solver iterations: 67
Model Title: Location Problem
Variable Value Reduced Cost
X( 1)
X( 2)
Y( 1)
Y( 2)
如果不要初始数据,可能计算时间更长,本例的结果更优:
Local optimal solution found.
Objective value:
Total solver iterations: 29
Model Title: Location Problem
Variable Value Reduced Cost
X( 1)