集合的表示方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用列举法表示下列集合
(1)我国古代四大发明组成的集合; (2)大于2且小于15的所有素数组成的集合; (3)方程x2=4的所有实数解组成的集合; (4)所有正偶数组成的集合
(1){造纸术,印刷术,指南针,火药}; (2){3,5,7,11,13,}; (3){2,-2}; (4){2,4,6,…,2n,…}
(1)[-1,3]; (2)(0,1]; (3)[2,5); (4)(0,2); (5)(-∞,3); (6)[2,+∞);
(2){x|0<x≤1}; (4){x|0<x<2}; (6){x|x≥2};
小结
(1)列举法表示集合; (2)描述法表示集合; (3)运用区间表示集合;
Thank s
ห้องสมุดไป่ตู้
区间及其表示2
(5)集合{x|x≥a}可以简写为[a,+∞); (6)集合{x|x>a}可以简写为(a,+∞); (7)集合{x|x≤a}可以简写为(-∞,a]; (8)集合{x|x<a}可以简写为(-∞,a);
用区间表示下列集合
(1){x|-1≤x≤3} ; (3){x|2≤x<5}; (5){x|x<3};
(1)∉; (2)∉; (3)∉; (4)∉;
例1:用适当的方法表示下列集合
(1)方程x(x-1)=0的所有解组成的集合A; (2)平面直角坐标系中,第一象限内所有点组成的集合B;
解:(1)因为0和1都是方程x(x-1)=0的解,而且这个方程只有两个 解,所以A={0,1}; (2)因为集合B的特征性质是横坐标与纵坐标都大于零,因此 B={(x,y)|x>0,y>0};
描述法
(1)格式1:{x|p(x)},p(x)称为集合A的一个特征性质。如: 所有平行四边形组成的集合可以表示为:{x|x是一组对边平行且相等的 四边形}; 所有能被3整除的整数组成的集合可以表示为:{x|x=3n,n∈Z}; 所有被3除余1的自然数组成的集合可以表示为:{x|x=3n+1,n∈N}; (2)格式2:{x∈I|p(x)},表示在集合I中,具有特征p(x)的所有 元素组成的集合。如: 所有被3除余1的自然数组成的集合既可以表示为:{x|x=3n+1,n∈N}, 也可以表示为{x∈N|x=3n+1,n∈Z}。
如何表示集合
集合的表示方法
列举法
集合由三种表示方法
描述法
区间及其表示
列举法
(1)把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写 在大括号内,以此来表示集合的方法。如: 由两个元素0、1组成的集合可用列举法表示为{0,1}; 24的所有正因数组成的集合可用列举法表示为: {1,2,3,4,6,8, 12,24}。 (2)如果元素较多或者无穷多个,且能按照一定规律排列,那么在不发 生误解的情况下,可以按照规律列出几个元素作为代表,其他元素用省 略号表示,如: 不大于100的自然数组成的集合{0,1,2,3,……,100}; 自然数集N={0,1,2,3,…,n,…}。
区间及其表示1
(1)如果 a<b,则集合{x|a≤x≤b}可以简写为[a,b],并成为闭区间;
(2)如果 a<b,则集合{x|a<x<b}可以简写为(a,b),并成为开区间;
(3)如果a<b,则集合{x|a≤x<b}可以简写为[a,b),并成为左闭右开 区间;
(4)如果a<b,则集合{x|a<x≤b}可以简写为(a,b],并成为左开右闭 区间;
描述法表示下列集合
(1)小于1500的正偶数组成的集合; (2)所有矩形组成的集合;
(1){x|x<1500,x∈N*}; (2){x|x为矩形};
用符号“∈”或“∉”填空
(1)0 Ø; (2)-2 {x|x2<5}; (3)(2,3) {(x,y)|x+2y=3}; (4)2017 {x|x=4n-1,x∈Z};
相关文档
最新文档