边长为10的正五边形的外接圆的半径是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边长为10的正五边形的外接圆的半径是?
方法一:
正五边形的每个内角是(5-2)×180°/5=108°
连接圆心和一条边的两端,得到一个等腰三角形,其底角为108°/2=54°,顶角为180°-2×54°=72°
设正五边形的边长为a,外接圆的半径为r,则r=a/(2cos54°)=a/(2sin36°)
下面给出sin36°的求法:
由于sin36°=sin(180°=36°)=sin144°=2sin72°cos72°
=4sin36°cos36°[2(cos36°)^2-1]
由此得到8(cos36°)^3-4cos36°-1=0
(2cos36°+1)[4(cos36°)^2-2cos36°-1]=0
由4(cos36°)^2-2cos36°-1=0解出
cos36°=(1+√5)/4,
sin36°=√[1-(cos36°)^2]=√(10-2√5)/4.
所以r=a/(2sin36°)=a/[2√(10-2√5)/4]=2a/√(10-2√5)
=(√(50+10√5)a/10
解作黄金△ABC,∠BAC=36 °,∠ABC=∠ACB=72 °.
令BC=a,AB=AC=b。
过B作∠ABC的角平分线BD,交AC于D。
因为等腰△ABC∽等腰△BCD,
所以BC/CD=AB/BC,
故CD=a^2/b,
由此得:AD=b-a^2/b=(b^2-a^2)/b。
因为BC=BD,故a=(b^2-a^2)/b。
即得:b^2=a^2+ab
令b/a=t,则t^2-t-1=0,
解方程得:t=(√5+1)/2.
故b/a=(√5+1)/2,a/b=(√5-1)/2.
由正弦定得:sin36 °/sin72 °=a/b=(√5-1)/2.
故得:cos36 °=(√5+1)/4.
因而得: sin36 °=[√(10-2√5)]/4.