最新高考物理电磁感应双杆模型(答案)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:当两棒的速度稳定时,回路中的感应电流为零,设导体棒
ef的速度减小到v1, 导体棒gh的速度增大到v2,
则有2BLv1-BLv2=0,即v2=2v1。
对导体棒ef由动量定理得:
对导体棒gh由动量定理得: 。
由以上各式可得: 。
3、磁场方向与导轨平面不垂直
4.如图所示,ab和cd是固定在同一水平面内的足够长平行金属导轨,ae和cf是平行的足够长倾斜导轨,整个装置放在竖直向上的匀强磁场中。在水平导轨上有与导轨垂直的导体棒1,在倾斜导轨上有与导轨垂直且水平的导体棒2,两棒与导轨间接触良好,构成一个闭合回路。已知磁场的磁感应强度为B,导轨间距为L,倾斜导轨与水平面夹角为θ,导体棒1和2质量均为m,电阻均为R。不计导轨电阻和一切摩擦。现用一水平恒力F作用在棒1上,从静止开始拉动棒1,同时由静止开始释放棒2,经过一段时间,两棒最终匀速运动。忽略感应电流之间的作用,试求:
④
⑤
联立以上各式解得: ,
(2)根据系统的总能量守恒可得:
3.如图所示,abcd和a/b/c/d/为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。ab、a/b/间的宽度是cd、c/d/间宽度的2倍。设导轨足够长,导体棒ef的质量是棒gh的质量的2倍。现给导体棒ef一个初速度v0,沿导轨向左运动,当两棒的速度稳定时,两棒的速度分别是多少?
① ② ③
由①②③三式解得:
对乙: ④ 得
又 ⑤ 得
7.如图,水平平面内固定两平行的光滑导轨,左边两导轨间的距离为2L,右边两导轨间的距离为L,左右部分用导轨材料连接,两导轨间都存在磁感强度为B、方向竖直向下的匀强磁场。ab、cd两均匀的导体棒分别垂直放在左边和右边导轨间,ab棒的质量为2m,电阻为2r,cd棒的质量为m,电阻为r,其它部分电阻不计。原来两棒均处于静止状态,cd棒在沿导轨向右的水平恒力F作用下开始运动,设两导轨足够长,两棒都不会滑出各自的轨道。
(1) 自由下滑,机械能守恒: ①
由于 、 串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度 ,故它们的磁场力为: ②
在磁场力作用下, 、 各作变速运动,产生的感应电动势方向相反,当 时,电路中感应电流为零( ),安培力为零, 、 运动趋于稳定,此时有:
所以 ③
、 受安培力作用,动量均发生变化,由动量定理得:
6.两根足够长的平行金属导轨,固定在同一水平面上,导轨的电阻很小,可忽略不计。导轨间的距离L=0.2m。磁感强度B=0.50T的匀强磁场与导轨所在平面垂直。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两根金属杆并排靠在一起,且都处于静止状态。现有一与导轨平行,大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为1.37m/s2,问此时甲、乙两金属杆速度v1、v2及它们之间的距离是多少?
2..如图所示,光滑导轨 、 等高平行放置, 间宽度为 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。 、 是质量均为 电阻均为R的金属棒,现让 从离水平轨道 高处由静止下滑,设导轨足够长。试求: (1) 、 棒的最终速度;(2)全过程中感应电流产生的焦耳热。
【解析】 下滑进入磁场后切割磁感线,在 电路中产生感应电流, 、 各受不同的磁场力作用而分别作变减速、变加速运动,电路中感应电流逐渐减小,当感应电流为零时, 、 不再受磁场力作用,各自以不同的速度匀速滑动。
(1)在运动中产生的焦耳热最多是多少.
(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?
解析:ab棒向cd棒运动时,磁通量变小,产生感应电流.ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动.在ab棒的速度大于cd棒的速度时,回路总有感应电流,ab棒继续减速,cd棒继续加速.临界状态下:两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v作匀速运动.
(1)水平拉力F的大小;
(2)棒1最终匀速运动的速度v1的大小。
解析(1)1棒匀速: 2棒匀速:
解得:
(2)两棒同时达匀速状态,设经历时间为t,过程中平
均感应电流为 ,据动量定理,
对1棒: ;对2棒:
联立解得:
匀Fra Baidu bibliotek运动后,有: , 解得:
5.如图,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为l,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为m1、m2和R1、R2,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度v0沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。
⑴试分析两棒最终达到何种稳定状态?此状态下两棒的加速度各多大?
⑵在达到稳定状态时ab棒产生的热功率多大?
解:⑴cd棒由静止开始向右运动,产生如图所示的感应电流,设感应电流大小为I,cd和ab棒分别受到的安培力为F1、F2,速度分别为v1、v2,加速度分别为a1、a2,则
(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有 根据能量守恒,整个过程中产生的总热量
(2)设ab棒的速度变为初速度的3/4时,cd棒的速度为v1,则由动量守恒可知:
。此时回路中的感应电动势和感应电流分别为: , 。此时 棒所受的安培力: ,所以 棒的加速度为
由以上各式,可得 。
2、双杆所在轨道宽度不同——常用动量定理找速度关系
1、双杆所在轨道宽度相同——常用动量守恒求稳定速度
1.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:
ef的速度减小到v1, 导体棒gh的速度增大到v2,
则有2BLv1-BLv2=0,即v2=2v1。
对导体棒ef由动量定理得:
对导体棒gh由动量定理得: 。
由以上各式可得: 。
3、磁场方向与导轨平面不垂直
4.如图所示,ab和cd是固定在同一水平面内的足够长平行金属导轨,ae和cf是平行的足够长倾斜导轨,整个装置放在竖直向上的匀强磁场中。在水平导轨上有与导轨垂直的导体棒1,在倾斜导轨上有与导轨垂直且水平的导体棒2,两棒与导轨间接触良好,构成一个闭合回路。已知磁场的磁感应强度为B,导轨间距为L,倾斜导轨与水平面夹角为θ,导体棒1和2质量均为m,电阻均为R。不计导轨电阻和一切摩擦。现用一水平恒力F作用在棒1上,从静止开始拉动棒1,同时由静止开始释放棒2,经过一段时间,两棒最终匀速运动。忽略感应电流之间的作用,试求:
④
⑤
联立以上各式解得: ,
(2)根据系统的总能量守恒可得:
3.如图所示,abcd和a/b/c/d/为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。ab、a/b/间的宽度是cd、c/d/间宽度的2倍。设导轨足够长,导体棒ef的质量是棒gh的质量的2倍。现给导体棒ef一个初速度v0,沿导轨向左运动,当两棒的速度稳定时,两棒的速度分别是多少?
① ② ③
由①②③三式解得:
对乙: ④ 得
又 ⑤ 得
7.如图,水平平面内固定两平行的光滑导轨,左边两导轨间的距离为2L,右边两导轨间的距离为L,左右部分用导轨材料连接,两导轨间都存在磁感强度为B、方向竖直向下的匀强磁场。ab、cd两均匀的导体棒分别垂直放在左边和右边导轨间,ab棒的质量为2m,电阻为2r,cd棒的质量为m,电阻为r,其它部分电阻不计。原来两棒均处于静止状态,cd棒在沿导轨向右的水平恒力F作用下开始运动,设两导轨足够长,两棒都不会滑出各自的轨道。
(1) 自由下滑,机械能守恒: ①
由于 、 串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度 ,故它们的磁场力为: ②
在磁场力作用下, 、 各作变速运动,产生的感应电动势方向相反,当 时,电路中感应电流为零( ),安培力为零, 、 运动趋于稳定,此时有:
所以 ③
、 受安培力作用,动量均发生变化,由动量定理得:
6.两根足够长的平行金属导轨,固定在同一水平面上,导轨的电阻很小,可忽略不计。导轨间的距离L=0.2m。磁感强度B=0.50T的匀强磁场与导轨所在平面垂直。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两根金属杆并排靠在一起,且都处于静止状态。现有一与导轨平行,大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为1.37m/s2,问此时甲、乙两金属杆速度v1、v2及它们之间的距离是多少?
2..如图所示,光滑导轨 、 等高平行放置, 间宽度为 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。 、 是质量均为 电阻均为R的金属棒,现让 从离水平轨道 高处由静止下滑,设导轨足够长。试求: (1) 、 棒的最终速度;(2)全过程中感应电流产生的焦耳热。
【解析】 下滑进入磁场后切割磁感线,在 电路中产生感应电流, 、 各受不同的磁场力作用而分别作变减速、变加速运动,电路中感应电流逐渐减小,当感应电流为零时, 、 不再受磁场力作用,各自以不同的速度匀速滑动。
(1)在运动中产生的焦耳热最多是多少.
(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?
解析:ab棒向cd棒运动时,磁通量变小,产生感应电流.ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动.在ab棒的速度大于cd棒的速度时,回路总有感应电流,ab棒继续减速,cd棒继续加速.临界状态下:两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v作匀速运动.
(1)水平拉力F的大小;
(2)棒1最终匀速运动的速度v1的大小。
解析(1)1棒匀速: 2棒匀速:
解得:
(2)两棒同时达匀速状态,设经历时间为t,过程中平
均感应电流为 ,据动量定理,
对1棒: ;对2棒:
联立解得:
匀Fra Baidu bibliotek运动后,有: , 解得:
5.如图,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为l,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为m1、m2和R1、R2,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度v0沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。
⑴试分析两棒最终达到何种稳定状态?此状态下两棒的加速度各多大?
⑵在达到稳定状态时ab棒产生的热功率多大?
解:⑴cd棒由静止开始向右运动,产生如图所示的感应电流,设感应电流大小为I,cd和ab棒分别受到的安培力为F1、F2,速度分别为v1、v2,加速度分别为a1、a2,则
(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有 根据能量守恒,整个过程中产生的总热量
(2)设ab棒的速度变为初速度的3/4时,cd棒的速度为v1,则由动量守恒可知:
。此时回路中的感应电动势和感应电流分别为: , 。此时 棒所受的安培力: ,所以 棒的加速度为
由以上各式,可得 。
2、双杆所在轨道宽度不同——常用动量定理找速度关系
1、双杆所在轨道宽度相同——常用动量守恒求稳定速度
1.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求: