教师版——反比例函数知识点归纳和典型例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数知识点归纳和典型例题

二、基础知识

(一)反比例函数的概念

1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;

2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;

3.反比例函数的自变量,故函数图象与x轴、y轴无交点.

(二)反比例函数的图象

在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).

(三)反比例函数及其图象的性质

1.函数解析式:()

2.自变量的取值范围:

3.图象:

(1)图象的形状:双曲线.

越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:

与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.

当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;

当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.

(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.

图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.

4.k的几何意义

如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于

B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.

5.说明:

(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.

(2)直线与双曲线的关系:

当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.

(3)反比例函数与一次函数的联系.

(四)实际问题与反比例函数

1.求函数解析式的方法:

(1)待定系数法;(2)根据实际意义列函数解析式.

2.注意学科间知识的综合,但重点放在对数学知识的研究上.

(五)充分利用数形结合的思想解决问题.

三、例题分析

1☆.反比例函数的概念

(1)下列函数中,y是x的反比例函数的是().

A.y=3x B.C.3xy=1 D.

(2)下列函数中,y是x的反比例函数的是().

A.B.C.D.

答案:(1)C;(2)A.

2.图象和性质

(1)已知函数是反比例函数,

①若它的图象在第二、四象限内,那么k=___________.

②若y随x的增大而减小,那么k=___________.

(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.

(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.

(4)已知a·b<0,点P(a,b)在反比例函数的图象上,

则直线不经过的象限是().

A.第一象限B.第二象限C.第三象限D.第四象限

(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,

则一次函数y=kx+m的图象经过().

A.第一、二、三象限B.第一、二、四象限

C.第一、三、四象限D.第二、三、四象限

(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().

A.B.C.D.

答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.

3.函数的增减性

(1)在反比例函数的图象上有两点,,且

,则的值为().

A.正数B.负数C.非正数D.非负数

(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().

A.<<B.<<C.<<D.<<

(3)下列四个函数中:①;②;③;④.

y随x的增大而减小的函数有().

A.0个B.1个C.2个D.3个

(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.

注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定

(1)若与成反比例,与成正比例,则y是z的().

A.正比例函数B.反比例函数C.一次函数D.不能确定

(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.

(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.

(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).

①求x 0的值;②求一次函数和反比例函数的解析式.

(5)☆为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6

毫克.请根据题中所提供的信息解答下列问题:

①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是

_______________;药物燃烧后y关于x的函数关系式为_________________.

②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;

③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

答案:(1)B;(2)4,8,(,);

(3)依题意,且,解得.

(4)①依题意,解得

②一次函数解析式为,反比例函数解析式为.

(5)①,,;

②30;③消毒时间为(分钟),所以消毒有效.

5.面积计算

(1)☆如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y

轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().

A.B.C.

D.

相关文档
最新文档