指数对数函数(必修1)
人教A版高中数学必修一课件 《对数》指数函数与对数函数PPT(第一课时对数的概念)

【解】 (1)loge16=a,即 ln16=a. (2)log6414=-13. (3)32=9. (4)xz=y.
将下列指数式与对数式互化:
(1)log216=4;
(2)log127=-3; 3
(3)43=64; (4)14-2=16. 解:(1)由 log216=4 可得 24=16.
(2)由
1.对数的概念 一 般 地 , 如 果 ax = N(a>0 , 且 a≠1) , 那 么 数 x 叫 做 _以___a_为___底__N__的__对__数____ , 记 作 _x_=___lo_g_a_N__ , 其 中 a 叫 做 ___对__数__的__底__数____,N 叫做真 __数___.
把对数式 loga49=2 写成指数式为( )
A.a49=2
B.2a=49
C.492=a
D.a2=49
答案:D
log32x- 5 1=0,则 x=________.
答案:3
指数式与对数式的互化
将下列指数式与对数式互化: (1)ea=16; (2)64-13=14; (3)log39=2; (4)logxy=z(x>0 且 x≠1,y>0).
log127=-3 3
可得13-3=27.
(3)由 43=64 可得 log464=3.
(4)由14-2=16
可得
log116=-2. 4源自利用对数式与指数式的关系求值
求下列各式中 x 的值: (1)log27x=-23; (2)logx16=-4; (3)lg10100=x; (4)-lne-3=x.
4.3对数 第一课时 对数
的概念
第四章 指数函数与对数函数
考点
学习目标
人教A版高中数学必修一 《指数》指数函数与对数函数PPT课件

考点
学习目标
利用指数幂的性质化 理解指数幂的含义及其
简求值
运算性质
会根据已知条件,利用
条件求值问题
指数幂的运算性质、 根式的性质进行相关求
值运算
核心素养 数学运算
数学运算
问题导学 预习教材 P104-P109,并思考以下问题: 1.n 次方根是怎样定义的? 2.根式的定义是什么?它有哪些性质? 3.有理数指数幂的含义是什么?怎样理解分数指数幂? 4.有理指数幂有哪些运算性质?
A. (-5)2=-5
4 B.
a4=a
C. 72=7
3 D.
(-π)3=π
解析:选 C.由于 (-5)2=5,4 a4=|a|,3 (-π)3=-π, 故 A,B,D 项错误,故选 C.
2.化简( a-1)2+ (1-a)2+3 (1-a)3=________.
解析:由( a-1)2 知 a-1≥0,a≥1. 故原式=a-1+|1-a|+1-a=a-1. 答案:a-1
1
4 =
4 x3
1x3(x>0),
故③正确;对于④,x-13= 1 ,故④错误.综上,故填③. 3 x
答案:③
2.用分数指数幂的形式表示下列各式(a>0,b>0): (1)a2 a;(2)3 a2· a3;(3)(3 a)2· ab3;(4) a2 .
6 a5 解:(1)原式=a2a12=a2+12=a52. (2)原式=a23·a32=a23+32=a163. (3)原式=(a13)2·(ab3)12=a32a12b32=a32+12b23=a67b32. (4)原式=a2·a-56=a2-56=a76.
4.1 指 数
第四章 指数函数与对数函数
高中数学必修一第四章指数函数与对数函数知识点总结全面整理(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结全面整理单选题1、若函数f(x)=ln(ax+√x2+1)是奇函数,则a的值为()A.1B.-1C.±1D.0答案:C分析:根据函数奇函数的概念可得ln(−ax+√x2+1)+ln(ax+√x2+1)=0,进而结合对数的运算即可求出结果.因为f(x)=ln(ax+√x2+1)是奇函数,所以f(-x)+f(x)=0.即ln(−ax+√x2+1)+ln(ax+√x2+1)=0恒成立,所以ln[(1−a2)x2+1]=0,即(1−a2)x2=0恒成立,所以1−a2=0,即a=±1.当a=1时,f(x)=ln(x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;当a=−1时,f(x)=ln(−x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;故选:C.2、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I 1I 2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍. 故选:B.3、设a =log 2π,b =log 6π,则( ) A .a −b <0<ab B .ab <0<a −b C .0<ab <a −b D .0<a −b <ab 答案:D分析:根据对数函数的性质可得a −b >0,ab >0, 1b−1a <1,由此可判断得选项.解:因为a =log 2π>log 22=1,0=log 61<b =log 6π<log 66=1,所以a >1,0<b <1,所以a −b >0,ab >0,故排除A 、B 选项; 又1b −1a =a−b ab=log π6−log π2=log π3<log ππ<1,且ab >0,所以0<a −b <ab ,故选:D.4、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0.5、已知a=log20.6,b=log20.8,c=log21.2,则()A.c>b>a B.c>a>bC.b>c>a D.a>b>c答案:A分析:由对数函数得单调性即可得出结果.∵y=log2x在定义域上单调递增,∴log20.6<log20.8<log21.2,即c>b>a.故选:A.6、若n<m<0,则√m2+2mn+n2−√m2−2mn+n2等于()A.2m B.2n C.−2m D.−2n答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果.原式=|m+n|−|m−n|,∵n<m<0,∴m+n<0,m−n>0,∴原式=−(m+n)−(m−n)=−2m.故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可.7、已知a=ln1,b=30.3,c=1og54,则a,b,c的大小关系是()3A.a<b<c B.b<a<c C.a<c<b D.c<a<b答案:C解析:分别将a,b,c与0,1比较大小,从而得到a,b,c的大小关系.<ln1=0,b=30.3>30=1,0=log51<c=1og54<log55=1,所以可知b>c>a 因为a=ln13故选:C8、方程log2x=log4(2x+3)的解为()C.3D.−1或3答案:C分析:根据对数运算性质化为同底的对数方程,结合对数真数大于零可求得结果.∵log2x=log4(2x+3)=12log2(2x+3)=log2√2x+3,∴{x>02x+3>0x=√2x+3,解得:x=3.故选:C.多选题9、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;设D的坐标为(t,0),由题得△AOB∽△CBD,则有1220=128−20t−20,解可得t=200,所以选项C正确;当x=128时,y=216,所以y的最大值是216.所以选项D正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A 正确,设D 的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等, 则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD , 则△AOB ∽△CBD , 则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确; 由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误; 当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确. 故选:ACD10、(多选题)下列各式既符合分数指数幂的定义,值又相等的是( ) A .(-1)13和(−1)26B .343和13-43C .212和414D .4−32和(12)−3答案:BC分析:根据分数指数幂的定义以及运算法则逐个验证与化简,即可判断选择.A 不符合题意,(-1)13和(−1)26不符合分数指数幂的定义,但(-1)13=√-13=-1,(-1)26=√(-1)26=1; B 符合题意,13-43=343.C 符合题意,414=√224=212;D 不符合题意,4−32和(12)−3均符合分数指数幂的定义,但4-32=1432=18,(12)−3 =23=8.故选:BC小提示:本题考查分数指数幂的定义以及运算法则,考查基本分析判断与化简能力,属基础题.11、已知a+a−1=3,则下列选项中正确的有()A.a2+a−2=7B.a3+a−3=16C.a12+a−12=±√5D.a32+a−32=2√5答案:AD分析:由a+1a =3(a>0),可得:a2+a−2=(a+1a)2−2;a3+a−3=(a+a−1)(a2+a−2−1);(a12+a−12)2=a+a−1+2;a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12),即可判断出正误.解:∵a+1a=3,∴a2+a−2=(a+1a)2−2=32−2=7,因此A正确;a3+a−3=(a+a−1)(a2+a−2−1)=3×(7−1)=18,因此B不正确;∵(a12+a−12)2=a+a−1+2=3+2=5,a>0,解得a12+a−12=√5,因此C不正确;∵a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12)=3√5−√5=2√5,因此D正确.故选:AD.填空题12、已知函数f(x)=ln(√1+x2−x)−1,若f(2x−1)+f(4−x2)+2>0,则实数x的取值范围为______. 答案:x<−1或x>3分析:令g(x)=f(x)+1=ln(√x2+1−x),分析出函数g(x)为R上的减函数且为奇函数,将所求不等式变形为g(x2−4)<g(2x−1),可得出关于x的不等式,解之即可.令g(x)=f(x)+1=ln(√x2+1−x),对任意的x∈R,√x2+1−x>|x|−x≥0,故函数g(x)的定义域为R,因为g(x)+g(−x)=ln(√x2+1−x)+ln(√x2+1+x)=ln(x2+1−x2)=0,则g(−x)=−g(x),所以,函数g(x)为奇函数,当x≤0时,令u=√1+x2−x,由于函数u1=√1+x2和u2=−x在(−∞,0]上均为减函数,故函数u=√1+x2−x在(−∞,0]上也为减函数,因为函数y=lnu在(0,+∞)上为增函数,故函数g(x)在(−∞,0]上为减函数,所以,函数g(x)在[0,+∞)上也为减函数,因为函数g(x)在R上连续,则g(x)在R上为减函数,由f(2x−1)+f(4−x2)+2>0可得g(2x−1)+g(4−x2)>0,即g(x2−4)<g(2x−1),所以,x2−4>2x−1,即x2−2x−3>0,解得x<−1或x>3.所以答案是:x<−1或x>3.13、若函数f(x)={2x+2,x≤1,log2(x−1),x>1在(−∞,a]上的最大值为4,则a的取值范围为________.答案:[1,17]分析:根据函数解析式画出函数图象,再根据指数函数、对数函数的性质判断函数的单调性,再求出f(x)= 4时x的值,即可得解.解:因为f(x)={2x+2,x≤1,log2(x−1),x>1,当x∈(−∞,1]时,易知f(x)=2x+2在(−∞,1]上单调递增,当x∈(1,+∞)时,f(x)=log2(x−1)在(1,+∞)上单调递增.作出f(x)的大致图象,如图所示.由图可知,f(1)=4,f(17)=log2(17−1)=4,因为f(x)在(−∞,a]上的最大值为4,所以a的取值范围为[1,17].所以答案是:[1,17]14、函数f(x)=4+log a(x−1)(a>0且a≠1)的图象恒过定点_________ 答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题15、已知函数f(x)=ln(x+a)(a∈R)的图象过点(1,0),g(x)=x2−2e f(x).(1)求函数f(x)的解析式;(2)若函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,求整数k的值;(3)设m>0,若对于任意x∈[1m,m],都有g(x)<−ln(m−1),求m的取值范围.答案:(1)f(x)=lnx;(2)k的取值为2或3;(3)(1,2).解析:(1)根据题意,得到ln(1+a)=0,求得a的值,即可求解;(2)由(1)可得y=ln(2x2−kx),得到2x2−kx−1=0,设ℎ(x)=2x2−kx−1,根据题意转化为函数y=ℎ(x)在(1,2)上有零点,列出不等式组,即可求解;(3)求得g(x)的最大值g(m),得出g(x)max<−ln(m−1),得到m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),结合ℎ(m)单调性和最值,即可求解.(1)函数f(x)=ln(x+a)(a∈R)的图像过点(1,0),所以ln(1+a)=0,解得a=0,所以函数f(x)的解析式为f(x)=lnx.(2)由(1)可知y=lnx+ln(2x−k)=ln(2x2−kx),x∈(1,2),令ln(2x2−kx)=0,得2x2−kx−1=0,设ℎ(x)=2x2−kx−1,则函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,等价于函数y=ℎ(x)在(1,2)上有零点,所以{ℎ(1)=1−k<0ℎ(2)=7−2k>0,解得1<k<72,因为k∈Z,所以k的取值为2或3.(3)因为m>0且m>1m ,所以m>1且0<1m<1,因为g(x)=x2−2e f(x)=x2−2x=(x−1)2−1,所以g(x)的最大值可能是g(m)或g(1m),因为g(m)−g(1m )=m2−2m−(1m2−2m)=m2−1m2−(2m−2m)=(m−1m )(m+1m−2)=(m−1m)⋅(m−1)2m>0所以g(x)max=g(m)=m2−2m,只需g(x)max<−ln(m−1),即m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),ℎ(m)在(1,+∞)上单调递增,又ℎ(2)=0,∴m2−2m+ln(m−1)<0,即ℎ(m)<ℎ(2),所以1<m<2,所以m的取值范围是(1,2).小提示:已知函数的零点个数求解参数的取值范围问题的常用方法:1 、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2 、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.。
人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)

5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
高中数学必修一指数函数对数函数知识点

高中数学必修一指数函数对数函数知识点高中数学必修一中,指数函数和对数函数是重要的知识点。
指数函数是一种以指数为自变量的函数,形式为y = a^x,其中a为底数,x为指数。
而对数函数是指数函数的逆运算,形式为y = loga(x),其中a为底数,x为真数。
以下是关于指数函数和对数函数的具体知识点。
一、指数函数的图像和性质1.指数函数的基本形式:-y=a^x,其中a>0且a≠12.指数函数的基本性质:-当0<a<1时,指数函数呈现递减的图像;-当a>1时,指数函数呈现递增的图像;-当a=1时,指数函数为常数函数y=1二、对数函数的图像和性质1.对数函数的基本形式:- y = loga(x),其中a > 0且a≠12.对数函数的基本性质:- 对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x;-对数函数的图像关于直线y=x对称;-对数函数的定义域为正实数集,值域为实数集。
三、指数函数和对数函数的运算性质1.指数函数的运算性质:-a^x*a^y=a^(x+y);- (a^x)^y = a^(xy);- (ab)^x = a^x * b^x;-a^0=1,其中a≠0。
2.对数函数的运算性质:- loga(xy) = loga(x) + loga(y);- loga(x^y) = y * loga(x);- loga(x/y) = loga(x) - loga(y);- loga(1) = 0,其中a≠0。
四、指数函数和对数函数的应用1.指数函数在生活中的应用:-经济增长模型中的应用;-指数衰减与物质的半衰期计算;-大自然中的指数增长现象。
2.对数函数在生活中的应用:-pH值的计算;-放大器的功率增益计算;-数字音乐的音量计算。
综上所述,指数函数和对数函数是高中数学必修一中的重要知识点。
掌握了指数函数和对数函数的基本形式、性质以及运算规律,能够理解其图像特征和在实际问题中的应用。
高中数学北师大版必修1课件第三章指数函数和对数函数

A.a B.b
C.c D.d
解析:根据四种函数的变化特点,指数函数是变化最快的函数.当
运动时间足够长时,最前面的物体一定是按照指数函数关系运动的
物体.
答案:D
题型一
题型二
题型三
题型三 函数的增长差异在实际中的应用
【例3】 某公司为了实现1 000万元利润的目标,准备制定一个激
励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进
这说明,按模型y=log7x+1进行奖励,奖金不超过利润的25%.
综上所述,模型y=log7x+1符合公司要求.
反思从这个例题可以看到,底数大于1的指数函数模型比一次项
系数为正数的一次函数模型增长速度要快得多,而后者又比真数大
于1的对数函数模型增长速度要快,从而我们可以体会到对数增长、
直线上升、指数爆炸等不同函数类型增长的含义.
时,y>5,因此该模型不符合要求.
对于模型y=1.002x,利用计算器,可知1.002806≈5.005,由于y=1.002x
在(-∞,+∞)上是增函数,故当x∈(806,1 000]时,y>5,因此,也不符合题
意.
对于模型y=log7x+1,它在区间[10,1 000]上是增加的,且当x=1 000
是增函数,但它们增长的速度不同,而且不在一个“档次”上,随着x的
增大,y=ax(a>1)的增长速度会越来越快,会超过并远远大于
y=xn(x>0,n>1)和y=logax(a>1)的增长速度.由于指数函数值增长非
常快,人们常称这种现象为“指数爆炸”.
【做一做1】 当x(x>0)增大时,下列函数中,增长速度最快的是
高中数学必修1 指数函数与对数函数教案(知识点+例题+练习)

学员姓名年级高一辅导科目数学课程类型1对1任课老师班组课题指数函数与对数函数课型□预习课□同步课□复习课□习题课课次11 授课日期及时段教学目标重难点重点:难点:教学及学习方法教学方法:学习方法:教学内容【基础知识网络总结与巩固】本节考点:考点回顾考点一考点二考点三【上节知识回顾】【本节知识要点】1. 指数函数的图象和性质函数y=a x(a>0,且a≠1)图象0<a<1a>1图象特征在x轴上方,过定点(0,1)性质定义域值域单调性函数值变化规律R(0,+∞)减函数增函数当x=0时,y=1当x<0时,y>1;当x>0时,0<y<1当x<0时,0<y<1;当x>0时,y>12.对数函数的图象和性质y =log a xa >10<a <1图象性质定义域:(0,+∞)值域:R过点(1,0),即x =1时,y =0当x >1时,y >0 当0<x <1时,y <0 当x >1时,y <0 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数3.求解与指数函数、对数有关的复合函数问题,首先要熟知指数函数、对数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归纳为内层函数相关的问题加以解决.【重难点例题启发与方法总结】典型例题剖析例1 求下列函数的定义域 (1)f (x )=1-2log 6x ; (2)y =32x -1-19.【解析】(1)由1-2log 6x ≥0,解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].(2)由32x -1-19≥0,得32x -1≥19=3-2,∵y =3x 为增函数,∴2x -1≥-2,即x ≥-12,此函数的定义域为⎣⎡⎭⎫-12,+∞. 变式训练 函数f (x )=4-x 2+log 2(x -1)的定义域是( ) A .(1,2] B .[1,2] C .(1,+∞) D .[2,+∞)【答案】A【解析】要使函数有意义,则⎩⎨⎧4-x 2≥0x -1>0,即⎩⎪⎨⎪⎧-2≤x ≤2x >1,∴1<x ≤2,即函数的定义域为(1,2], 故选A.例2 (1)已知函数f (x )=(23)|x |-a ,则函数f (x )的单调递增区间为________,单调递减区间为________.2.(2018·湖南衡阳期末)已知集合A ={x |log 12x >-1},B ={x |2x >2},则A ∪B =( )A.⎝⎛⎭⎫12,2B.⎝⎛⎭⎫12,+∞ C .(0,+∞) D .(0,2) 答案:C解析:由A ={x |log 12x >-1}={x |0<x <2},B ={x |2x >2}=⎩⎨⎧⎭⎬⎫x ⎪⎪x >12,则A ∪B =(0,+∞).故选C. 3.(2018·福建福州外国语学校期中)已知函数f (x )=(m 2-m -1)x -5m -3是幂函数,且f (x )是(0,+∞)上的增函数,则m 的值为( )A .2B .-1C .-1或2D .0 答案:B解析:因为函数f (x )=(m 2-m -1)x -5m -3是幂函数,所以m 2-m -1=1,即m 2-m -2=0,解得m =2或m=-1.又因为幂函数在(0,+∞)上单调递增,所以-5m -3>0,即m <-35,所以m =-1,故选B.方法点拨:求有关幂函数的解析式,一般采用待定系数法,即设出解析式后,利用已知条件,求出待定系数.注意幂函数中自变量的系数为1.4.(2018·重庆第一中学一诊模拟)设a =213,b =log 43,c =log 85,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b [来源:学科网]C .b >c >aD .c >b >a [来源:学科网ZXXK] 答案:A解析:由指数函数的性质知a >1,由对数函数的性质得0<b <1,0<c <1.c 可化为log 235;b 可化为log 23,∵(35)6<(3)6,∴b >c ,∴a >b >c ,故选A.5.函数f (x )=a x -1a(a >0,a ≠1)的图象可能是( )答案:D解析:当a >1时,将y =a x 的图象向下平移1a 个单位长度得f (x )=a x -1a的图象,A ,B 都不符合;当0<a <1时,将y =a x 的图象向下平移1a 个单位长度得f (x )=a x -1a 的图象,而1a大于1,故选D.6.若函数y =f (x )的定义域为[2,4],则y =f (log 12x )的定义域是( )A.⎣⎡⎦⎤12,1 B .[4,16] C.⎣⎡⎦⎤116,14 D .[2,4] 答案:C解析:令log 12x =t ,则y =f (log 12x )=f (t ),因为函数y =f (x )的定义域是[2,4],所以y =f (t )的定义域是[2,4],即2≤t ≤4,所以2≤log 12x ≤4,解得116≤x ≤14,所以y =f (log 12x )的定义域是⎣⎡⎦⎤116,14. 7.(2018·武汉二模)设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞) 答案:C解析:通解 当a <0时,不等式f (a )<1为⎝⎛⎭⎫12a-7<1,即⎝⎛⎭⎫12a <8,即⎝⎛⎭⎫12a <⎝⎛⎭⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1为a <1,所以0≤a <1.故a 的取值范围是(-3,1),故选C.优解 取a =0,f (0)=0<1,符合题意,排除A ,B ,D.8.(2018·怀化二模)已知函数f (n )=log n +1(n +2)(n ∈N *),定义使f (1)·f (2)·f (3)·…·f (k )为整数的k (k ∈N *)叫做企盼数,则在区间[1,2 016]内的企盼数的个数是( )A .8B .9C .10D .11 答案:B解析:因为函数f (n )=log n +1(n +2)(n ∈N *),所以f (1)=log 23,f (2)=log 34,…,f (k )=log k +1(k +2),所以f (1)·f (2)·f (3)·…·f (k )=log 23·log 34·…·log k +1(k +2)=log 2(k +2),若f (1)·f (2)·f (3)·…·f (k )为整数,则k +2=2m ,m ∈Z ,又k ∈[1,2 016],所以k ∈{2,6,14,30,62,126,254,510,1 022},故在区间[1,2 016]内的企盼的个数是9.二、填空题[来源:学科网]9.log 327-log 33+(5-1)0-⎝⎛⎭⎫9412+cos 4π3=________. 答案:0解析:原式=log 3(27÷3)+1-32-12=1+1-32-12=0.10.(2018·江西自主招生)方程log 3(1+2·3x)=x +1的解为________. 答案:0解析:由方程log 3(1+2·3x )=x +1可得1+2·3x =3x +1,化简可得3x =1,故x =0.11.(2018·山西一模,13)已知函数f (x )=x 2-m 是定义在区间[-3-m ,m 2-m ]上的奇函数,则f (m )=________. 答案:-1解析:由题意得m 2-m =3+m ,即m 2-2m -3=0,∴m =3或m =-1.当m =3时,f (x )=x -1,[-3-m ,m 2-m ]为[-6,6],f (x )在x =0处无意义,故舍去.[来源:学科网] 三、解答题12.已知函数f (x )=log 3mx 2+8x +nx 2+1的定义域为R ,值域为[]0,2,求m ,n 的值.解析:由y =f (x )=log 3mx 2+8x +n x 2+1,得3y =mx 2+8x +nx 2+1,即()3y -m ·x2-8x +3y -n =0[来源:学.科.网Z.X.X.K] ∵x ∈R ,∴Δ=64-4(3y -m )(3y -n )≥0,即32y -(m +n )·3y +mn -16≤0由0≤y ≤2,得1≤3y≤9,由根与系数的关系得⎩⎪⎨⎪⎧m +n =1+9mn -16=1×9,解得m =n =5.【课后强化巩固练习与方法总结】1.已知集合M ={}x |y =x -1,N ={x |y =log 2(2-x )},则∁R (M ∩N )等于( ) A .[1,2) B .(-∞,1)∪[2,+∞) C .[0,1] D .(-∞,0)∪[2,+∞)2.已知a =23log 4.1,b =23log 2.7,c =⎝⎛⎭⎫123log 0.1,则( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b3.函数y =log 12(x 2-3x +2)的递增区间是( )A .(-∞,1)B .(2,+∞)C .(-∞,32)D .(32,+∞)学管签字:学管主任签字:。
高中数学新教材必修一第四章《指数函数与对数函数》全套课件

学习新知 探究:
分数指数幂
10
5 a10 5 (a2 )5 a2 a 5 (a 0),
12
4 a12 4 (a3 )4 a3 a 4 (a 0).
0的正分数指数 幂等于0,0 的负 分数指数幂没有 意义.
2
33 aa22 a 3 (a 0),
1
)3
=36+9-7-5=33
巩固练习 3.化简或求值:
1
1
1
1
(3)求值: (1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
1
1
1
1
解: (1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
1
1
1
1
1
(1 2 16 )(1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
巩固练习
1. 已知 9a2-6a+1=3a-1, 求 a 取值范围.
a1 3
巩固练习
2.设 10m=2, 10n=3,求 10-2m-10-n的值
1 12
巩固练习 3.化简或求值:
1
(1)0.00814
3
(4 4
)2
(2
4
2) 3
160.75
解:
1
0.00814
3
(4 4
)2
(2
4
2) 3
160.75
当 n 为奇数时
2n (a b)n n (a b)n 2(a b) (a b) 3a b
巩固练习
4
1
练习5 : 化简
a 3 8a 3b
2
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学练习 (指、对数及其函数)
姓名 学号 成绩
一、选择题
1.下列等式一定成立的是 ( )
A .2
33
1a a ⋅=a B .2
1
2
1a a
⋅-=0 C .(a 3)2
=a
9
D .6
13121a a a =÷
2.下列命题中,正确命题的个数为 ( )
①n
n
a =a ②若a ∈R ,则(a 2-a +1)0=1
③y x y x +=+3
43
3
4
④623)5(5-=-
A .0
B .1
C .2
D .3
3.若a 2x =
2-1,则x
x x
x a a a a --++33等于 ( )
A .22-1
B .2-22
C .22+1
D .2+1
4.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A . log c a =b B .log c b =a C .log a b =c D .log b a =c 5.已知m >0是10x =lg (10m )+lg
m
1
,则x 的值为 ( ) A .2 B .1 C .0 D .-1
6.若log a b ·log 3a =5,则b 等于 ( )
A .a 3
B .a 5
C .35
D .53
7.已知ab >0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lg a +lg b ②lg
b a =lg a -lg b ③b
a
b a lg )lg(212= ④lg (ab )=10log 1ab
A .0
B .1
C .2
D .3
8.下列说法中,正确的是 ( )
①任取x ∈R 都有3x >2x ②当a >1时,任取x ∈R 都有a x >a -
x ③y =(3)
-x
是增函
数 ④y =2|x |的最小值为1 ⑤在同一坐标系中,y =2x 与y =2-
x 的图象对称于y 轴
A .①②④
B .④⑤
C .②③④
D .①⑤
9.函数y =)12(log 2
1-x 的定义域为 ( )
A .(
2
1
,+∞) B .[1,+∞) C .(
2
1
,1] D .(-∞,1)
10.图中曲线是对数函数y =log a x 的图象,已知a 取10
1
,
53,54,3四个值,则相应于C 1,C 2,
C 3,C 4的a 值依次为 ( )
A .101,
53,34,3 B .53
,101,34,3
C .101,53,3,34
D .5
3,101,3,34
二、填空题
11、若10x =3,10y =4,则102x -y =__________.
12、(log 43+log 83)(log 32+log 92)-log 42
132=__________.
13、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为 14、f (x )=)12(log 12+-x a 在(-2
1
,+∞)上单调递增,则a 的取值范围_______. 15、 log a
3
2
<1,则a 的取值范围是_____ . 16、函数f (x )=|lg x |,则f (41),f (3
1
),f (2)的大小关系是__________.
三、解答题
17、已知函数f (x )=a -
1
22
+x
(a ∈R ), (1) 求证:对任何a ∈R ,f (x )为增函数. (2) 若f (x )为奇函数时,求a 的值。
18、已知函数
2(32)
1
2
()log x x f x --=
(1)求该函数的定义域、值域 (2)求该函数的单调区间
高一数学练习 (指、对数及其函数)答案
11、
94 12 、5
2
13、{3} 14、-2<a <-1或1<a <2 15、a >1或0<a <32 16、f (41)>f (3
1
)>f (2)
三、解答题
17、(1)证明:设x 1<x 2
f (x 2)-f (x 1)=)
21)(21()
22(22112x x x x ++->0
故对任何a ∈R ,f (x )为增函数. (2)x R ∈,又f (x )为奇函数 (0)0f ∴= 得到10a -=。
即1a = 18、(1)由2
320x x -->得{}|31x x -<<
令22
32(1)4t x x x =--=-++,得04t <≤。
2
(32)4112
2
()log log 2x x f x --=≥=-。
所以值域为{}|2y y ≥-
(2)2
2
32(1)4t x x x =--=-++,在(,1]-∞-时,t 是增函数;在[1,)-+∞时,t 是减函数
而12log t
y =是减函数,且
2(32)
1
2
()log x x f x --=的定义域是{}|31x x -<<
所以
2
(32)
12
()log x x
f x --=的递增区间是:[1,1)-;递减区间是:(3,1]--。