初三数学《二次函数的认识》PPT课件
合集下载
《二次函数》课件
一二
元次
二函
次数
方与
程
抛物线 y=ax2+bx+c(a≠0)与x轴的公共点的横坐
标即一元二次方程ax2+bx+c =0的根
抛物线
与x轴
的公共
点情况
有两个公共点⇔∆> 0
有一个公共点⇔∆= 0
没有公共点⇔∆< 0
利用图象法求一元二次方程的根
抛物线
拓 与直线
展 的公共
点个数
二次函数 y=ax2+bx+c的图象与 x 轴公共点的坐标
羊圈的面积S=x(40-2x)=-2x2+40x
=-2(x-10)2+200(0<x<20).
∴当x=10时,S有最大值,此时S=200.
∵200>187.5,∴张大伯的设计不合理.
应当设计羊圈与墙垂直的两边长为10 m,
与墙平行的一边长为20m.
3.一家电脑公司推出一款新型电脑,投放市场以来3个
2
2
1 2 1
3 2
2
x - (2x-30) = − x +60x-450.
2
2
2
3.如图,在梯形ABCD中,AB∥DC,∠ABC=90°,
∠A=45°,AB=30,BC=x,其中15<x<30.作
DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F
处,DF交BC于点G.
(3) 当x为何值时,S有最大值?并求出这个最大值.
(1) 请你求出矩形羊圈的面积;
解:(1)由题意,得羊圈的长为25 m,
宽为(40-25)÷2=7.5(m).
故羊圈的面积为25×7.5=187.5(m2)
《二次函数》PPT课件
当a、b、c为何值时函数y=ax2+bx+c是一正次比函例数函?数?
思考: 二次函数的一般式y=ax2
+bx+c(a≠0)与一元二次方程 ax2+bx+c=0(a≠0)有什么联 系和区别?
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的.
区别:前者是函数.后者是方程.等式另一 边前者是y,后者是0
例2、 y = (m+3)xm2-7 (1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是二次函数?
例3.某小区要修建一块矩形绿地,设矩形的长为x米,
宽为y米,面积为S平方米,(x﹥y).
(1)如果用18米的建筑材料来修建绿地的边框(即周 长),求S与x的函数关系,并求出x的取值范围。
(2)现根据小区的规划要求,所修建的绿地面积必 须是18平方米,在满足(1)的条件下,矩形的长 和宽各为多少米?
1、下列函数中,(x是自变量),哪些是二次 函数?为什么?
A y=ax2+bx+c
B y2=x2-4x+1
C y=x2
D y=2+ √x2+1
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( C ) A m,n是常数,且m≠0 B m,n是常数,且n≠0 C m,n是常数,且m≠n D m,n为任何实数
问题3:多边形的对角线数d与边数n有什么关系?
由图可以想出,如果多边形有n
条边,那么它有 n 个顶点,从一
个顶点出发,连接与这点不相邻
M
N 的各顶点,可以作(n-3)条对角线.
d 1 n n 3
思考: 二次函数的一般式y=ax2
+bx+c(a≠0)与一元二次方程 ax2+bx+c=0(a≠0)有什么联 系和区别?
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的.
区别:前者是函数.后者是方程.等式另一 边前者是y,后者是0
例2、 y = (m+3)xm2-7 (1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是二次函数?
例3.某小区要修建一块矩形绿地,设矩形的长为x米,
宽为y米,面积为S平方米,(x﹥y).
(1)如果用18米的建筑材料来修建绿地的边框(即周 长),求S与x的函数关系,并求出x的取值范围。
(2)现根据小区的规划要求,所修建的绿地面积必 须是18平方米,在满足(1)的条件下,矩形的长 和宽各为多少米?
1、下列函数中,(x是自变量),哪些是二次 函数?为什么?
A y=ax2+bx+c
B y2=x2-4x+1
C y=x2
D y=2+ √x2+1
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( C ) A m,n是常数,且m≠0 B m,n是常数,且n≠0 C m,n是常数,且m≠n D m,n为任何实数
问题3:多边形的对角线数d与边数n有什么关系?
由图可以想出,如果多边形有n
条边,那么它有 n 个顶点,从一
个顶点出发,连接与这点不相邻
M
N 的各顶点,可以作(n-3)条对角线.
d 1 n n 3
二次函数的概念课件(共27张PPT)沪科版数学九年级上学期
初中数学 九年级 第一学期 《二次函数》
26.1 二 次 函 数 的 概 念
上海教育出版社 九年义务教育课本 九年级 第一学期(试用本)
一、情境引入
一、情境引入
消防水枪的喷射路线
一、情境引入
投出的篮球
跳水比赛
一、情境引入
喷水池喷射出的一条水线
一、情境引入
问题1 我们已经学习过哪些函数?
问题2 从哪些方面研究这些函数?
方厘米,那么 y 关于 x 的函数解析式是__________.
问题6 把一根40厘米的铁丝分为两段,再分别把每一段弯折成一个正方形.设
其中一段铁丝长为 x 厘米,两个正方形的面积和为
y 平方厘米,那么 y
= − + . 定义域是_________.
关于 x 的函数解析式是_____________
问题3 如何研究新的函数?
实际问题
概
念
图
像
性
质
实际应用
一、情境引入
抛物线
一、情境引入
问题4 如果正方形的边长是 x 厘米,那么它的面积 y 平方厘米是边长 x 厘米的
函数,y 关于 x 的函数解析式是__________.
问题5 一个边长为4厘米的正方形, 若它的边长增加 x 厘米,则面积随之增加
的函数叫做二次函数. 其定义域为一切实数.
二次函数解析式的特点:
1.关于自变量的整式
2.自变量的最高次数为二次
3.二次项系数不为零
二、新知讲授
问题7 已知函数 y=ax2+bx+c (其中a、b、c是常数),那么 y 是 x 的什么函数?
(1)当 a≠0 时, y 是 x 的二次函数.
26.1 二 次 函 数 的 概 念
上海教育出版社 九年义务教育课本 九年级 第一学期(试用本)
一、情境引入
一、情境引入
消防水枪的喷射路线
一、情境引入
投出的篮球
跳水比赛
一、情境引入
喷水池喷射出的一条水线
一、情境引入
问题1 我们已经学习过哪些函数?
问题2 从哪些方面研究这些函数?
方厘米,那么 y 关于 x 的函数解析式是__________.
问题6 把一根40厘米的铁丝分为两段,再分别把每一段弯折成一个正方形.设
其中一段铁丝长为 x 厘米,两个正方形的面积和为
y 平方厘米,那么 y
= − + . 定义域是_________.
关于 x 的函数解析式是_____________
问题3 如何研究新的函数?
实际问题
概
念
图
像
性
质
实际应用
一、情境引入
抛物线
一、情境引入
问题4 如果正方形的边长是 x 厘米,那么它的面积 y 平方厘米是边长 x 厘米的
函数,y 关于 x 的函数解析式是__________.
问题5 一个边长为4厘米的正方形, 若它的边长增加 x 厘米,则面积随之增加
的函数叫做二次函数. 其定义域为一切实数.
二次函数解析式的特点:
1.关于自变量的整式
2.自变量的最高次数为二次
3.二次项系数不为零
二、新知讲授
问题7 已知函数 y=ax2+bx+c (其中a、b、c是常数),那么 y 是 x 的什么函数?
(1)当 a≠0 时, y 是 x 的二次函数.
初三数学《二次函数的认识》PPT课件
(2)抛物线
y
2 3
x
2在x轴的
下
方(除顶点外),在对称轴的
左侧,y随着x的 增大而增大 ;在对称轴的右侧,y随着x的
增大而减小 ,当x=0时,函数y的值最大,最大值是 0 ,
当x 0时,y<0.
AAA
y=ax2 性质简单运用
3、已知抛物线y=ax2经过点A(-2,-8)。 (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上。 (3)求出此抛物线上纵坐标为-6的点的坐标。
y 2x2
y=ax2 性质简单运用
1、根据左边已画好的函数图象填空:
y 2 x2 3
(1)抛物线y=2x2的顶点坐标是(0,0), 对称轴是 y轴 ,在 对称轴的右 侧, y随着x的增大而增大;在对称轴的左 侧, y随着x的增大而减小,当x= 0 时, 函数y的值最小,最小值是 0 ,抛物 线y=2x2在x轴的 上 方(除顶点外)。
2
3
函数y=ax2的图象,以后叫做 抛物线y=ax2
y 2x2
抛物线y=ax2(a>0)性质:
– 对称性如何?
y=x²
– 位于哪些象限?
– 函数的最大、最小值?
– 顶点坐标? – 开口方向以及大小如何? – 增减性如何?
y 2 x2 3
AAA
二次函数y=ax2的性质
y=ax2
a>0
a<0
位置
17
解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2, 解出a= -2,所求函数解析式为y= -2x2.
(2)因为42(1)2,所以点B(-1 ,-4) 不在此抛物线上。
(3)由-6=-2x2 ,得x2=3, x 3
二次函数的课件ppt课件ppt课件
二次函数的极坐标表示
二次函数$y = ax^{2} + bx + c$在极 坐标系下的表示为$r = a\cos^{2}\theta + b\cos\theta + c$。
05
二次函数的应用实例
生活中的二次函数应用
打篮球的抛物线
篮球运动员投篮时,篮球的运动 轨迹可以近似为二次函数。通过 调整投篮角度和力度,可以最大
数是偶函数。
03
二次函数的公式与运算
二次函数的公式
标准的二次函数公式
y = ax^2 + bx + c,其中a、b、c为系数,且a≠0。
顶点式
y = a(x-h)^2 + k,其中(h,k)为顶点坐标。
交点式
y = a(x-x1)(x-x2),其中x1、x2为与x轴的交点坐标。
二次函数的运算规则
解
根据顶点式,可知顶点坐标为(1.5, -0.75);根据交点式,可知 与x轴的交点坐标为(2.5, 0)和(2.5, 0);与y轴的交点坐标为(0, 5)。
例题2
已知二次函数y = -3x^2 + 6x + 9,求函数的对称轴和最小值。
04
二次函数的图像变换
平移变换
水平平移
二次函数$y = ax^{2} + bx + c$ 向右平移$m$个单位,得到新的 二次函数$y = a(x - m)^{2} + b(x - m) + c$。
垂直平移
二次函数$y = ax^{2} + bx + c$ 向上平移$n$个单位,得到新的 二次函数$y = ax^{2} + bx + c + n$。
二次函数$y = ax^{2} + bx + c$在极 坐标系下的表示为$r = a\cos^{2}\theta + b\cos\theta + c$。
05
二次函数的应用实例
生活中的二次函数应用
打篮球的抛物线
篮球运动员投篮时,篮球的运动 轨迹可以近似为二次函数。通过 调整投篮角度和力度,可以最大
数是偶函数。
03
二次函数的公式与运算
二次函数的公式
标准的二次函数公式
y = ax^2 + bx + c,其中a、b、c为系数,且a≠0。
顶点式
y = a(x-h)^2 + k,其中(h,k)为顶点坐标。
交点式
y = a(x-x1)(x-x2),其中x1、x2为与x轴的交点坐标。
二次函数的运算规则
解
根据顶点式,可知顶点坐标为(1.5, -0.75);根据交点式,可知 与x轴的交点坐标为(2.5, 0)和(2.5, 0);与y轴的交点坐标为(0, 5)。
例题2
已知二次函数y = -3x^2 + 6x + 9,求函数的对称轴和最小值。
04
二次函数的图像变换
平移变换
水平平移
二次函数$y = ax^{2} + bx + c$ 向右平移$m$个单位,得到新的 二次函数$y = a(x - m)^{2} + b(x - m) + c$。
垂直平移
二次函数$y = ax^{2} + bx + c$ 向上平移$n$个单位,得到新的 二次函数$y = ax^{2} + bx + c + n$。
初三二次函数ppt课件ppt课件
轴是$x = - \frac{b}{2,利用描点法可以 绘制出二次函数的图像。
与x轴交点
当$\Delta > 0$时,二次函数的 图像与x轴有两个交点;当
$\Delta = 0$时,二次函数的图 像与x轴只有一个交点;当
$\Delta < 0$时,二次函数的图 像与x轴没有交点。
理解二次函数的基本 概念和图像表示。
能够运用二次函数解 决实际问题。
掌握二次函数的性质 ,包括开口方向、顶 点坐标和对称轴。
课程计划
通过PPT演示,引导学生了解 二次函数的概念和图像表示。
通过例题讲解,帮助学生掌握 二次函数的性质和应用。
组织课堂练习和讨论,加深学 生对二次函数的理解和应用能 力。
二次函数的表达式
01
02
03
表达式
二次函数的表达式为$y = ax^{2} + bx + c$,其中 $a \neq 0$。
各项的意义
$a$是二次项系数,$b$ 是一次项系数,$c$是常 数项。
如何确定表达式
通过已知条件,利用待定 系数法可以确定二次函数 的表达式。
二次函数的图像
图像特点
二次函数的图像是一个抛物线, 其顶点坐标是$( - \frac{b}{2a}, \frac{4ac - b^{2}}{4a})$,对称
06
参考资料
初三二次函数ppt课件
初三二次函数的概念
介绍二次函数的基本定义、表达式和 图像特征。
初三二次函数的图像和性质
详细描述了如何绘制二次函数的图像 ,并分析了图像的开口方向、顶点坐 标、对称轴和增减性等性质。
初三二次函数的实际应用
通过实例和练习题,展示了二次函数 在解决实际问题中的应用,如最值问 题、行程问题等。
与x轴交点
当$\Delta > 0$时,二次函数的 图像与x轴有两个交点;当
$\Delta = 0$时,二次函数的图 像与x轴只有一个交点;当
$\Delta < 0$时,二次函数的图 像与x轴没有交点。
理解二次函数的基本 概念和图像表示。
能够运用二次函数解 决实际问题。
掌握二次函数的性质 ,包括开口方向、顶 点坐标和对称轴。
课程计划
通过PPT演示,引导学生了解 二次函数的概念和图像表示。
通过例题讲解,帮助学生掌握 二次函数的性质和应用。
组织课堂练习和讨论,加深学 生对二次函数的理解和应用能 力。
二次函数的表达式
01
02
03
表达式
二次函数的表达式为$y = ax^{2} + bx + c$,其中 $a \neq 0$。
各项的意义
$a$是二次项系数,$b$ 是一次项系数,$c$是常 数项。
如何确定表达式
通过已知条件,利用待定 系数法可以确定二次函数 的表达式。
二次函数的图像
图像特点
二次函数的图像是一个抛物线, 其顶点坐标是$( - \frac{b}{2a}, \frac{4ac - b^{2}}{4a})$,对称
06
参考资料
初三二次函数ppt课件
初三二次函数的概念
介绍二次函数的基本定义、表达式和 图像特征。
初三二次函数的图像和性质
详细描述了如何绘制二次函数的图像 ,并分析了图像的开口方向、顶点坐 标、对称轴和增减性等性质。
初三二次函数的实际应用
通过实例和练习题,展示了二次函数 在解决实际问题中的应用,如最值问 题、行程问题等。
二次函数ppt课件
22.1.1 二次函数
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾
观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×
√
×
√
√
例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾
观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×
√
×
√
√
例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.
初中数学九年级PPT课件二次函数可编辑全文
2
解:根据题意,得
k
1 2
0
①
2k 2 k 1 2
②
由①,得 k 1
2
由②,得
k1
1 2
,
k
2
1
∴
k 1
二.抛物线y=ax2+bx+c的特征与a、 b、c的符号:
(1)a决定开口方向:aa
0, 0,
开口向上, 开口向下;
((32))a与c决b定决抛定物对线称轴与位y轴置交:点aa,,位bb异 同置号 号, ,在 在yy轴 轴右 左侧 侧; ,
4a+2b+c=0
c=3
36a-6b+c=0
解得:
a=Leabharlann 1 4b= -1c=3
所以二次函数的解析式为: y 1 x2 x 3 4
顶点式:
解:因为二次函数的对称轴为x=-2,所以可设函 数的解析式为:y=a(x+2)2+k,把点(2,0) (0,3)代入可得:
16a+k=0
4a+k=3
解得
a=
例2、函数
y 1 x2 x 2
2
3
的开口方向
向上
,
顶点坐标是 ( 1 , 1 ) 6
,对称轴方程是 x 1.
解:a 1 ,b 1, c 2
2
3
a 0,
开口向上
又 b 2a
1 2
1
1
2
4ac b2
4 1 2 12 23
1
4a
4 1
6
2
∴ 顶点坐标为: (1, 1 ) 6
对称轴方程是: x 1
1 4
k=4 所以二次函数的解析式为:y 1 x2 x 3
解:根据题意,得
k
1 2
0
①
2k 2 k 1 2
②
由①,得 k 1
2
由②,得
k1
1 2
,
k
2
1
∴
k 1
二.抛物线y=ax2+bx+c的特征与a、 b、c的符号:
(1)a决定开口方向:aa
0, 0,
开口向上, 开口向下;
((32))a与c决b定决抛定物对线称轴与位y轴置交:点aa,,位bb异 同置号 号, ,在 在yy轴 轴右 左侧 侧; ,
4a+2b+c=0
c=3
36a-6b+c=0
解得:
a=Leabharlann 1 4b= -1c=3
所以二次函数的解析式为: y 1 x2 x 3 4
顶点式:
解:因为二次函数的对称轴为x=-2,所以可设函 数的解析式为:y=a(x+2)2+k,把点(2,0) (0,3)代入可得:
16a+k=0
4a+k=3
解得
a=
例2、函数
y 1 x2 x 2
2
3
的开口方向
向上
,
顶点坐标是 ( 1 , 1 ) 6
,对称轴方程是 x 1.
解:a 1 ,b 1, c 2
2
3
a 0,
开口向上
又 b 2a
1 2
1
1
2
4ac b2
4 1 2 12 23
1
4a
4 1
6
2
∴ 顶点坐标为: (1, 1 ) 6
对称轴方程是: x 1
1 4
k=4 所以二次函数的解析式为:y 1 x2 x 3
二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
初三二次函数课件ppt课件
02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。
二次函数(1)PPT课件(人教版)
九年级上册人教版数学
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
1.一般地,形如 y=ax2+bx+c(a,b,c 是常数,a≠0)的函数,叫做 __二__次__函__数_,其中 x 是自变量,a,b,c 分别是函数解析式的_二__次__项___系数、 一__次__项___系数和常数项.
14.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩 余的四方框的面积为y(m2),则y与x之间的函数关系式为y_=__1_6_-__x_2_(_0_<__x_<_,4) 它是_二__次____函数.
15.若y=(m-1)xm2+2m-1+3. (1)m取什么值时,此函数是二次函数? (2)m取什么值时,此函数是一次函数?
解 : 降 低 x 元 后 , 所 销 售 的 件 数 是 (500 + 100x) , 则 y = (13.5 - 2.5 - x)(500+100x),即y=-100x2+600x+5500(0<x≤11)
18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P 从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开 始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B 同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.
C.y=12(x-1)(x+4)不是二次函数 D.在 y=1- 2x2 中,一次项系数为 1
3.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a_≠_-__3___. 4.对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数 项的和是__0__. 5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3. (1)当___a≠__2____时,x,y之间是二次函数关系; (2)当___a_=__2_且__b_≠_-__2_____时,x,y之间是一次函数关系.
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
1.一般地,形如 y=ax2+bx+c(a,b,c 是常数,a≠0)的函数,叫做 __二__次__函__数_,其中 x 是自变量,a,b,c 分别是函数解析式的_二__次__项___系数、 一__次__项___系数和常数项.
14.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩 余的四方框的面积为y(m2),则y与x之间的函数关系式为y_=__1_6_-__x_2_(_0_<__x_<_,4) 它是_二__次____函数.
15.若y=(m-1)xm2+2m-1+3. (1)m取什么值时,此函数是二次函数? (2)m取什么值时,此函数是一次函数?
解 : 降 低 x 元 后 , 所 销 售 的 件 数 是 (500 + 100x) , 则 y = (13.5 - 2.5 - x)(500+100x),即y=-100x2+600x+5500(0<x≤11)
18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P 从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开 始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B 同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.
C.y=12(x-1)(x+4)不是二次函数 D.在 y=1- 2x2 中,一次项系数为 1
3.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a_≠_-__3___. 4.对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数 项的和是__0__. 5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3. (1)当___a≠__2____时,x,y之间是二次函数关系; (2)当___a_=__2_且__b_≠_-__2_____时,x,y之间是一次函数关系.
二次函数图ppt课件
02 二次函数的图像性质
CHAPTER
开口方向
总结词:由二次项系数决定 a>0时,向上开口;a<0时,向下开口。
顶点坐标
01
总结词:由公式 y=ax^2+bx+c(a≠0)直接读
02
顶点的横坐标为x=-b/2a,纵坐 标为y=4ac-b^2/4a。
对称轴
总结词:对称轴是直线x=-b/2a
二次函数图像是轴对称图形,对称轴为直线x=-b/2a,对称轴与y轴平行。
二次函数的表达式由三部分组成,分 别是二次项系数$a$、一次项系数$b$ 和常数项$c$。这些系数可以根据实际 情况进行选择和调整。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个开口方向由系数$a$决定的抛物线。当$a > 0$时,抛物 线开口向上;当$a < 0$时,抛物线开口向下。同时,抛物线的对称轴为直线$x = -frac{b}{2a}$,顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$ 。
二次函数图PPT课件
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的图像性质 • 二次函数的应用 • 二次函数与其他知识点的联系 • 练习题与答案
01 二次函数的基本概念
CHAPTER
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
详细描述
二次函数是数学中一类重要的函数,其定义形式为$f(x) = ax^2 + bx + c$,其 中$a, b, c$为常数,且$a neq 0$。
初三二次函数课件ppt
详细描述
图像法是通过绘制二次函数的图 像,观察其开口方向、对称轴、 顶点坐标等特征,从而求解二次 函数的解析式。
05
实际应用案例
生活中的二次函数应用
自由落体运动
在物理学中,自由落体运动可以用二 次函数来描述。物体下落时,下落的 高度与时间的平方成正比,即h = 1/2gt^2,其中g是重力加速度。
一次函数的应用
一次函数可以用于解决一些实际问 题,如速度、成本、时间等。
一次函数与二次函数的关系
一次函数与二次函数的区别
一次函数是一条直线,而二次函数是一个抛物线。
一次函数与二次函数的联系
二次函数可以看作是由两个一次函数组成的,其中一个一次函数的系数为0。
二次函数的意义与重要性
二次函数的意义
二次函数是函数中的一种,一般形如y=ax^2+bx+c(a,b,c是常数,a≠0),其中x 是自变量,y是因变量。
二次函数的对称轴与开口方向
对称轴:直线$x = \frac{b}{2a}$,是二次函数图像
的对称轴
开口方向:取决于二次项系数a ,a>0时开口向上,a<0时开口
向下
以上是初三二次函数课件的相关 内容。
04
二次函数的求解方法
配方法
详细描述:配方法是通过配方的 方式,将二次函数的一般形式转 化为顶点式或直接用配方法求出 抛物线的顶点坐标及对称轴。
$y = a(x - x_{1})(x - x_{2})$
二次函数的图像性质
开口方向
取决于二次项系数a,a>0时开口向上,a<0时开口向下
对称轴
直线$x = -\frac{b}{2a}$
顶点坐标
$(-\frac{b}{2a}, f(-\frac{b}{2a}))$
图像法是通过绘制二次函数的图 像,观察其开口方向、对称轴、 顶点坐标等特征,从而求解二次 函数的解析式。
05
实际应用案例
生活中的二次函数应用
自由落体运动
在物理学中,自由落体运动可以用二 次函数来描述。物体下落时,下落的 高度与时间的平方成正比,即h = 1/2gt^2,其中g是重力加速度。
一次函数的应用
一次函数可以用于解决一些实际问 题,如速度、成本、时间等。
一次函数与二次函数的关系
一次函数与二次函数的区别
一次函数是一条直线,而二次函数是一个抛物线。
一次函数与二次函数的联系
二次函数可以看作是由两个一次函数组成的,其中一个一次函数的系数为0。
二次函数的意义与重要性
二次函数的意义
二次函数是函数中的一种,一般形如y=ax^2+bx+c(a,b,c是常数,a≠0),其中x 是自变量,y是因变量。
二次函数的对称轴与开口方向
对称轴:直线$x = \frac{b}{2a}$,是二次函数图像
的对称轴
开口方向:取决于二次项系数a ,a>0时开口向上,a<0时开口
向下
以上是初三二次函数课件的相关 内容。
04
二次函数的求解方法
配方法
详细描述:配方法是通过配方的 方式,将二次函数的一般形式转 化为顶点式或直接用配方法求出 抛物线的顶点坐标及对称轴。
$y = a(x - x_{1})(x - x_{2})$
二次函数的图像性质
开口方向
取决于二次项系数a,a>0时开口向上,a<0时开口向下
对称轴
直线$x = -\frac{b}{2a}$
顶点坐标
$(-\frac{b}{2a}, f(-\frac{b}{2a}))$
初三二次函数ppt课件ppt课件ppt课件
03
二次函数的图像变换
平移变换
总结词
平移变换是指二次函数的图像在平面坐标系 中沿x轴或y轴方向进行移动。
详细描述
平移变换包括沿x轴方向的左移和右移,以 及沿y轴方向的上移和下移。对于一般形式 的二次函数y=ax^2+bx+c,当b≠0时,图 像为抛物线。当b>0时,图像向右平移b/2a个单位;当b<0时,图像向左平移 |b|/2a个单位。
总结词
顶点式二次函数解析式是y=a(xh)^2+k,其中(h,k)为函数的顶点。
详细描述
顶点式二次函数解析式表示的是一个 开口向上或向下的抛物线,其顶点为 (h,k)。该形式简化了函数的对称轴和 顶点,便于分析函数的性质。
交点式二次函数解析式
总结词
交点式二次函数解析式是y=a(x-x1)(x-x2),其中x1、x2为函数与x轴的交点。
02
二次函数的解析式
一般二次函数解析式
总结词
一般二次函数解析式是y=ax^2+bx+c,其中a、b、c为常数 ,且a≠0。
详细描述
一般二次函数解析式是二次函数的基本形式,它可以表示任 意二次函数。其中a控制函数的开口方向和开口大小,b控制 函数的对称轴,c为函数与y轴的交点。
顶点式二次函数解析式
值的变化。
04
二次函数的实际应用
最大利润问题
总结词
通过建立二次函数模型,解决最大利润问题。
详细描述
在生产和经营过程中,常常需要寻求最大利润。通过将实际问题转化为数学模型,利用二次函数求导 数的方法,可以找到获得最大利润的条件和对应的最大利润值。
抛物线形拱桥问题
总结词
利用二次函数解析式表示抛物线形拱桥的形 状,进而解决相关问题。
《二次函数》ppt课件
判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。
《二次函数》PPT优秀课件
说一说以上二次函数解析式的各项系数.
链接中考
1.下列函数解析式中,一定为二次函数的是( C )
A.y=3x-1 C.s=2t2-2t+1
B.y=ax2+bx+c
D.y=x2+
1
2
x
链接中考
2.已知函数 y=(m²﹣m)x²+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样? 解:(1)根据一次函数的定义,得m2﹣m=0,
探究新知
素养考点 1 二次函数的识别
例1 下列函数中是二次函数的有 ①⑤⑥ .
①√ y= 2x2 2
×③y x2(1 x2 ) 1
最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c(a,b,c为常数,a≠0)
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
链接中考
1.下列函数解析式中,一定为二次函数的是( C )
A.y=3x-1 C.s=2t2-2t+1
B.y=ax2+bx+c
D.y=x2+
1
2
x
链接中考
2.已知函数 y=(m²﹣m)x²+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样? 解:(1)根据一次函数的定义,得m2﹣m=0,
探究新知
素养考点 1 二次函数的识别
例1 下列函数中是二次函数的有 ①⑤⑥ .
①√ y= 2x2 2
×③y x2(1 x2 ) 1
最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c(a,b,c为常数,a≠0)
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 2x2
2
1、根据左边已画好的函数图象填空: (1)抛物线y=2x2的顶点坐标是 (0,0), 对称轴是 y轴 ,在 对称轴的右 侧,
2 2 y x 3
y随着x的增大而增大;在 对称轴的左 侧, y随着x的增大而减小,当x= 0 时, 函数y的值最小,最小值是 0 ,抛物 线y=2x2在x轴的 上 方(除顶点外)。
议一议 观察图象,回答问题:
y
yx
x
2
(1)图象是轴对称图形吗?如果是,它 的对称轴是什么?它有几对对称点? 答:图象是轴对称图形, O 它的对称轴是y轴,无数对。 (2)图象 与x轴有交点吗?如果有,交点坐标是什么? 答:有,交点坐标是(0,0). (3)当x取什么值时,y的值最小?最小值是什么?
二次函数y=ax2的性质
a>0 a<0 在x轴上方 在x轴下方 位置 在y轴左右两侧同时 在y轴左右两侧同时 延伸方向 向上无限延伸 向下无限延伸 开口向上 开口向下 开口 a的绝对值越大,开口越小 对称性 关于y轴对称,对称轴方程是x=0 顶点坐标是原点(0,0) 顶点 顶点是最低点 顶点是最高点 在对称轴左侧递减 在对称轴左侧递增 增减性 在对称轴右侧递增 在对称轴右侧递减 y=ax2
1 2 抛物线 y x ,y x 和直线 x a (a 0)分别 2 交于 A、B两点,已知 AOB 90,
2
()求通过原点 O,把 OAB面积两等分的直线解析 式 1 ( )为使直线 y 2 x b与线段 AB相交,那么 b值应是 2 怎样的范围才合适?
解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2, 解出a= -2,所求函数解析式为y= -2x2.
(2)因为 4 2(1)2,所以点B(-1 ,-4) 不在此抛物线上。
(3)由-6=-2x2 ,得x2=3, x 3 所以纵坐标为-6的点有两个,它们分别是
( 3,6)与( 3,6)
2
1、二次函数的一般形式是怎样的? y=ax² +bx+c(a,b,c是常数,a≠ 0)
2.下列函数中,哪些是二次函数?
① ③
yx
2
2
y xx
1 ② yx x
2
④ y x x 1
2
1 2 ⑤ y x 2x 4 3
x
y=x2 y= - x2 ...
... ...
1.5
1 y x2 2
y 2x2
列表参考
2 y x2
y x2
1 y x2 2
y 2x2
y x2
2 y x2 3
二次函数y=ax2的图象形如物体抛射时 所经过的路线,我们把它叫做抛物线。
这条抛物线关于y轴 这条抛物线关于y轴 这条抛物线关于y轴 对称,y轴就是它的 对称,y轴就是它的 对称,y轴就是它的 对称轴。 对称轴。 对称轴。 对称轴与抛物线2 (1) y x 2 (2) y 2 x 2 2 2 (3) y x 3
用光滑曲线连结时要 自左向右顺次连结
连线
y x2
x 1 2 y x 2 x y=2x2 x
2 y x2 3
... ...
-4 -3 8 4.5
-2 -1 2
0 0 0 0 0 0
答:当x=0时,y的值最小,最小值是0.
(4)当x<0时,随着x的值增大,y 的值如何变化?当x>0呢? 答:当x<0时,y随着x值增大而减小; 当x>0时, y随着x值增大而增大。
二次函数y=ax2图象的性质
根据你在同一坐标系内 所画出函数 1 2 2 2 2 y x , y 2 x , y x 的图象, 参考下列问题进行思考 : 2 3 2的图象,以后叫做 y 2x2 函数y=ax 抛物线y=ax2 抛物线y=ax2(a>0)性质: y=x² – 对称性如何? – 位于哪些象限? – 函数的最大、最小值? – 顶点坐标? 2 y x2 – 开口方向以及大小如何? 3 – 增减性如何?
2 2 (2)抛物线 y 3 x 在x轴的 下 方(除顶点外),在对称轴的
左侧,y随着x的 增大而增大 ;在对称轴的右侧,y随着x的 增大而减小 ,当x=0时,函数y的值最大,最大值是 当x 0 ,
0时,y<0.
2
3、已知抛物线y=ax2经过点A(-2,-8)。 (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上。 (3)求出此抛物线上纵坐标为-6的点的坐标。
-2 -1.5 4 2.25 -4 -2.25
-1 -0.5 1
0
0.5 0.25 -0.25
1 1 -1
1.5 2.25
2
...
0.25 0 -1 -0.25 0
4 -2.25 -4
... ...
函数图象画法
描点法
注意:列表时自变量 2 取值要均匀和对称。 y x
画出下列函数的图象。
y x2
1 0.5 0.5 0.5 1
2 3
2 2 1 2 1.5 1.5
3 4.5 1.5 4.5 2
8 3
4 8
...
0.5
... ... ...
... ...
... ...
-2 -1.5
-1 -0.5
2
8 3 -6
8
4.5
2
0.5
-1
2 3
... -3 ... -6
-2 -1.5
8 3