111平方根与立方根
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1平方根与立方根(1)
【教学目标】:以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根。
【教学重、难点】:重点:了解平方根的概念,求某些非负数的平方根。 难点:平方根的意义
【教具应用】:老师:三角板、小黑板
学生:
【教学过程】:
一、 提出问题,创设情境。
问题1、要剪出一块面积为25cm ²的正方形纸片,纸片的边长应是多少? 问题2、已知圆的面积是16πcm ²,求圆的半径长。
要想解决这些问题,就来学习本节内容
二、 自学提纲:
1、你能解决上面两个问题吗?这两个问题的实质是什么?
2、看第2页,知道什么是一个数的平方根吗?
3、25的平方根只有5吗?为什么?
4、会求110的平方根吗?试一试
5、-4有平方根吗?为什么?
6、想一想,你是用什么运算来检验或寻找一个数的平方根?
7、根据平方根的定义你能指出正数、0、负数的平方根的特征吗?
8、什么叫开平方?
三、 能力、知识、提高
同学们展示自学结果,老师点拔
① 情境中的两个问题的实质是已知某数的平方,要求这个数。 ② 概括:如果一个数的平方等于a ,那么这个数叫做a 的平方根。 如5²=25,(-5)²=25 ∴25的平方根有两个:5和-5 ③ 根据平方根的意义,可以利用平方来检验或寻找一个数的平方根。 ④ 任何数的平方都不等于-4,所以-4没有平方根。
⑤ 0的平方等于0。所以0只有一个平方根为0。
⑥ 概括:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
⑦ 求一个数a (a ≥0)的平方根的运算,叫做开平方。
四、 知识应用
1、求下列各数的平方根
① 49 ②1.69 ③81
16 ④(-0.2)² 2、将下列各数开平方
①1 ②0.09 ③(-5
3)² 五、 测评
1、说出下列各数的平方根
①81 ②0.25 ③125
4 2、求未知数x 的值
①(3x )²=16 ②(2x -1)²=9
六、 小结:
1、什么叫做平方根?
2、一个正数的平方根有几个?零的平根有几个?负数的平方根呢?
3、平方和开平方运算有什么区别和联系?
区别:①平方运算中,已知的是底数和指数,求的是幂。而在开平方运算中,已知的是指数和幂,求的是底。
②平方运算中的底数可以是任意数,平方的结果是唯一的,在开平方运算中,开方的数的结果不一定是唯一的。
联系:二者互为逆运算。
七、 布置作业
1、P 7第1题
2、(选做)已知:x 是49的平方根,y 是1的平方根,求:
①2x+1 ②(x+y)²