第二章导数与微分
第2章导数与微分总结
![第2章导数与微分总结](https://img.taocdn.com/s3/m/a1e5e7cd8e9951e79a892757.png)
1、极限的实质是:动而不达导数的实质是:一个有规律商的极限。
规律就是:2、导数的多种变式定义:lim 丄一x)f°)是描述趋近任意 x 时的斜率。
而x 03、I若x 没趋近到x0,那么除法得到的值是这段的平均斜率, 如果趋近到了 x0,得到的就是这点的斜率一一导数。
4、可导与连续的关系:1基础总结lim -= limx 0 x x 0 f(x X)f(x)xlim x x o f(x )f (x o )X o叫 号严可以刻画趋近具体x0时的斜率。
lim o要注意细心观察发现,导数的实质是定义在某点的左右极限。
既然定义在了某点上,该点自然存在,而 且还得等于左右极限。
因此,可导一定是连续的。
反之,如果连续,不一定可导。
不多说。
同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定 极限有可能存在,但是导数绝不会存在。
同理要注意左右导数的问题。
如果存在左或者右导数,那么在左侧该点一定是存 在的。
如:f(x) x,x 0这个函数,在0点就不存在左导数,只存在右导数。
为什么嫩?看定义:万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该 点必须存在! 由此引发了一些容易误判的血案: 例如:A 旦主^謎IC m F 左电鼓 pg 总生戟乞f ( x) f (x)-中的f(x))至u 底是神马。
比如求上图limf(x x) f(x)x 0xlimf(X X)f(0)。
x 0定义里面需要用到f(0)啊!因此,千中 iimf (x)论) x 1x x 0,这个f(x0)千万要等于2/3,而不是1 !定义解决时候一定要注意问。
X X o由此也可以知道,f (x)2x 3, x 1这个函数是不存在导数的,也不存在左导数,3只存在右导数。
5、反函数的导数与原函数的关系:注意,求反函数时候不要换元。
因为换了元虽然对自身来讲函数形式不变, 与原函数融合运算时候就算是换了一个不是自己反函数的一个函数进行运算 果显然是错误的。
高等数学 第二章 导数与微分
![高等数学 第二章 导数与微分](https://img.taocdn.com/s3/m/61401e020622192e453610661ed9ad51f01d542d.png)
(2)算比值: y f (x x) f (x) .
x
x
(3)求极限: f (x) lim y lim f (x x) f (x) .
x x0
x0
x
四、函数可导性与连续性的关系
定理 如果函数 y f (x) 在点 x0 处可导,则函数 y f (x) 在点 x0 处一定连续. 如果函数 f (x) 在点 x0 处连续,则函数 f (x) 在点 x0 处不一定可导.
第二章
导数与微分
导学
我们在解决实际问题时,除了需要确定变量之间的函数关系外,有时 还需要研究函数相对于自变量变化的快慢程度,即函数的变化率,以及当 自变量发生微小变化时函数的近似改变量,这两个问题就是我们本章所要 讨论的主要内容——导数与微分.
第一节
导数的概念
一、导数的定义
设某物体在数轴上做变速直线运动,运动方程为 s s(t) ,现在求该物体在 t0 时刻的瞬时速度 v(t0 ) .
当
u
C (C
为常数)时,有
C v
Cv v2
.
二、反函数的求导法则
定理 2 如果函数 x f ( y) 在区间 I y 内单调、可导且 f ( y) 0 ,那么它的反函数 y f 1(x) 在
区间 Ix {x | x f ( y) ,y I y} 内也可导,且有
[ f 1(x)] 1 或 dy 1 .
当时间 t 由 t0 变到 t0 t 时,物体的路程 s(t) 由 s(t0 ) 变到 s(t0 t) ,
路程的增量 s 为 s s(t0 +t) s(t0 ) ,
物体在
t0
到 t0
t
这段时间内的平均速度为
v
s t
高等数学导数的概念教学ppt课件.ppt
![高等数学导数的概念教学ppt课件.ppt](https://img.taocdn.com/s3/m/e30b9c7a0622192e453610661ed9ad51f01d5428.png)
h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )
有
lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,
《导数与微分》word版
![《导数与微分》word版](https://img.taocdn.com/s3/m/876e19e00b4e767f5bcfce1c.png)
第二章 导数与微分教学要求:正确理解导数概念及其几何意义.知道导数值与导数的联系与区别.熟练掌握求导方法,记住求导的基本公式及求导法那么(四那么运算法那么,反函数、复合函数、隐函数、参数式函数的求导法那么,对数求导法).知道利用定义求导数的方法,会求分段函数分界点处的导数.会计算较简单的导数应用题.会求曲线在某点的切线和法线方程;会求一些物理量的变化率;会计算一些简单的相关变化率问题.理解高阶导数的定义,熟练掌握求二阶导数的方法.会求一些简单的初等函数(如1,,sin ,ln ,ln(1)x e x x x x). 正确理解微分的定义及其与导数的关系.理解微分与函数增量的关系,会用微分近似计算函数改变量和函数值的近似值.理解一阶微分形式不变性.明确可微(可导)与连续之间的关系.教学重点:导数与微分的概念;导数的几何意义和作为变化率的各种实际意义及其应用;函数连续、可导、 可微相互之间的关系;各类函数的求导法那么与求导方法;基本初等函数的导数与微分公式. 教学难点:复合函数求导法那么与高阶导数求导方法的应用.数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学.微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一.恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘).积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容.第一节 导数概念从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生:(1) 求变速运动的瞬时速度;(2) 求曲线上一点处的切线;(3) 求最大值和最小值.这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念.内容分布图示★ 引言★ 变速直线运动的瞬时速度★ 平面曲线的切线★ 导数的定义 ★ 关于导数的几点说明★利用定义求导数与求极限 ★例1★例2★ 例3★ 例4★ 例5 ★ 例6 ★ 例7★ 左右导数★ 例8 ★ 例9★ 导数的几何意义 ★ 例10 ★ 例11★ 导数的物理意义★ 可导与连续的关系★ 例12 ★ 例13 ★ 例14★ 内容小结★ 课堂练习★返回内容要点:一、引例: 引例1: 变速直线运动的瞬时速度; 引例2: 平面曲线的切线二、导数的定义:xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆)()(lim lim )(00000 注:导数概念是函数变化率这一概念的精确描述,它撇开了自变量和因变量所代表的几何或物理等方面的特殊意义,纯粹从数量方面来刻画函数变化率的本质: 函数增量与自变量增量的比值x y ∆∆是函数y 在以0x 和x x ∆+0为端点的区间上的平均变化率,而导数0|x x y ='那么是函数y 在点0x 处的变化率,它反映了函数随自变量变化而变化的快慢程度.根据导数的定义求导,一般包含以下三个步骤:1. 求函数的增量: );()(x f x x f y -∆+=∆2. 求两增量的比值:x x f x x f x y ∆-∆+=∆∆)()(; 3. 求极限 .lim0xy y x ∆∆='→∆ 三、左右导数定理1 函数)(x f y =在点0x 处可导的充要条件是:函数)(x f y =在点0x 处的左、右导数均存在且相等.四、用定义计算导数五、导数的几何意义六、函数的可导性与连续性的关系定理2 如果函数)(x f y =在点0x 处可导,那么它在0x 处连续.注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,那么它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子,这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.例题选讲:导数概念的应用例1 求函数3x y =在1=x 处的导数)1(f '.例2试按导数定义求下列各极限(假设各极限均存在).(1);)2()2(lim ax a f x f a x --→ (2) ,)(lim 0xx f x → 其中.0)0(=f 用定义计算导数例3 求函数C x f =)((C 为常数)的导数.例4设函数,sin )(x x f = 求)(sin 'x 及4|)(sin π='x x . 例5 求函数n x y =(n 为正整数)的导数.例6 求函数)1,0()(≠>=a a a x f x 的导数.例7 求函数)1,0(log ≠>=a a x y a 的导数.左右导数例8 求函数⎩⎨⎧=,,sin )(x x x f 00≥<x x 在0=x 处的导数. 例9 设)(x f 为偶函数,且)0(f '存在. 证明.0)0(='f例10求等边双曲线x y 1=在点⎪⎭⎫ ⎝⎛2,21处的切线的斜率, 并写出在该点处的切线方程和法线方程. 例11 求曲线x y =在点)2,4(处的切线方程.例12 讨论函数||)(x x f =在0=x 处的连续性与可导性.例13 讨论⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x x x x f 在0=x 处的连续性与可导性. 例14设函数⎩⎨⎧<≤+<=,10,10,)(2x x x a x f 问a 取何值时,)(x f 为可导函数. 注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,那么它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子(如第十一章第一节的Koch 雪花曲线描述的函数),这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.课堂练习1. 函数)(x f 在某点0x 处的导数)(0x f '与导函数)(x f '有什么区别与联系?2. 设)(x ϕ在a x =处连续, )()()(22x a x x f ϕ-=, 求)(a f '.3. 求曲线32x x y -=上与x 轴平行的切线方程.莱布尼茨 (Friedrich , Leibniz ,1597~1652)-----博学多才的数学符号大师出生于书香门第的莱布尼兹是德国一们博学多才的学者。
大学高数 第二章 导数与微分
![大学高数 第二章 导数与微分](https://img.taocdn.com/s3/m/df72a80014791711cc791773.png)
定义 2.1 设函数 f ( x) 在 x0 点及其附近有定义,若 x 在在 x0 点处有增量
第 二 章 导 数 与 微 分
x ( f ( x0 x) 仍有定义) ,函数取得增量 y f ( x0 x) f ( x0 ) ;
f ( x0 x) f ( x0 ) lim 若 存在,则称函数在 x0 点可导 x 0 x
且该极限为函数在 x0 点的导数,记为:
dy df ( x ) |x x0 f '( x) 、 y ' |x x0 、 |x x0 、 dx dx
6
关于导数定义的几点说明
y ①若 lim 不存在,则称函数 y f ( x) 在点 x0 处不可导。 x 0 x
f ( x0 x) f ( x0 ) 存在(即左极限存在) ,则称函数在 x0 点左 x 0 x f ( x0 x) f ( x0 ) (即右极限存在) ,则称函数在 x0 点右 导 可导;同理 lim x 0 x 数
1)求增量: y f ( x x) f ( x) C C 0
y f ( x x ) f ( x ) 0 2)算比值: x x f ( x x) f ( x) lim 0 0 3)求极限: f ( x) lim x 0 x 0 x
11
利用导数的定义求导数的一般步骤
(1)计算函数值增量 y f ( x x) f ( x)
y f ( x x ) f ( x ) (2)写比式: x x
y lim (3)求极限: f '( x) y ' x 0 x
12
例 求 f ( x) C ( C 为常数)的导数.
高中物理课件-高数第二章-导数与微分--课件
![高中物理课件-高数第二章-导数与微分--课件](https://img.taocdn.com/s3/m/8c046c96a8956bec0875e3d7.png)
例2.已知 f x0 存在,求
lim f x0 ah f x0 bh
h0
h
3、导数的意义
函数 y f x在点x0 处的导数f x0
是因变量 y在点x0处的变化率,它反
映了 在点x0 处因变量随自变量的变
化而变化的快慢程度。
(二)导函数
1、定义:如果函数 y f x 在开区间
四、基本求导法则与导数公式
(一)常数和基本初等函数的导数公式
1. C 0
2. x x1
3. sin x cos x
4. cos x sin x
5. ta n x sec2 x 6. cot x csc2 x
7. sec x sec x tan x 8. csc x csc x cot x
则
k0
lim xx0
f
x f x0 就是曲线C
x x0
在 M0 x0, y0 点处切线的斜率。
二、导数的定义 (一)函数在一点处的导数
1、定义:设函数 y f x在点x0的某个
邻域内有定义,当自变量 x在x0 处取得
增量 x(点 x0
时 , 相应地函数
x 仍在该邻域内)
y 取得增量
chx shx
thx
1 ch2
x
arshx 1 archx 1
1 x2
x2 1
arthx
1
1 x2
例18.求
y cos x2 sin 1 arctan thx x
的导数。
例19.
y sin nxsinn xn为常数,求y
§2-3 高阶导数
(一)二阶导数
1、定义:把 y f x 的导数叫做函数
x xx0 x0
专升本高数数学第二章导数与微分
![专升本高数数学第二章导数与微分](https://img.taocdn.com/s3/m/a0d0f1385bcfa1c7aa00b52acfc789eb172d9eb7.png)
导数的几何意义
总结词
导数的几何意义是切线的斜率。
详细描述
函数在某一点的导数等于该点处切线的斜率。如果函数在某点可导,那么在该点处一定存在切线,并且切线的斜 率就是函数的导数值。
导数的物理意义
总结词
导数的物理意义是描述物理量变化率的重要工具。
详细描述
在物理学中,许多物理量的变化率都可以用导数来描述。例如,速度是位置函数的导数,加速度是速 度函数的导数等。通过导数的计算,可以深入了解物理量的变化规律和性质。
微分的物理意义是函数值随自变量变化的速率。
02
在物理量中,速度、加速度、角速度等都是微分的应
用,它们都是描述物理量随时间变化的速率。
03
微分可以用来解决物理中的一些问题,如求瞬时速度
、加速度等。
04 导数与微分的应用
CHAPTER
导数在几何中的应用
切线斜率
导数可以用来求曲线上某一点的 切线斜率,从而了解曲线在该点 的变化趋势。
专升本高数数学第二章导数与 微分
目录
CONTENTS
• 导数概念 • 导数的运算 • 微分概念 • 导数与微分的应用
01 导数概念
CHAPTER
导数的定义
总结词
导数是描述函数在某一点附近的变化 率的重要概念。
详细描述
导数定义为函数在某一点处的切线的 斜率,即函数在该点附近的小范围内 变化的速度。导数的计算公式为极限 lim(x->0) [f(x+Δx)-f(x)]/Δx,其中 Δx是自变量的增量。
解的精度。
无穷小分析
03
微分是无穷小分析的基础,可以用来研究函数在无穷小情况下
的性质和变化趋势。
谢谢
第二章 导数与微分
![第二章 导数与微分](https://img.taocdn.com/s3/m/612bc71f27284b73f2425061.png)
由此可见,当|Δx|很小时,(Δx)^2的作用非常小,可以忽略不计 因此,函数y=x^2在x0有微小改变量Δx时,函数的改变量Δy约为 2x0·Δx, Δy≈2x0·Δx.
从图2-3中不难看出,Δy表示的是以x0为边长的正方形外围 的阴影部分面积,它为图示的Ⅰ、Ⅱ、Ⅲ部分面积之和 2(x0·Δx)+(Δx)2,显然当|Δx|相对于x0很小时,(Δx)^2是微乎其 微的. 当f(x)=x2时,f′(x0)=2x0,因此Δy≈2x0·Δx可以写成 Δy≈f′(x0)·Δx. 由于f′(x0)·Δx是Δx的线性函数,所以通常把 f′(x0)·Δx叫做Δy的线性主部.
一般地,对于给定的可导函数y=f(x),当自变量在x0处有 微小的改变量Δx时,函数值y的改变量Δy可用下式近似计算, 即
已知曲线方程y=f(x),可以求过曲线上点M(x0,y0)处的 切线斜率.在M点的附近取点N(x0+Δx,y0+Δy),其中Δx可正 可负,作割线MN,其斜率为(φ为倾斜角) tanφ=Δy/Δx=[f(x0+Δx)-f(x0)]/Δx.当Δx→0时,割线MN将绕着 点M转动到极限位置MT,如图2-2所示.根据上面切线的定义, 直线MT就是曲线y=f(x)在点M处的切线.自然,割线MN的斜 率tanφ的极限就是切线MT的斜率tanα(α是切线MT的倾斜角).
以上两个问题,虽然它们所代表的具体内容不同,但从 数量上看,它们有共同的本质:都是计算当自变量的增量趋 于零时,函数的增量与自变量的增量之比的极限.在自然科学 、工程技术问题和经济管理中,还有许多非均匀变化的问题 ,也都可归结为这种形式的极限.因此,抽去这些问题的不同 的实际意义,只考虑它们的共同性质,就可得出函数的导数 定义.
高等数学导数的计算教学ppt课件
![高等数学导数的计算教学ppt课件](https://img.taocdn.com/s3/m/4449bb2059fafab069dc5022aaea998fcc2240f4.png)
25
第二章 导数与微分
第二节 导数的计算
三.隐函数与参数式函数的导数
(一)隐函数的导数
显函数:因变量可由自变量的某一分析式来表示 的函数称为显函数.例如:
y 1 sin3 x , z x2 y2 .
隐函数:由含x,y的方程F(x, y)=0给出的函数称 为隐函数.例如:
x2/ 3 y2/ 3 a2/ 3 , x3 y3 z3 3xy 0 .
32
第二章 导数与微分
第二节 导数的计算
(二)参数式函数的导数
由参数方程给出的函数:
x y
x(t) y(t )
t
确定了y与x的函数关系.其中函数x(t),y(t)可导,且
x (t)0, ,则函数y=f (x)可导且
f ( x) 1
( y)
或
dy dx
1 dx
.
dy
7
第二章 导数与微分
第二节 导数的计算
例5 求y=arcsinx的导数.
解:由于y=arcsinx,x(-1,1) 为x=siny,y (-/2, /2) 的反函数,且当y (-/2, /2)时,
(siny)=cosy>0. 所以
(arcsin x)' 1 1 1 1 (sin y)' cos y 1 sin2 y 1 x2
f
( x)
3
1
x2
1
x2
1
3
x2
2
2
例10 设y arcsin x 2 x x
解:
y
arcsin
x
3
2x4
,求 y .
1
3
x
1 4
1 x2 2
大一上学期《高等数学》知识整理-第二章 导数与微分
![大一上学期《高等数学》知识整理-第二章 导数与微分](https://img.taocdn.com/s3/m/cfd67161be23482fb4da4c4c.png)
大一上学期《高等数学》知识整理-第二章导数与微分第二章导数与微分1.导数的定义。
对于一个在x0的某个邻域内有定义的函数,当自变量x在x0处取得增量Δx时,相应地函数y取得增量Δy=f(x0+Δx)-f(x0),如果当Δx→x0时Δy/Δx的极限存在,则称函数y=f(x)在x0点可导,并称这个极限为函数y=f(x)在x0处的导数。
通俗地讲,就是描述某个函数在某点增长或下降的瞬时速度,这个“速度”的单位为y每x,即每变化一个单位的x,y变化多少。
与物理学中定义米/秒是一个性质的。
把函数f(x)的导数看做是关于x的函数,即得到函数f(x)的导函数f'(x),简称导数。
(以上的“x0”中的“0”都是x 的下标,下同。
)导数也可以用微分的形式记作dy/dx,这个后面会提及。
2.在导数的定义中,如果Δx从左边趋向x0或从右边趋向x0,那么对应的导数被称为左导数和右导数。
只有f(x)在x0处的左导数和右导数相等,才能称f(x)在x0处可导。
举个例子,绝对值函数y=|x|,其在x=0处的左导数是-1(即x每增大1,y减小1),右导数是1,两者不相等,所以该函数在x=0处不可导。
如图所示。
绝对值函数y=|x|的导数是符号函数y=sgn(x),但是不包含x=0(单独的符号函数y=sgn(x),当x=0时,y=0)。
3.用定义法可以求初等函数的导数,本质上就是求极限。
比如说求y=x²在x=a处的导数,即就是求Δx→0时((a+Δx)²-a²)/Δx的极限。
求得结果为2a了解即可,还不如求导公式来得快。
下图为求该极限的过程,也就是用定义求y=x²的导数的过程。
4.函数的可导性与连续性的关系。
我们有定理:如果函数y=f(x)在点x0处可导,则f(x)在x0处必连续。
但反过来就不一定了。
归纳为一句话:连续不一定可导,可导一定连续。
y=|x|就是一个例子。
该函数在定义域内处处连续但是在x=0时不可导(因为左右极限不一样)。
专升本内容导数与微分
![专升本内容导数与微分](https://img.taocdn.com/s3/m/aeee6d9f4128915f804d2b160b4e767f5bcf8063.png)
二阶导数旳导数称为三阶导数,
f ( x),
y,
d3 dx
y
3
.
一般地,函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数, 记作
f
(n) ( x),
y(n) ,
dn dx
y
n
或
d
n f( dx n
x
)
.
5、微分旳定义
若函数y f (x)的增量 y f (x0 x) f (x0) A x o(x) ( A与x无关),则称A x为函数y f (x)在点x0处 的微分,记作 dy xx0 A x. 微分dy叫做函数增量 y的线性主部 .(微分旳实质)
d
(u) v
vdu udv v2
无论x是自变量还是中间变量 ,函数y f ( x) 的微分形式总是 dy f ( x)dx
注:若x为中间变量,则dx x
导数的几何意义 :
(1) f (x0 ) 0 表示有不平行于x轴的切线
(2) f(x)在x0连续,f (x0 ) (此时f (x)在x0不可导) 切线 : x x0 ,法线 : y y0
(a 0且a 1)
(sin x)(n) sin(x n ) , (cos x)(n) cos( x n )
2
2
常见类型
导数旳概念;连续与可导旳关系、可导与 可微旳关系。变限积分旳导数。复合函数旳导 数(微分);隐函数旳导数(微分);参数方程旳 导数。分段函数旳可导性(待定常数)。简朴函 数旳n阶导数。求曲线旳切线与法线。
试卷题型分布
导数:约30分(选择、填空、计算)
3). f (x)、g (x)皆不可导时,不能推出 f (x) g(x)、f (x) g(x)不可导
微积分应用基础第二章导数与微分
![微积分应用基础第二章导数与微分](https://img.taocdn.com/s3/m/4f4cdd9333d4b14e84246800.png)
v(t0 )
lim
t 0
s
t
lim
t 0
s(t0
t) s(t0 ) t
上面这种形式的极限,自然科学中还有很多,尽管它们
的具体含义不同,但其数学模型完全相同,均可归结为函数
的增量与自变量的增量之比当自变量的增量趋于零时的极限。
这种形式的极限就是我们要研究的导数,或者叫做瞬时变化
x x0
结论:函数f(x)在点x0处可导 f x 在点x0的左导数、右导
数都存在并且相等,即:
f (x0)存在 fx0 fx0
函数y=f(x)在点x0处的变化率即导数 是函数y在点x0处变化的快慢程度。
dy dx
,反映的
x x0
第二章 导数与微分
案例2【化学反应速度】
设二元函数z=f(x,y)在点(x0,y0)的某邻域内有定义,
固定自变量y,即取y =y0,而x从x0变化到x0+△x时,若
极限 lim z lim f x0 x, y0 f x0 , y0
x0 x x0
x
存在,则称此极限值z=f(x,y)为函数在点(x0,y0)处关于x
x
y f (x1 ) f (x0 ) f (x0 x) f (x0 )
x
x1 x0
x
这个商—定义函数y关于自变量的平均变化率。
上面引例1中的平均速度及实际问题中的一些平均值,如 平均成本、平均电流强度等就是通常意义下的平均变化率。
第二章 导数与微分
案例1【订货量的变化】
率。
1.一元函数的导数
定义2 设函数y=f(x)在点x0的某一邻域有定义,当自变量 x在点x0处有增量△x(△x ≠0, x0+ △x在定义域内)时, 相应地函数有增量△y=f(x0+△x) -f (x0) ,若极限
导数和微分的定义
![导数和微分的定义](https://img.taocdn.com/s3/m/0cf7687c492fb4daa58da0116c175f0e7dd1195c.png)
则 f ( x) 在点 x0 可导, 且 f '( x0 ) a.
例6. 讨论函数 f ( x) x 在x 0处的可导性.
解 f (0 x) f (0) x ,
x
x
lim f (0 x) f (0) lim x 1,
x0
x
h0 x
lim
f (0 x) f (0)
lim
x
1.
在 M 点处旳切线
割线 M N 旳极限位置 M T
(当
时)
切线 MT 旳斜率
o
y f (x)
N
CM
T
x0 x x
lim tan
割线 M N 旳斜率 tan
f (x) f (x0 ) x x0
k
lim
x x0
f (x) f (x0 ) x x0
瞬时速度 切线斜率
f (t0 )
o t0
设薄片边长为 x , 面积为 A , 则 A x2 , 当 x 在 x0 取
得增量x 时, 面积旳增量为
x x0x (x)2
有关△x 旳 x 0 时为
线性主部 高阶无穷小
x0 A x02
x0x
故
称为函数在 x0 旳微分
定义: 若函数
在点 x0 旳增量可表达为 Ax o(x)
( A 为不依赖于△x 旳常数)
3. 导数旳几何意义: 切线旳斜率;
4. 可导必连续, 但连续不一定可导;
5. 已学求导公式 :
(C) 0;
(ln x) 1
(cos x) sin x ;
x
不连续, 一定不可导. 6. 判断可导性 直接用导数定义;
看左右导数是否存在且相等.
第二章 导数与微分
![第二章 导数与微分](https://img.taocdn.com/s3/m/249eee5e4a7302768e9939b9.png)
例4
求自由落体运动 s
=
1 2
gt 2
在时刻 t0
的瞬时速度 v(t0 )
.
解
Δs
=
1 2
g (t0
+
Δt)2
−
1 2
gt02
=
gt0Δt
+
1 2
g (Δt )2
Δs Δt
=
gt0Δt
+ 1 g (Δt )2
2 Δt
=
gt0
+
1 2
gΔt
lim
Δt → 0
Δs Δt
=
lim
Δt → 0
(
g
t
0
+
1 2
也随着变动而趋向于极限位置,即直线 M0T .称直线 M0T 为曲线 y = f (x) 在定点
29
M0 处的切线.显然,此时倾角ϕ 趋向于切线 M 0T 的倾角α ,即切线 M 0T 的斜率
为
tan α = lim tanϕ = lim Δy = lim f ( x0 + Δx) − f ( x0 ) .
lim Δy = lim (2x + Δx) = 2x
Δx Δx→0
Δx→0
y′ = ( x2 )′ = 2x .
同理可得 (xn )′ = nxn−1 ( n 为正整数)
例 6 求 y = sin x 的导函数.
解 Δy = sin ( x + Δx) − sin x = 2 cos(x + Δx ) ⋅ sin Δx
d f (x)
dx
x= x0
这时称函数 y = f (x0 ) 在点 x0 处是可导的函数.
《高等数学》导数PPT课件
![《高等数学》导数PPT课件](https://img.taocdn.com/s3/m/6dcf3d9d910ef12d2af9e7b4.png)
当时间t0由 变到 t0t时,物体经过的路
ss(t0 t)s(t0)
两端同t除 ,以 得物t体 这在 段时间内的 为
ss(0tt)s(t0)
t
t
当t0时平 ,均速 的 度极限叫作t0物 时体 刻在 的
速度,即
limlim lim t0
t0
t0
s t t0
s
(t0t) s t
(t0)
导数的概念
1、 函数 yf(x)在点 x0处导数的
设函数 yf(x)在点 x0的某邻域内有
当自变 x在量 点 x0处有改x变 (x量 0,x0x 仍在该邻域内 应) 的时 函, 数x0相 值 处在 的
变量yf (x0 x)f(x0),比值
y f (x0 x)f(x0)
x
x
称为f函 (x)从 数x点 0变化 x0到 x的平均
导数f(x)可分为以下三个步骤:
(1)求函数的增量 yf(x x)f(x);
(2)算比值
yf(xx)f(x);
x
x
lim (3)取极限
y
y
x0 x
例题1 求函数y = C(Constant常数)的导数
解:(1)求函数的增量
yc,不x取 论什么 y的 值 值 , 总 c,
y0;
(2)算比值
y 0; x
即
lim lim f(x ) y f(x x ) f(x )
x 0 x x 0
x
显然y, f(x)函 在x0 数 点 处的 f(x 导 0)就 数
导函 f(x)在 数 xx0处的函数值
在不发生混淆的情况下,导函数也称为导数。
利用导数定义求导数 由导数的定义可 函知 数y, f求 (x)的
第二章 导数与微分知识点
![第二章 导数与微分知识点](https://img.taocdn.com/s3/m/41c7e82cbcd126fff7050b53.png)
第二章 导数与微分一、导数1.导数的定义: 由“变速直线运动的瞬时速度”、“平面曲线的切线斜率”引出 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ∆,相应地函数增量()()00x f x x f y -∆+=∆。
如果极限 ()()xx f x x f x yx x ∆-∆+=∆∆→∆→∆0000lim lim存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0x x y =',0x x dx dy =,()0x x dx x df =等,并称函数()x f y =在点0x 处可导。
如果上面的极限不存在,则称函数()x f y =在点0x 处不可导。
注:函数()x f 在0x 处的导数,就是导函数f ’(x)在点在0x 处的函数值,即()0x f '=f ’(x)|x=x0。
多数情况下用求导法则,有时用定义求导更方便。
如题中函有f(x),而不是具体的方程时。
2、单侧导数右导数:()()()()()x x f x x f x x x f x f x f x x x ∆-∆+=--='++→∆→+000000lim lim 0左导数:()()()()()xx f x x f x x x f x f x f x x x ∆-∆+=--='--→∆→-000000lim lim 0则有()x f 在点0x 处可导()x f ⇔在点0x 处左、右导数皆存在且相等。
3、导数的几何意义如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线()x f y =在点()()00,x f x 处的切线的斜率,即:()0x f '=K=tan a 。
切线方程:()()()000x x x f x f y -'=-法线方程:()()()()()010000≠'-'-=-x f x x x f x f y 注:切线与法线垂直,切线的斜率与法线的斜率乘积为负1,即:K 切 * K 法 = -1。
高数导数
![高数导数](https://img.taocdn.com/s3/m/f428f47701f69e3143329430.png)
善于总结:常见条件怎么用 做题注意:结论让你干什么
2.判断函数的极值,求极值
• 判断函数的极值:
(1)定义 (2)第一充分条件
(3)第二充分条件 • 求极值(具体函数): (1)求导数 (2)求出全部驻点与不可导点 (3)判断.
f ( x) f (a) lim 1, 则在点 a 处( 例. 设 2 x a ( x a )
提示:
1
ln b ln a f (b) f (a) ln b ln a 1 ( ); ; f f (b) f (a) f ( ) ba ba
4. 如果和高阶导数有关,则多次使用中值定 理或用泰勒定理
例:设f ( x)在[0,上具有三阶导数且f (0) f (1) 0. 1] 证明在 (0,1) 使得[ x3 f ( x)]
3. 可导的奇(偶)函数的导函数为偶 (奇) 函数
周期为T的可导函数的导函数也是周期为T 的函数
三.判断函数在一点x=x0处的可导性
1. 若函数为抽象函数,且不知道是否可导,通常利用导数 的定义判断:
f ( x0 h) f ( x0 ) f ( x0 ) lim ; h 0 h
注:导数定义的形式特征有两个 f ( x)
所以当 令 x b, 得 即所证不等式成立 .
• 例:设函数f(x)在区间[0,+∞)上具有二阶导数, 满足f(0)=0, f″(x)<0, 又0<a<b, 则当a<x<b时恒有 ( ) • A. af(x)>xf(a) B. bf(x)>xf(b) • C. xf(x)>bf(b) D. xf(x)>af(a)
1 1 (ln | y |)x (ln( y))x ( y ) y y y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章导数与微分数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学.微分学与积分学统称为微积分学.微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一.恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”.微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘).积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生.本章及下一章将介绍一元函数微分学及其应用的内容.第一节导数概念从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代.而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展.生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展.在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生:(1)求变速运动的瞬时速度;(2)求曲线上一点处的切线;(3)求最大值和最小值.这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题.牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念.内容分布图示★引言★变速直线运动的瞬时速度★平面曲线的切线★导数的定义★几点说明★利用定义求导数与求极限(例1、例2)★例3★例4★例5★例6★例7★左右导数★例8★例9★导数的几何意义★例10★例11★导数的物理意义★可导与连续的关系★例12★例13★例14★例15★内容小结★课堂练习★习题2-1★返回内容要点:一、引例:引例1:变速直线运动的瞬时速度;引例2:平面曲线的切线二、导数的定义:xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆)()(lim lim )(00000注:导数概念是函数变化率这一概念的精确描述,它撇开了自变量和因变量所代表的几何或物理等方面的特殊意义,纯粹从数量方面来刻画函数变化率的本质:函数增量与自变量增量的比值xy ∆∆是函数y 在以0x 和x x ∆+0为端点的区间上的平均变化率,而导数0|x x y ='则是函数y 在点0x 处的变化率,它反映了函数随自变量变化而变化的快慢程度.根据导数的定义求导,一般包含以下三个步骤:1.求函数的增量:);()(x f x x f y -∆+=∆2.求两增量的比值:x x f x x f x y ∆-∆+=∆∆)()(;3.求极限.lim 0x y y x ∆∆='→∆三、左右导数定理1函数)(x f y =在点0x 处可导的充要条件是:函数)(x f y =在点0x 处的左、右导数均存在且相等.四、用定义计算导数五、导数的几何意义六、函数的可导性与连续性的关系定理2如果函数)(x f y =在点0x 处可导,则它在0x 处连续.注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件.由定理2还知道,若函数在某点处不连续,则它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的.1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子,这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界.这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.例题选讲:导数概念的应用例1(讲义例1)求函数3x y =在1=x 处的导数)1(f '.例2(讲义例2)试按导数定义求下列各极限(假设各极限均存在).(1);)2()2(lim a x a f x f a x --→(2),)(lim 0xx f x →其中.0)0(=f 左右导数用定义计算导数例3(讲义例4)求函数C x f =)((C 为常数)的导数.例4(讲义例5)设函数,sin )(x x f =求)(sin 'x 及4|)(sin π='x x .例5(讲义例6)求函数n x y =(n 为正整数)的导数.例6(讲义例7)求函数)1,0()(≠>=a a a x f x 的导数.例7求函数)1,0(log ≠>=a a x y a 的导数.例8(讲义例3)求函数⎩⎨⎧=,,sin )(x x x f 00≥<x x 在0=x 处的导数.例9设)(x f 为偶函数,且)0(f '存在.证明.0)0(='f 例10求等边双曲线x y 1=在点⎪⎭⎫ ⎝⎛2,21处的切线的斜率,并写出在该点处的切线方程和法线方程.例11(讲义例8)求曲线x y =在点)2,4(处的切线方程.例12(讲义例9)讨论函数||)(x x f =在0=x 处的连续性与可导性.例13(讲义例10)讨论⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x x x x f 在0=x 处的连续性与可导性.例14设函数⎩⎨⎧<≤+<=,10,10,)(2x x x a x f 问a 取何值时,)(x f 为可导函数.例15设函数⎩⎨⎧≥++<+=0,10,2)(2x bx x x a e x f x (1)欲使)(x f 在0=x 处连续,b a ,为何值;(2)欲使)(x f 在0=x 处可导,b a ,为何值.注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件.由定理2还知道,若函数在某点处不连续,则它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的.1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子(如第十一章第一节的Koch 雪花曲线描述的函数),这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界.这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.课堂练习1.函数)(x f 在某点0x 处的导数)(0x f '与导函数)(x f '有什么区别与联系?2.设)(x ϕ在a x =处连续,)()()(22x a x x f ϕ-=,求)(a f '.3.求曲线32x x y -=上与x 轴平行的切线方程.莱布尼茨(Friedrich ,Leibniz ,1597~1652)-----博学多才的数学符号大师出生于书香门第的莱布尼兹是德国一们博学多才的学者。
他的学识涉及哲学、历史、语言、数学、生物、地质、物理、机械、神学、法学、外交等领域。
并在每个领域中都有杰出的成就。
然而,由于他独立创建了微积分,并精心设计了非常巧妙而简洁的微积分符号,从而使他以伟大数学家的称号闻名于世。
莱布尼兹对微积分的研究始于31岁,那时他在巴黎任外交官,有幸结识数学家、物理学家惠更斯等人。
在名师指导下系统研究了数学著作,1673年他在伦敦结识了巴罗和牛顿等名流。
从此,他以非凡的理解力和创造力进入了数学前沿阵地。
莱布尼兹在从事数学研究的过程中,深受他的哲学思想的支配。
他的著名哲学观点是单子论,认为单子是“自然的真正原子……事物的元素”,是客观的、能动的、不可分割的精神实体。
牛顿从运动学角度出发,以“瞬”(无穷小的“0”)的观点创建了微积分。
他说dx 和x 相比,如同点和地球,或地球半径与宇宙半径相比。
在其积分法论文中,他从求曲线所围面积积分概念,把积分看作是无穷小的和,并引入积分符号⎰,它是把拉丁文“Summa ”的字头S 拉长。
他的这个符号,以及微积分的要领和法则一直保留到当今的教材中。
莱布尼兹也发现了微分和积分是一对互逆的运算,并建立了沟通微分与积分内在联系的微积分基本定理,从而使原本各自独立的微分学和积分学成为统一的微积分学的整体。
莱布尼兹是数字史上最伟大的符号学者之一,堪称符号大师。
他曾说:“要发明,就要挑选恰当的符号,要做到这一点,就要用含义简明的少量符号来表达和比较忠实地描绘事物的内在本质,从而最大限度地减少人的思维劳动,”正象印度——阿拉伯数学促进算术和代数发展一样,莱布尼兹所创造的这些数学符号对微积分的发展起了很大的促进作用。
欧洲大陆的数学得以迅速发展,莱布尼兹的巧妙符号功不可灭。
除积分、微分符号外,他创设的符号还有商“a /b ”,比“a :b ”,相似“∽”,全等“≌”,并“∪”,交“ ”以及函数和行列式等符号。
牛顿和莱布尼茨对微积分都作出了巨大贡献,但两人的方法和途径是不同的。
牛顿是在力学研究的基础上,运用几何方法研究微积分的;莱布尼兹主要是在研究曲线的切线和面积的问题上,运用分析学方法引进微积分要领的。
牛顿在微积分的应用上更多地结合了运动学,造诣精深;但莱布尼兹的表达形式简洁准确,胜过牛顿。
在对微积分具体内容的研究上,牛顿先有导数概念,后有积分概念;莱布尼兹则先有求积概念,后有导数概念。
除此之外,牛顿与莱布尼兹的学风也迥然不同。
作为科学家的牛顿,治学严谨。
他迟迟不发表微积分著作《流数术》的原因,很可能是因为他没有找到合理的逻辑基础,也可能是“害怕别人反对的心理”所致。
但作为哲学家的莱布尼兹比较大胆,富于想象,勇于推广,结果造成创作年代上牛顿先于莱布尼兹10年,而在发表的时间上,莱布尼兹却早于牛顿三年。
虽然牛顿和莱布尼兹研究微积分的方法各异,但殊途同归。
各自独立地完成了创建微积分的盛业,光荣应由他们两人共享。
然而在历史上曾出现过一场围绕发明微积分优先权的激烈争论。
牛顿的支持者,包括数学家泰勒和麦克劳林,认为莱布尼兹剽窃了牛顿的成果。
争论把欧洲科学家分成誓不两立的两派:英国和欧洲大陆。
争论双方停止学术交流,不仅影响了数学的正常发展,也波及自然科学领域,以致发展到英德两国之间的政治摩擦。
自尊心很强的英国民族抱住牛顿的概念和记号不放,拒绝使用更为合理的莱布尼兹的微积分符号和技巧,致使英国在数学发展上大大落后于欧洲大陆。
一场旷日持久的争论变成了科学史上的前车之鉴。
莱布尼兹的科研成果大部分出自青年时代,随着这些成果的广泛传播,荣誉纷纷而来,他也越来越变得保守。
到了晚年,他在科学方面已无所作为。
他开始为宫廷唱赞歌,为上帝唱赞歌,沉醉于研究神学和公爵家族。
莱布尼兹生命中的最后7年,是在别人带给他和牛顿关于微积分发明权的争论中痛苦地度过的。
他和牛顿一样,都在终生未娶。
1761年11月14日,莱布尼兹默默地离开人世,葬在宫廷教堂的墓地。