三角函数的值域与最值(教师版)

合集下载

三角函数的最大值与最小值

三角函数的最大值与最小值

三角函数的最大值与最小值
三角函数是数学中的重要概念,广泛应用于物理、工程、天文、金融等领域。

其中,最大值和最小值是三角函数研究中的重要概念之一,本文将介绍三角函数的最大值和最小值。

正弦函数是最基本的三角函数之一,其定义如下:
$$\sin(x) = \frac{opposite}{hypotenuse}$$
其中,$x$表示角度,$opposite$表示角度对边的长度,$hypotenuse$表示斜边的长度。

在一般情况下,正弦函数的值域为[-1,1],即$\sin(x)\in[-1,1]$。

因此,正弦函数的最小值为-1,最大值为1。

正切函数的定义域为除去$n\pi +\frac{\pi}{2}(n\in Z)$的所有实数,而对应的值域为实数集,即$\tan(x)\in R$。

因此,正切函数没有最大值和最小值。

五、正割函数和余割函数的最大值和最小值
最后,介绍正割函数和余割函数的最大值和最小值。

正割函数和余割函数分别定义如下:
综上所述,正弦函数和余弦函数的最大值和最小值分别为1和-1,而正切函数和余切函数没有最大值和最小值,正割函数和余割函数的最大值和最小值也是1和-1。

这些概念在三角函数的研究中有着重要的应用。

三角函数的值域

三角函数的值域

通 过 变 形 可 得 : f ( x) = 1 a2 + b2 sin (2x + j ) , 所 以 最 大 值 为 1 a2 + b2 = 1 , 即
2
2
2
a2
+ b2
= 1 ①,再利用
f
æp çè 3
ö ÷ø
=
3 可得: - 1 a -
4
4
3b= 4
3
②,通过①②可解得:
4
ìa íîb
= =

4:设函数
f
(x)
=
sin x
+
cos 2x
,若
x
Î
éêë-
p 6
,
p 2
ù úû
,则函数
f
( x) 的最小值是______
思路:同例 4 考虑将解析式中的项统一,cos 2x = 1 - 2sin2 x = 1 - 2 sin x 2 ,进而可将 sin x
作为一个整体,通过换元来求值域。
解: f ( x) = sin x + cos 2x = sin x + 1 - 2 sin x 2
三角函数。观察可得 cos x 次数较低,所以不利于转化,而 sin2 x,cos 2x 均可以用 cos x 进
( ) ( ) 行表示,确定核心项为 cos x ,解析式变形为 y = cos x -
1 - cos2 x
-
2cos2 x - 1
7 +,
4
化简后为
y
=
- cos2
x
+
cos x
+
7 4
=
cos

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下.1 配方分析法如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法.例1求函数y=2cos2x+5sinx-4的值域.解原函数可化为当sinx=1时,y max=1;当sinx=-1时,y min=-9,∴原函数的值域是y∈[-9,1].注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意.“cosx”,再求已知函数的最值例2求下列函数的最值,并求出相应的x值.y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max=3 求反函数法如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.∴原函数的值域是4 应用函数的有界性上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下.解由原式可得(3y-1)sinx+(2y-2)cosx=3-y,则上式即为利用函数的有界性有∴原函数的值域是5 部分分式分析法例5求下列函数的值域:当sinx=-1时,y有极小值,y极小=2;∴原函数的值域是(2)原函数化为部分分式为:∴原函数的值域是6 应用平均值定理求最值例6求函数y=(1+cosx)sinx,x∈[0,π]的最大值.7 换元法例7求函数y=(1+sinx)(1+cosx)的值域.解原函数即为y=1+sinx+cosx+sinxcosx,∴原函数即为8 应用二次函数的判别式求最值9 几何法求函数的最值两点的直线的斜率,在平面直角坐标系中作出点(2,2)和单位圆,则很容易确定y的取值范围.得(k2+1)x2-(4k2-4k)x+4k2-8k+3=0,Δ=(4k2-4k)2-4(k2+1)(4k2-8k+3)=-12k2+32k-12.10 应用函数的单调性。

三角函数的最值与值域

三角函数的最值与值域

返回 4.已知函数f(x)=-sin2x-asinx+b+1的最大值为0,最小值为 -4,若实数a>0,求a,b的值
【解题回顾】上述两题为y=asin2x+bsinx+c型的三角函数. 此类函数求最值,可转化为二次函数y=at2+bt+c在闭区间 [-1,1]上的最值问题解决.
延伸·拓展
返回
5.在Rt△ABC内有一内接正方形,它的一条边在斜边BC 上. (1)设AB=a,∠ABC=θ,求△ABC的面积P与正方形面积Q (2)当θ变化时求P/Q的最小值.
能力·思维·方法
1.已知△ABC中, tan A 2 3 ,求使 y 4 2 2 sin B sin 2 B 取最大值时∠C的大小. 6
【解题回顾】形如y=acos2x+bcosxsinx+csin2x+d(a、b、c、 d为常数)的式子,都能仿照上例变形为形如y=Acos(2x+φ)
若 3+2cosx<0,则x的范围是
2kπ+5π/6<x<2kπ+7π/6,k∈Z ;
若tanx≤1,则x的范围是___来自____________________; Z kπ-π/2<x≤kπ+π/4,k∈ 若sin2x>cos2x,则x的范围是__________________________ kπ+π/4<x<kπ+3π/4,k∈Z 2.函数y=√3sinx+cosx,x∈[-π/6,π6]的值域是( D )
3 (A)[- ,3]
(B)[-2,2]
(C)[0,2] )
(D)[0, 3]
3.函数y=2sinx(sinx+cosx)的最大值为( (A)1+√2 (B)√2-1 (C)2

《三角函数的图象与性质》PPT教学课件(第三课时正、余弦函数的单调性与最值)

《三角函数的图象与性质》PPT教学课件(第三课时正、余弦函数的单调性与最值)

栏目导航
12
(1)B
(2)xx≠-4kπ-43π,k∈Z
(3)x-π4+kπ≤x<π4+kπ,k∈Z
[(1)当-π4<x<0时,-1<tan x
<0,∴ta1n x≤-1;
当0<x<π4时,0<tan x<1,∴ta1n x≥1.
即当x∈-π4,0∪0,π4时,函数y=ta1n x的值域是(-∞,-1) ∪(1,+∞).
[提示] 由正切函数图象可知(1)×,(2)√,(3)×,(4)×. [答案] (1)× (2)√ (3)× (4)×
第五章 三角函数
5.4 三角函数的图象与性质 第4课时 正切函数的性质与图象
2
学习目标
核心素养
1.能画出正切函数的图象.(重点)
1.借助正切函数的图象研究问
2.掌握正切函数的性质.(重点、难点) 题,培养直观想象素养.
3.掌握正切函数的定义域及正切曲线的 2.通过正切函数的性质的应
渐近线.(易错点)
28
栏目导航
(2)函数定义域为 xx≠kπ-π4且x≠kπ+π4,k∈Z , 关于原点对称, 又f(-x)=tan-x-π4+tan-x+π4 =-tanx+π4-tanx-π4 =-f(x), 所以函数f(x)是奇函数.
29
栏目导航
30
正切函数单调性的应用 [探究问题] 1.正切函数y=tan x在其定义域内是否为增函数? 提示:不是.正切函数的图象被直线x=kπ+π2(k∈Z)隔开,所以它的 单调区间只在kπ-π2,kπ+π2(k∈Z)内,而不能说它在定义域内是增函 数.假设x1=π4,x2=54π,x1<x2,但tan x1=tan x2.
用,提升逻辑推理素养.
栏目导航

数学(浙江专用)总复习教师用书:第四章 三角函数、解三角形 第讲 三角函数的图象与性质

数学(浙江专用)总复习教师用书:第四章 三角函数、解三角形 第讲 三角函数的图象与性质

第3讲三角函数的图象与性质最新考纲 1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;2。

理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。

知识梳理1。

用五点法作正弦函数和余弦函数的简图(1)正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),错误!,(π,0),错误!,(2π,0).(2)余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),错误!,(π,-1),错误!,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)函数y=sin x y=cos x y=tan x图象定义域R R{x错误!错误!值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数1。

判断正误(在括号内打“√”或“×")(1)由sin错误!=sin 错误!知,错误!是正弦函数y=sin x(x∈R)的一个周期。

( )(2)余弦函数y=cos x的对称轴是y轴.()(3)正切函数y=tan x在定义域内是增函数.( )(4)已知y=k sin x+1,x∈R,则y的最大值为k+1。

( )(5)y=sin|x|是偶函数。

()解析(1)函数y=sin x的周期是2kπ(k∈Z).(2)余弦函数y=cos x的对称轴有无穷多条,y轴只是其中的一条.(3)正切函数y=tan x在每一个区间错误!(k∈Z)上都是增函数,但在定义域内不是单调函数,故不是增函数。

(4)当k〉0时,y max=k+1;当k<0时,y max=-k+1.答案(1)×(2)×(3)×(4)×(5)√2。

(2015·四川卷)下列函数中,最小正周期为π的奇函数是( )A。

y=sin错误!B。

y=cos错误!C.y=sin 2x+cos 2xD.y=sin x+cos x解析y=sin错误!=cos 2x是最小正周期为π的偶函数;y=cos错误!=-sin 2x是最小正周期为π的奇函数;y=sin 2x+cos 2x=2sin错误!是最小正周期为π的非奇非偶函数;y=sin x+cos x=错误!sin错误!是最小正周期为2π的非奇非偶函数.答案B3。

三角函数的定义域、值域和最值

三角函数的定义域、值域和最值

三角函数的定义域、值域和最值一 知识点精讲:1 三角函数的定义域 (1)r y =αsin 定义域为R. (2)rx =αcos 定义域为R.(3)xy =αtan 定义域为 ⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα. (4)y x =αcot 定义域为{}Z k k ∈≠,|παα.2 三角函数的值域① )0(,sin ≠+=a b x a y 型当0>a 时,],[b a b a y ++-∈ ; 当0<a 时 ],[b a b a y +-+∈ ② c x b x a y ++=sin sin2型此类型的三角函数可以转化成关于sinx 的二次函数形式。

通过配方,结合sinx 的取值范围,得到函数的值域。

x sin 换为x cos 也可以。

③ x b x a y cos sin +=型 利用公式ab x b a x b x a =++=+φφtan ),sin(cos sin 22, 可以转化为一个三角函数的情形。

④x x b x x a y cos sin )cos (sin ++=型利用换元法,设x x t cos sin +=, ]2,2[-∈t ,则212cos sin -=t x x ,转化为关于t 的二次函数222122b at t b t bat y -+=-+=.⑤x x c x b x a y cos sin cos sin 22++=型这是关于x x cos ,sin 的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,22sin cos sin ,22cos 1cos,22cos 1sin22x x x xx xx =+=-=,可转化为p x n x m y ++=2cos 2sin 的形式。

⑥ d x c bx a y ++=sin sin 型 可以分离常数,利用正弦函数的有界性。

⑦bx ax y ++=cos sin 型 可以利用反解的思想方法,把分母乘过去,整理得,a by x y x -=-cos sin ,11,1)sin(22≤+-+-=-ya by ya by x φ, 通过解此不等式可得到y的取值范围。

三角函数的值域与最值-张素云

三角函数的值域与最值-张素云

4) ∴ 1 m 4 ,即 m 的取值范围是 (1, .
点评:第(Ⅱ)问属于恒成立问题,可以先去绝对值,利用参数分离转 化为求最值问题.本小题主要考查三角函数和不等式的基本知识,以及 运用三角公式、三角函数的图象和性质解题的能力. 例 4.扇形 AOB 的半径为 1,中心角为 60 , P Q R S 是扇形的内接矩形, 问 P 在怎样的位置时,矩形 P Q R S 的面积最大,并求出最大值. 分析:引入变量 AOP x ,建立目标函数. 解:连接 OP ,设 AOP x ,则 PS sin x , OS cos x ,

___________________. 4.当 0 x

2
时,函数 f ( x )
1 cos 2 x 8 sin sin 2 x
2
x
的Hale Waihona Puke 小值为 14 ..
5.已知 k<-4,则函数 y=cos2x+k(cosx-1)的最小值是
6. 若 2 , 则 y co s 6 sin 的 最 大 值 与 最 小 值 之 和 为 第 1 页 共 4 页
厉庄高级中学
____2____. 【范例解析】
2011-2012 学年度第一学期
高三数学学科电子教案
例 1.(1)已知 sin x sin y
1 3
,求 sin y cos 2 x 的最大值与最小值.
(2)求函数 y sin x cos x sin x cos x 的最大值. 分析:可化为二次函数求最值问题. 解: (1)由已知得: sin y
【基础练习】 1.函数 y sin x 3 cos x 在区间 [0, ] 上的最小值为

人教版高中数学《三角函数》全部教案

人教版高中数学《三角函数》全部教案

第四章三角函数教材:角的概念的推广目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

过程:一、提出课题:“三角函数”回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。

相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。

二、角的概念的推广1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”2.讲解:“旋转”形成角(P4)突出“旋转”注意:“顶点”“始边”“终边”“始边”往往合于x轴正半轴3.“正角”与“负角”——这是由旋转的方向所决定的。

记法:角α或α∠可以简记成α4.由于用“旋转”定义角之后,角的范围大大地扩大了。

1︒角有正负之分如:α=210︒β=-150︒γ=-660︒2︒角可以任意大实例:体操动作:旋转2周(360︒×2=720︒)3周(360︒×3=1080︒)3︒还有零角一条射线,没有旋转三、关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30︒390︒-330︒是第Ⅰ象限角300︒-60︒是第Ⅳ象限角585︒1180︒是第Ⅲ象限角-2000︒是第Ⅱ象限角等四、关于终边相同的角1.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同2.终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和 390︒=30︒+360︒ )1(=k-330︒=30︒-360︒ )1(-=k 30︒=30︒+0×360︒)0(=k1470︒=30︒+4×360︒ )4(=k-1770︒=30︒-5×360︒ )5(-=k3.所有与α终边相同的角连同α在内可以构成一个集合 {}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 4.例一 (P5 略) 五、小结: 1︒ 角的概念的推广用“旋转”定义角 角的范围的扩大 2︒“象限角”与“终边相同的角” 六、作业: P7 练习1、2、3、4习题1.4 1教材:弧度制目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R 一一对应关系的概念。

三角函数的图象、定义域、最值(值域)、单调性

三角函数的图象、定义域、最值(值域)、单调性
三角函数的图象、定义域、最值(值域)、单调性
[学习要求] 1.能画出 y = sin x , y = cos x , y =tan x 的图象. 2.理解
正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小
值、图象与 x 轴的交点等). 3.理解正切函数在区间
π
π
− ,
2
2
上的性质.
π
π
− <<
2
2
由题意得 y = cos x ·|tan x |=ቐ
的大致图象是(
sin,0 ≤
π
< ,
2
π
−sin, − <
2
所以其图象的大致形状如选项C所示.
< 0,
C )
2. 已知函数 f ( x )= sin x +2| sin x |, x ∈[0,2π],若直线 y = k
与其仅有两个不同的交点,则 k 的取值范围为
, k ∈Z,
2
2
π
π
π
+ ≥ + 2π,
4
2
所以ቐ 2
k ∈Z,
π

π+ ≤ + 2π,
4
2
1
5
解得4 k + ≤ω≤2 k + , k ∈Z.
2
4
1
5
5
又由4 k + - 2+ ≤0, k ∈Z,且2 k + >0, k ∈Z,解得 k =0,
2
4
4
1
5
所以ω∈ , .
2
4
方法总结
A. [-1,1]
令 sin x = t , t ∈[-1,1],
则 y = t 2+ t -1=
1 2

高一上学期期末复习:三角函数的值域和最值问题-【新教材】人教A版(2019)高中数学必修第一册

高一上学期期末复习:三角函数的值域和最值问题-【新教材】人教A版(2019)高中数学必修第一册

专题七 三角函数的值域和最值问题【题型1】 利用y=Asin(ωx+φ)+k 求解1、已知()()sin ,,,22f x x x x R ππϕϕ⎛⎫=++∈∈-⎪⎝⎭的图像过,42π⎛⎫ ⎪⎝⎭点,求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域.2、设函数()sin 2f x x =,()y f x =的图像向左平移8π个单位,再将图像上所有点的横坐标不变纵坐标变为原来3倍得到()y g x =的图像,求()y g x =在[,]124ππ-上的最大值。

【题型2】 分离常量法或利用三角函数的有界性求解3、求3sin 1sin 2x y x +=+的最大值和最小值.4、求函数sin 2sin 1x y x -=-的值域.【题型3】 可化为sinx 或cosx 的二次三项式型5、知4x π≤,求函数()2cos sin f x x x =+的最小值。

【题型4】 可借助判别式处理型6、求函数22tan tan 1tan tan 1x x y x x -+=++的值域.【题型5】 利用换元法求最值7、求函数sin cos sin cos y x x x x =+-;3[,]44x ∈ππ的值域8、求函数()cos 2|sin |f x x x =+的值域.9、求函数(sin 2)(cos 2)y x x =+的最大值和最小值.答案解析1、【解析】由42f π⎛⎫= ⎪⎝⎭,有sin 422ππϕ⎛⎫++= ⎪⎝⎭,得sin 2ϕ=-,而,22ππϕ⎛⎫∈- ⎪⎝⎭,∴()(),sin 3cos 4sin 5sin 44f x x x x x x ππϕθ⎛⎫=-=-+=+=+ ⎪⎝⎭,其中34sin ,cos 55θθ==,故64ππθ<<,由0,2x π⎡⎤∈⎢⎥⎣⎦知,02x πθθ≤+≤+,故()35sin 5sin 5x θθ=≤+≤,即()f x 的值域为[]3,5,2、【解析】函数()sin 2f x x =将()y f x =的图像向左平移8π个单位,可得()sin 2sin 284f x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭;再将图像上所有点的横坐标不变纵坐标变为原来的3倍可得()3sin 24g x x π⎛⎫=+ ⎪⎝⎭ 因为,124x ππ⎡⎤∈-⎢⎥⎣⎦,则32,4124x πππ⎡⎤+∈⎢⎥⎣⎦ 所以当242x ππ+=,即8x π=时取得最大值最大值为()max 3sin 32g x π==, 3、解:3sin 1sin 2x y x +=+=3(sin 2)1653sin 2sin 2x x x ++-=-++. 因为1sin 1x -≤≤,所以sin 1x =时,max 54333y =-=. 当sin 1x =-时,min 53212y =-=--+.4、由题意可得:sin 2sin 1x y x -=-=11sin 1x -- sin [1,1),sin 1[2,0)x x ∈-∴-∈-11[,)sin 12x ∴-∈+∞-3[,)2y ∴∈+∞ 综上所述,函数sin 2sin 1x y x -=-的值域为3[,)2+∞ 5、解:()2cos sin f x x x =+22151sin sin sin 24x x x ⎛⎫=-+=--+ ⎪⎝⎭。

三角函数的值域与最值

三角函数的值域与最值

课题:三角函数的值域与最值学习目标:1(知识目标)掌握几种常见类型三角函数值域的求法2(能力目标)灵活掌握三角函数值域的各种求法3(情感目标)培养学生的应变能力教学重点:几种常见类型三角函数值域的求法教学难点:灵活运用三角函数值域的各种求法教学过程:一 简单三角函数的值域例1 求下列三角函数的值域(1)x y sin =(2)⎥⎦⎤⎢⎣⎡∈=32,6,sin ππx x y小结:求基本三角函数值域,一定要结合三角函数的图像,故切记正、余弦函数的图像。

二 与三角函数有关的复合函数的值域1 )cos(),sin(ϕωϕω+=+=x A y x A y 型函数的值域例2 ⎥⎦⎤⎢⎣⎡∈+=4,0),42sin(2ππx x y例3 求函数],0[,cos sin π∈-=x x x y 的值域小结:对于h x A y ++=)s i n (ϕω的最大值为h A +,最小值为h A +-,若h x A y ++=)sin(ϕω,],[b a x ∈,先由],[b a x ∈求出ϕω+x 的范围,然后结合图像求出,即由内而外逐层求值域2 二次型函数的值域例4.求函数x x y sin 22cos +=在区间⎥⎦⎤⎢⎣⎡-4,4ππ上的值域例5.求函数x x x x y cos sin cos sin ⋅++=的值域练习:求函数)2)(cos 2(sin --=x x y 的值域小结:对于二次型函数,都可通过换元构造二次函数c bt at y ++=2,进而转化为二次函数在某个区间上的值域问题,但一定要注意新元的范围 3 形如d x c bx a y ++=sin sin 或d x c bx a y ++=cos cos 的值域例6 求函数1cos 2cos +=x x y 的值域形如d x c b x a y ++=sin sin 的值域,可解出x sin ,利用正弦函数的有界性求得,也可用分离常数法来求4 形如d x c bx a y ++=cos sin 的值域例7 求函数xx y cos 3sin 1++=的值域小结:形如d x c bx a y ++=cos sin 的函数求值域可转化为x x cos ,sin 的方程c x b x a =+c o s s i n 形式,然后该类方程有界条件122≤+b a c求出y 范围 5 对勾型函数的值域如x cx a y sin sin += 例8 求函数x x y sin 2sin +=。

三角函数的最值

三角函数的最值

1 1.函数 函数y= 的最大值是( 函数 的最大值是( ) 2 + sin x + cos x
2 A、 、 2
作业: 作业
2 2 -1 B、 +1 C、1D、-1、 、 、 2 2
2.已知x ∈ ( − 已知
π π
,
2 2
8 12
);那么函数 那么函数y=sinxcosx的值域是 的值域是____ 那么函数 的值域是
3.函数 函数y=cos2x-3cosx+2的最小值为 ) 的最小值为( 函数 的最小值为 A.2 B.0 C. D.6
r r 4.(2011汕头一模)已知函数 a = (sin x,1), b = (2 cos x, 2 + cos 2 x ), 汕头一模) 汕头一模 (1)求 f ( x ) 的最小正周期 的最小正周期; 求 (2)求函数 f ( x ) 的最大值及取得最大值时自变量的集合 的最大值及取得最大值时自变量的集合. 求函数
结论4 结论 y=asin2x+bcosx+c型的函数 型的函数 特点是含有sinx, cosx,并且其中只有一个是二次, 特点是含有 ,并且其中只有一个是二次, 处理方式是应用sin 处理方式是应用 2x+cos2x=1,使函数式只含有一种 使函数式只含有一种 三角函数,再应用换元法 转化成二次函数来求解。 换元法, 三角函数,再应用换元法,转化成二次函数来求解。
4.二倍角公式 二倍角公式
sin 2α = 2sin α cos α
cos 2α = cos 2 α − sin 2 α = 2 cos 2 α − 1 = 1 − 2 sin 2 α 2 tan α tan 2α = 1 − tan 2 α

第9讲 三角函数性质中范围最值问题(教师版)

第9讲  三角函数性质中范围最值问题(教师版)

第9讲 三角函数中的范围最值问题题型一 与三角函数对称性相关的最值范围问题【例1】若将函数()sin2cos2f x x x =+的图象向左平移ϕ(0ϕ>)个单位,所得的图象关于y 轴对称,则ϕ的最小值是( ) A.4πB.38π C.8πD.58π【答案】C 【玩转跟踪】1、【广州市2020届高三第一学期第一次调研】将函数2sin cos 33y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为 A.12π B. 6π C. 4π D. 3π【答案】B【解析】将函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对应的函数:()2sin 23y x πϕ⎡⎤=++⎢⎥⎣⎦,又其为奇函数,∴2sin 203πϕ⎛⎫+= ⎪⎝⎭, ()22k πZ 3k πϕ+=∈,, k π23πϕ=-,()Z k ∈,又0ϕ>当k 1=时, ϕ的最小值为6π,故选:B2、【河南省2020届高三12月联考】若函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭关于直线x m =(0m <)对称,则m 的最大值为( ) A.4π-B.1112π-C.512π-D.712π-【答案】C【解析】由题意得, ()232m k k Z πππ+=+∈,即()212k m k Z ππ=+∈, 0m <, 1k ∴=-时, m 的最大值为512π-.3、【2020河南省林州市第一中学模拟】定义运算12142334a a a a a a a a =-,将函数()sin (0)cos wxf x w wx=>的图象向左平移23π个单位长度,所得图象对应的函数为偶函数,则w 的最小值是( ) A.14 B. 54 C. 74 D. 34【答案】B4.【2020届湖北省重点中学高三上学期第三次月考】已知函数.(1)若函数)(x f y =的图像关于直线对称,求a 的最小值;(2)若存在使成立,求实数m 的取值范围. 分析:(1)先利用降幂公式进行化简,然后利用辅助角公式将)(x f 化为)32sin(2)(π+=x x f ,最后根据正弦函数的对称性求出对称轴,求出a 的最小值即可; (2) 根据的范围求出320π+x 的范围,再结合正弦函数单调性求出函数f (x 0)的值域,从而可求出m =的取值范围. 答案(1)12π(2)(][)+∞⋃-∞-,12,题型二 与三角函数的单调性相关的最值问题【例2】已知0ω>, ()sin 4f x x πω⎛⎫=+⎪⎝⎭在2ππ⎛⎫⎪⎝⎭,上单调递减,则ω的取值范围是( ) A.15[ 24⎤⎥⎦, B. 13[ 24⎤⎥⎦, C. 102⎛⎫⎪⎝⎭, D. ](0 2, 【答案】A 【玩转跟踪】2()[2sin()sin ]cos 3f x x x x x π=++(0)x a a =>05[0,],12x π∈0()20mf x -=05[0,],12x π∈00021()20()sin(23mf x m f x x π-=⇒==+1、【皖江名校2020届高三12月份大联考】若函数的图象在区间上只有一个极值点,则的取值范围为( )A.B.C. D. 【答案】B【解析】结合题意,函数唯一的极值点只能是,所以有 得。

人教A版必修1第5章三角函数:4.2 第2课时 正弦函数、余弦函数的单调性与最值

人教A版必修1第5章三角函数:4.2 第2课时 正弦函数、余弦函数的单调性与最值

人教A版必修1第5章三角函数:4.2 第2课时正弦函数、余弦函数的单调性与最值(同步讲义)(教师独具内容)课程标准:1.掌握正弦函数、余弦函数的最大值与最小值,并会求简单三角函数的值域和最值.2.掌握正弦函数、余弦函数的单调性,并能利用单调性比较大小.3.会求函数y=A sin(ωx+φ)及y=A cos(ωx+φ)的单调区间.教学重点:正弦函数、余弦函数的单调性和最值.教学难点:利用正弦函数、余弦函数的周期性来研究它们的单调性及最值.【知识导学】知识点正弦函数、余弦函数的性质【新知拓展】(1)正弦函数、余弦函数有单调区间,但都不是定义域上的单调函数,即正弦函数、余弦函数在整个定义域内不单调.(2)正弦曲线(余弦曲线)的对称轴一定过正弦曲线(余弦曲线)的最高点或最低点,即此时的正弦值(余弦值)取最大值或最小值.(3)正弦曲线(余弦曲线)的对称中心一定是正弦曲线(余弦曲线)与x 轴的交点,即此时的正弦值(余弦值)为0.1.判一判(正确的打“√”,错误的打“×”)(1)正弦函数、余弦函数在定义域内都是单调函数.( )(2)存在x ∈R 满足sin x = 2.( )(3)在区间[0,2π]上,函数y =cos x 仅当x =0时取得最大值1.( )答案 (1)× (2)× (3)×2.做一做(1)在下列区间中,函数y =sin x 单调递增的是( )A .[0,π] B.⎣⎡⎦⎤π2,3π2C.⎣⎡⎦⎤-π2,π2 D .[π,2π](2)函数y =2-sin x 的最大值及取最大值时x 的值为( )A .y max =3,x =π2B.y max =1,x =π2+2k π(k ∈Z ) C .y max =3,x =-π2+2k π(k ∈Z ) D .y max =3,x =π2+2k π(k ∈Z ) (3)函数y =13sin ⎝⎛⎭⎫π6-x (x ∈[0,π])的单调递增区间为________. 答案 (1)C (2)C (3)⎣⎡⎦⎤2π3,π题型一 正弦函数、余弦函数的单调区间【例1】求下列函数的单调递增区间:(1)y =1-sin x 2;(2)y =sin ⎝⎛⎭⎫-2x +π3; (3)y =log 12sin ⎝⎛⎭⎫2x +π4;(4)y =cos2x . [解] (1)由题意可知函数y =sin x 2的单调递减区间即为y =1-sin x 2的单调递增区间, 由2k π+π2≤x 2≤2k π+3π2(k ∈Z ),得 4k π+π≤x ≤4k π+3π(k ∈Z ),所以函数y =1-sin x 2的单调递增区间为[4k π+π,4k π+3π](k ∈Z ). (2)y =sin ⎝⎛⎭⎫-2x +π3=-sin ⎝⎛⎭⎫2x -π3. 由π2+2k π≤2x -π3≤3π2+2k π(k ∈Z ), 解得5π12+k π≤x ≤11π12+k π(k ∈Z ), 故函数y =sin ⎝⎛⎭⎫-2x +π3的单调递增区间为 ⎣⎡⎦⎤5π12+k π,11π12+k π(k ∈Z ). (3)由对数函数的定义域和复合函数的单调性,可知⎩⎨⎧ sin ⎝⎛⎭⎫2x +π4>0,2k π+π2≤2x +π4≤2k π+3π2(k ∈Z ),解得2k π+π2≤2x +π4<2k π+π(k ∈Z ), 即k π+π8≤x <k π+3π8(k ∈Z ), 故所求单调递增区间为⎣⎡⎭⎫k π+π8,k π+3π8(k ∈Z ). (4)函数y =cos2x 的单调递增区间由下面的不等式确定:2k π-π≤2x ≤2k π,k ∈Z ,∴k π-π2≤x ≤k π,k ∈Z , ∴函数y =cos2x 的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z . 金版点睛求正弦函数、余弦函数单调区间的技巧求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)的函数的单调区间时,若ω为负数,则要先把ω化为正数.当A >0时,把ωx +φ整体放入y =sin x 或y =cos x 的单调增区间内,求得的x 的范围即函数的增区间;整体放入y =sin x 或y =cos x 的单调减区间内,可求得函数的单调减区间.当A <0时,上述方法求出的区间是其单调性相反的区间.最后,需将最终结果写成区间形式.【跟踪训练1】求下列函数的单调区间:(1)y =cos ⎝⎛⎭⎫x 2+π3;(2)y =3sin ⎝⎛⎭⎫π4-2x . 解 (1)当2k π-π≤x 2+π3≤2k π,k ∈Z 时,函数单调递增,故函数的单调递增区间是⎣⎡⎦⎤4k π-8π3,4k π-2π3,k ∈Z . 当2k π≤x 2+π3≤2k π+π,k ∈Z 时, 函数单调递减,故函数的单调递减区间是⎣⎡⎦⎤4k π-2π3,4k π+4π3,k ∈Z . (2)y =3sin ⎝⎛⎭⎫π4-2x =-3sin ⎝⎛⎭⎫2x -π4, 令z =2x -π4,则y =-3sin z . 要取y =-3sin z 的增区间即取y =sin z 的减区间,即2k π+π2≤2x -π4≤2k π+3π2(k ∈Z ),∴k π+3π8≤x ≤k π+7π8(k ∈Z ), ∴函数y =3sin ⎝⎛⎭⎫π4-2x 的单调递增区间为⎣⎡⎦⎤k π+3π8,k π+7π8(k ∈Z ). 要取y =-3sin z 的减区间即取y =sin z 的增区间,即2k π-π2≤2x -π4≤2k π+π2(k ∈Z ), ∴k π-π8≤x ≤k π+3π8(k ∈Z ). ∴函数y =3sin ⎝⎛⎭⎫π4-2x 的单调递减区间为⎣⎡⎦⎤k π-π8,k π+3π8(k ∈Z ). 题型二 比较三角函数值的大小【例2】比较下列各组数的大小:(1)cos ⎝⎛⎭⎫-23π5与cos ⎝⎛⎭⎫-17π4;(2)sin194°与cos160°; (3)sin1,sin2,sin3.[解] (1)cos ⎝⎛⎭⎫-23π5=cos ⎝⎛⎭⎫-6π+7π5=cos 7π5, cos ⎝⎛⎭⎫-17π4=cos ⎝⎛⎭⎫-6π+7π4=cos 7π4, ∵π<7π5<7π4<2π,∴cos 7π5<cos 7π4, 即cos ⎝⎛⎭⎫-23π5<cos ⎝⎛⎭⎫-17π4. (2)sin194°=sin(180°+14°)=-sin14°,cos160°=cos(180°-20°)=-cos20°=-sin70°.∵0°<14°<70°<90°,∴sin14°<sin70°.从而-sin14°>-sin70°,即sin194°>cos160°.(3)∵1<π2<2<3<π, 又sin(π-2)=sin2,sin(π-3)=sin3.0<π-3<1<π-2<π2, 而y =sin x 在⎝⎛⎭⎫0,π2上单调递增, ∴sin(π-3)<sin1<sin(π-2),即sin3<sin1<sin2.金版点睛比较三角函数值大小的方法(1)比较两个同名三角函数值的大小,先利用诱导公式把两个角化为同一单调区间内的角,再利用函数的单调性比较.(2)比较两个不同名的三角函数值的大小,一般应先化为同名的三角函数,后面步骤同上.【跟踪训练2】(1)两个数cos ⎝⎛⎭⎫-7π8和cos 7π6的大小关系是________; (2)按由小到大的顺序排列下列数:cos 32,sin 110,-cos 74.写在横线上为________________. 答案 (1)cos ⎝⎛⎭⎫-7π8<cos 7π6(2)cos 32<sin 110<-cos 74解析 (1)cos ⎝⎛⎭⎫-7π8=cos 7π8=cos ⎝⎛⎭⎫π-π8=-cos π8,而cos 7π6=-cos π6,∵0<π8<π6<π2,∴cos π8>cos π6,∴-cos π8<-cos π6,∴cos ⎝⎛⎭⎫-7π8<cos 7π6.(2)sin 110=cos ⎝⎛⎭⎫π2-110≈cos1.47,-cos 74=cos ⎝⎛⎭⎫π-74≈cos1.39,而y =cos x 在[0,π]上单调递减,∴cos1.5<cos ⎝⎛⎭⎫π2-110<cos ⎝⎛⎭⎫π-74,即cos 32<sin 110<-cos 74.题型三 正弦函数、余弦函数的最值问题【例3】求下列函数的值域:(1)y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2;(2)y =cos 2x -4cos x +5.[解] (1)由y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2,可得x +π6∈⎣⎡⎦⎤π6,2π3,函数y =cos x 在区间⎣⎡⎦⎤π6,2π3上单调递减,所以函数的值域为⎣⎡⎦⎤-12,32. (2)令t =cos x ,则-1≤t ≤1.∴y =t 2-4t +5=(t -2)2+1,∴当t =-1时,y 取得最大值10,当t =1时,y 取得最小值2.所以y =cos 2x -4cos x +5的值域为[2,10].[条件探究] (1)将本例(1)改为y =cos ⎝⎛⎭⎫x -π6,x ∈⎣⎡⎦⎤0,π2,再求值域; (2)若将本例(1)改为y =sin ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2,值域又如何? 解 (1)y =cos ⎝⎛⎭⎫x -π6, ∵x ∈⎣⎡⎦⎤0,π2,∴x -π6∈⎣⎡⎦⎤-π6,π3, 由余弦函数的图象及其单调性可知cos ⎝⎛⎭⎫x -π6∈⎣⎡⎦⎤12,1. ∴所求函数的值域为⎣⎡⎦⎤12,1.(2)y =sin ⎝⎛⎭⎫x +π6,∵x ∈⎣⎡⎦⎤0,π2, ∴x +π6∈⎣⎡⎦⎤π6,2π3, 由正弦函数的图象及其单调性可知sin ⎝⎛⎭⎫x +π6∈⎣⎡⎦⎤12,1, ∴所求函数的值域为⎣⎡⎦⎤12,1.金版点睛三角函数最值问题的三种常见类型及求解方法(1)形如y =a sin x (或y =a cos x )型,可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论.(2)形如y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )型,可先由定义域求得ωx +φ的范围,然后求得sin(ωx +φ)(或cos(ωx +φ))的范围,最后求得最值.(3)形如y =a sin 2x +b sin x +c (a ≠0)型,可利用换元思想,设t =sin x ,转化为二次函数y =at 2+bt +c 求最值.t 的范围需要根据定义域来确定.附:形如y =A sin x +B C sin x +D 或y =A cos x +B C cos x +D(A 2+C 2≠0)的最大值最小值可解出sin x 或cos x 后利用其有界性来求. 【跟踪训练3】(1)已知函数f (x )=2a sin x +b 的定义域为⎣⎡⎦⎤-π3,2π3,函数的最大值为1,最小值为-5,求a 和b 的值;(2)求函数y =cos 2x -sin x 在x ∈⎣⎡⎦⎤-π4,π4上的最大值和最小值. 解 (1)因为x ∈⎣⎡⎦⎤-π3,2π3, 所以sin x ∈⎣⎡⎦⎤-32,1. ⎩⎪⎨⎪⎧ 2a ×⎝⎛⎭⎫-32+b =-5,2a +b =1或⎩⎪⎨⎪⎧2a +b =-5,2a ×⎝⎛⎭⎫-32+b =1, 解得⎩⎨⎧ a =12-63,b =-23+123或⎩⎨⎧a =-12+63,b =19-12 3.(2)y =cos 2x -sin x =1-sin 2x -sin x =-⎝⎛⎭⎫sin x +122+54.因为-π4≤x ≤π4,-22≤sin x ≤22, 所以当x =-π6,即sin x =-12时,函数取得最大值,y max =54; 当x =π4,即sin x =22时,函数取得最小值,y min =12-22. 随堂水平达标1.函数y =sin 2x +sin x -1的值域为( )A .[-1,1]B.⎣⎡⎦⎤-54,-1C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54 答案 C解析 y =sin 2x +sin x -1=⎝⎛⎭⎫sin x +122-54,当sin x =-12时,y min =-54;当sin x =1时,y max =1,故选C. 2.下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°答案 C解析 ∵sin168°=sin(180°-12°)=sin12°,cos10°=sin(90°-10°)=sin80°,由函数y =sin x 的单调性,得sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.3.函数y =|sin x |的一个单调递增区间是( )A.⎝⎛⎭⎫-π4,π4 B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π答案 C解析 由y =|sin x |的图象,易得函数y =|sin x |的单调递增区间为⎝⎛⎭⎫k π,k π+π2,k ∈Z .当k =1时,得⎝⎛⎭⎫π,3π2为函数y =|sin x |的一个单调递增区间.4.函数y =2sin ⎝⎛⎭⎫2x +π3⎝⎛⎭⎫-π6≤x ≤π6的值域是________. 答案 [0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3, ∴0≤sin ⎝⎛⎭⎫2x +π3≤1,∴y ∈[0,2]. 5.若f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为2,求ω的值. 解 由题意可知f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上单调递增且2sin π3ω=2,即sin π3ω=22, 所以有π3ω=2k π+π4(k ∈Z ),即ω=6k +34(k ∈Z ), 因为0<ω<1,所以ω=34.。

三角函数的值域

三角函数的值域
A.2- B.0 C.-1 D.-1-
答案A
解析因为0≤x≤9,所以- ≤ - ≤ ,所以- ≤sin ≤1,则- ≤y≤2.所以ymax+ymin=2- .
跟踪训练1(1)已知函数f(x)=sin ,其中x∈ ,若f(x)的值域是 ,则实数a的取值范围是.
答案
解析∵x∈ ,∴x+ ຫໍສະໝຸດ ,∵当x+ ∈ 时,f(x)的值域为 ,
当t=1时,ymax=1;当t=- 时,ymin=- - .
∴函数的值域为 .
三角函数的值域
求解三角函数的值域(最值)常见到以下几种类型:
(1)形如y=asinx+bcosx+c的三角函数化为y=Asin(ωx+φ)+c的形式,再求值域(最值);
(2)形如y=asin2x+bsinx+c的三角函数,可先设sinx=t,化为关于t的二次函数求值域(最值);
(3)形如y=asinxcosx+b(sinx±cosx)+c的三角函数,可先设t=sinx±cosx,化为关于t的二次函数求值域(最值).
(4)一些复杂的三角函数,可考虑利用导数确定函数的单调性,然后求最值.
例1(1)函数y=cos 2x+2cosx的值域是()
A.[-1,3]B.
C. D.
答案B
解析y=cos 2x+2cosx=2cos2x+2cosx-1=2 2- ,因为cosx∈[-1,1],所以原式的值域为 .
(2)函数y=2sin (0≤x≤9)的最大值与最小值之和为()
∴由函数的图象(图略)知, ≤a+ ≤ ,
∴ ≤a≤π.
(2)(2018·通辽质检)函数y=sinx-cosx+sinxcosx的值域为.
答案
解析设t=sinx-cosx,则t2=sin2x+cos2x-2sinx·cosx,sinxcosx= ,且- ≤t≤ .

高中数学新人教A版必修第一册 微专题5三角函数中的最值问题 课件(23张)

高中数学新人教A版必修第一册  微专题5三角函数中的最值问题  课件(23张)

=12sin
2θ+
3 6 cosΒιβλιοθήκη 2θ-63=3
3
3 2 sin
2θ+12cos
2θ-
3 6
= 33sin2θ+π6- 63,
∵θ∈0,3π,∴2θ+π6∈6π,56π,
∴当
2θ+π6=π2,即
θ=π6时,矩形
CDEF
的面积
S
取得最大值
3 6.
类型 5 已知最值求参数范围
【例 5】 (1)已知函数 f x=2sin ωxcos2ω2x-π4-sin2ωxω>0在区
函数 f(x)在区间-π3,π6上有最小值而无最大值,且-π<φ<π, 由三角函数图象可知 x1=-23π+φ 与 x2=π3+φ 应分别位于相邻的 单调递减区间与单调递增区间,
故φφ≤ ≥2-3ππ2--π2π3
,则-65π≤φ≤π6.]
谢谢观看 THANK YOU!
令 ωx=π2+2kπ,k∈Z, 因为在区间0,π上恰好取得一次最大值, 所以 0≤2πω≤π,所以 ω≥21, 所以 ω 的取值范围是21≤ω≤53.故选 B.
(2)x∈-π3,π6时,函数 f(x)在区间-π3,π6上有最小值而无最大值, 且满足 f -π3=-f 6π, 故T2=π6--π3=π2, 此时 ω=2Tπ=2, 解得(2x+φ)∈-23π+φ,π3+φ,
类型 1 y=Asin(ωx+φ)+B 型的最值问题
【例 1】 (1)函数 y=5sin x-12cos x 在 x=θ 处取得最值,则 tan θ
=( )
12 A. 5
B.
12 ±5
C. -152
D.
5 ±12
(2) 已知函数 f(x)=2sin24π+x- 3cos 2x,则 f(x)在 x∈4π,π2的最 小值是________,若不等式 f(x)-m<2 在 x∈π4,π2上恒成立,则实数 m 的取值范围是________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( ( ( (1) y = sin x(2) y = sin x, x ∈ ⎢ ⎡π 2π ⎤ 6 3 ⎥⎦教师姓名年级 郭鹏高一升高二学生姓名学科 刘晓航数学 填写时间上课时间阶段 基础( ) 提高(√ ) 强化( )课时计划 第( )次课共( )次课教 学 目 标教学 重难点 1.会根据正、余弦函数的有界性和单调性求简单三角函数的最值和值域;2.运用转化思想,通过变形、换元等方法转化为代数函数求其给定区间内的值域和最值;3.通过对最值问题的探索与解决,提高运算能力,增强分析问题和解决问题能力。

体现数学思想方法 在解决三角最值问题中的作用。

重点:求三角函数的最值与值域难点:灵活选取不同的方法来求三角函数的最值和值域教 学 过 程一、知识检测1.在下列说法中: 1)函数 y = 2 - sin x 的最大值为 3; 2)函数 y =4 1+ sin 2 x 最小值是 4; 3)函数 y =sin 2 x cos x的值域是 [-1,0) (0,1] ;(4)存在实数 x ,使得 tan x + 1= 2 成立.正确的是 (tan x)A .(1)(2)B .(2)(4)C .(1)(3)D .(1)(4)2.函数 y = sin x, x ∈ [ π , 2π6 3] 的值域为( )11 33 A .[-1,1]B . [ ,1]C . [ ,] D . [ ,1] 22 223.函数 y = sin 2 x cos 2 x 的最大值为,最小值为.4. x = _________时,函数 y = sin( x +π π) + sin( x - 4 4) 的最大值为__________5.函数 y = sin 2 x + sin x + 1 的值域为6.函数 y = a cos x + b ( a, b 为常数,且 a > 0 )的最大值是 1,最小值是 - 7 ,则函数 y = a sin x + b cos x 的最大 值是_______________.二、互动平台(Ⅰ)简单三角函数的值域【例 1】 1. 求下列三角函数的值域.,⎣2. 若函数 y = a cos x + b 的最大值是 1,最小值是 -7 ,求 a 、 b ..), x ∈ ⎢0,⎥小结:求基本三角函数值域,一定要结合三角函数的图像,故切记正、余弦函数的图像 (Ⅱ)与三角函数有关的复合函数的值域: y = A s in(ωx + ϕ), y = A c os(ωx + ϕ) 型函数的值域【例 2】 y = 2 sin(2 x +π ⎡ π ⎤ 4 ⎣ 4 ⎦【例 3】 求函数 y = sin x - cos x, x ∈ [0, π ] 的值域小结:对于 y = A s in(ωx + ϕ) + h 的最大值为 A + h ,最小值为 - A + h ,若 y = A s in(ωx + ϕ) + h , x ∈ [a, b ] ,先由 x ∈ [a, b ] 求出 ωx + ϕ 的范围,然后结合图像求出,即由内而外逐层求值域(Ⅲ)引入辅助角法:类型一: y = asinx + b cosx 型.(此类型通常可以可化为 y = a s in x + b c osx = a 2 + b 2 (x +ϕ ) 求其最值(或值域).)【例 4】 求函数 y = sin( x - π π) + sin( x + 6 3) ( x ∈ R )的最值.ππ π π π解法:y = sin( x - ) + cos( x - ) = 2 sin[( x - ) + ] = 2 sin( x + 6 6 6 4 12) ,∴函数的最大值为 2 ,最小值为 -2 .类型二: y = a sin 2 x + b sin x ⋅ cos x + c(a ≠ 0) 型. 形如这种类型的,可利用倍角公式、降幂公式进行降次、整理为 y = A s in 2 x + B cos 2 x 型再利用辅助角公式求出最值.【例 5】求函数 f ( x ) = 5 3 cos 2 x + 3 sin 2 x - 4sin x cos x(1 + cos2 x 1 - cos 2 x解: f ( x ) = 5 3+ 3 - 2sin 2 x2 2π4 < x ≤7π24 ) 的最值,并求取得最值时 x 的值.= 2 3 cos 3x - 2 s in 2 x + 3 3= 4 cos(2 x + π6) + 3 3π7π 2π π 3π∵ < x ≤ , ∴ < 2 x + ≤4 24 3 6 4,∴ - 2 π 1 ≤ cos(2 x + <) - 2 6 27π∴ f ( x ) 的最小值为 3 3 - 2 2 ,此时 x = , f ( x ) 无最大值.24【例 6】)求函数 y = (3 + sin x)(3 + cos x) 的值域.2 sin 2x + sin x ⋅ cos x + 1,x ∈ R ,求 y 的最大值及此时 x 的集合. 解: y = ⋅ + ⋅ + 1= cos 2 x + sin 2 x ⎪⎪ + = sin 2 x + ⎪+ 6 =+ k π (k ∈ z ), y max = [小试身手] 1.已知函数 f ( x) = sin 2 x , g ( x) = cos(2 x + ) ,直线 x =t (t ∈ ⎢0, ⎥ )与函数 f (x )、g (x )的图像分别方法小结 :求只含有 sin x ± cos x , sin x cos x 的函数的最值问题,通常方法是换元法:令sin x ± cos x = t( - 2 ≤ t ≤2 ),将 sin x cos x 转化为 t 的关系式,从而使问题转化为二次函数的最值问题.但要注意换元后变量的取值范围.[小试身手] 已知: y = 132[ 分析 ] 此类问题为 y = a sin 2 x + b sin x ⋅ cos x + c cos 2 x 的三角函数求最值问题,它可通过降次化简整理为y = a sin x + b cos x 型求解.1 1 + cos2 x3 sin 2 x2 2 2 2 13 5 = cos 2 x + sin 2 x +4 4 41 ⎛ 1 3 ⎫ 52 ⎝ 2 2⎭ 41 ⎛ π ⎫ 52 ⎝ 6 ⎭ 4∴ 2 x +ππ2 + 2k π , ∴ x = π 764 .π ⎡ π ⎤ 6⎣ 2 ⎦交于 M 、N 两点,则|MN |的最大值是多少?2. 求函数 y = 5sin 2 x + 3 sin x cos x + 6 cos 2 x 的值域.3. y = cos 2 x + cos x4. 求函数 y = sin x + cos x + sin x ⋅ cos x 的值域.(Ⅳ)配方法: y = a sin 2 x + b sin x + c(a ≠ 0) 型。

此类型可化为 y = at 2 + bt + c(a ≠ 0) 在区间 [-1,1] 上的最值问题.【例 6】求函数 y = cos 2 x + 3 sin x + 1 ( x ∈ R )的最值.解: y = 1 - sin 2x + 3 sin x + 1 = -(sin x - 3 9) 2 +2 4∴函数的最大值为 9 4,最小值为5 - 2 34【例 8】求函数 y = cos 2 x + 3a sin x + 1 ( a ∈ R , x ∈ R )的最大值.①当 时,在 sinx=1, y ②当 时,在 sinx=-1, y 2 3max = a 2+ 2a ≤ 1 ,即 - ≤ a ≤ ⎪ 3a + 1(a > 3 ⎪ 4 ⎪⎩ [小试身手] 1. 函数 f ( x ) = sin 2 x +2cos x 在区间[- π ,θ ]上的最大值为1,则θ 的值是多少? sin x - ⎪ + 2 16 82 16 8 - 0 ≤ x ≤ ⎪ ,用 a 表示 f (x )的最大值 M (a ) (t ) = f (x ) = -t 2 + at - a + 1 = -⎛ t - a ⎫⎪ 2 + a 2解: y = cos 2 x + 3a sin x + 1 转化为 y = - sin 2 x + 3a sin x + 2 配方得:3 3y = -(sin x -a) 2 + a 2 + 2 2 43 2 3 a > 1,即 a > 2 3max= 3a + 13 2 3a < -1时,即 a < - max= - 3a +13 2 3 2 3 3 3 ③当 - 1 ≤ 时,在 sin x = a 时, y 2 3 3 2 4综上: ymax⎧2 3 )⎪⎪ 3 2 3 2 3 = ⎨ a 2 + 2(- ≤ a ≤ )3 3⎪ 2 3 ⎪-3a + 1(a < - ) 3小结:对于二次型函数,都可通过换元构造二次函数 y = at 2 + bt + c ,进而转化为二次函数在某个区间上的值域问题,但一定要注意新元的范围. 232. 求函数 y = 5sin x + cos 2 x 的最值.[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一.解:y = 5sin x + (1 - 2sin 2 x )= -2sin 2 x + 5sin x + 1 = -2⎛ 5 ⎫2 33⎝ 4 ⎭ 8π 81 33-1 ≤ sin x ≤ 1, ∴ s in x = -1 , x = 2k π - , k ∈ z , y = -2 ⨯ + = -6minπ 1 33sin x = 1 . ∴ x = 2k π + , k ∈ z, y = -2 ⨯ + = 4max3. 设 f (x ) = - cos 2 x + a sin x -. 解: f (x ) = - sin 2 x + a sin x - a 1 ⎛ π ⎫ 4 2 ⎝ 2 ⎭a 1 + . 令 sinx=t,则 0 ≤ t ≤ 1, 4 2g4 2 ⎝ 2 ⎭ 4 4 2a 1 - + .(1)当a≥1,即a≥2,g(t)在[0,1]上递增,M(a)=g(1)=-;(2)当0≤≤1,即0≤a≤2时,g(t)在[0,1]上先增后减,M(a)=g⎛ a⎫⎪=a2-a+1;(3)当a≤0,即a≤0,g(t)在[0,1]上递减,M(a)=g(0)=-.⎪4-,a≥2∴M(a)=⎨⎪a2a1⎪2-,a≤043.求函数y=cos2x+2sin x在区间⎢⎡-ππ⎤,⎥上的值域..1+y2由|sin(x+φ)|=3a1242a2⎝2⎭4421a224⎧3a12⎪-+,0≤a≤2⎪442⎪1a⎩⎣44⎦(Ⅴ)数形结合:f(x)=a sin x+b型。

相关文档
最新文档