七年级数学下册立方根习题
人教版七年级下第六章实数“平方根、立方根"习题
人教版七年级下 第六章 实数 “平方根、立方根"习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算:(1)=; (2= ; (3)|2.5= ;(4= ; (5)n =; (6)= .2的立方根是;的平方根是.3.28y x =-,且y 的立方根是2,求x 的值 .4=,其中x 的取值范围 ;=,其中y 的取值范围.5 1.289====462.6=,则x =;;= ;若 5.981=,则y =.6.已知21a -与5a -是m 的平方根,那么m =.二、单选题7.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列等式不一定成立的是( ).A=B a=C a=D .3a=9.下列说法错误的是( ).A .4是16的算术平方根B .37-是949的一个平方根C .0的平方根与算术平方根都是0D .2(9)-的平方根是9-10.若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数11.若01x <<,则2x 、x 这四个数中( ).A 2x 最小B .x 最小C .2x 小D .x 最大,2x 最小12xy的值为( ).A .23B .32C .23-D .32-三、解答题13.计算:(1- (214.(1)已知5b =,求35a b +的立方根;(2)已知2(3)0x -=,求4x y +的平方根.15.已知3既是5a +的平方根,也是721a b -+的立方根,解关于x 的方程()2290a x b --=.答案第1页,共1页参考答案:1. 6-0.2 2.54π- 1a-2. 2 2±3.4±4. 0任意数1y =5.214000 0.1463± 0.1289-2146.81或97.C 8.B 9.D 10.B 11.A 12.A 13.(1)558;(2)112-.14.(1)3;(2)4±15.72x =或12x =。
人教版数学七年级下册-《立方根》习题精选
立方根1.在下述的四个说法中:(1)﹣27的立方根是3;(2)49的算术平方根为±7;(3)的立方根为;(4)的平方根为.正确的说法的个数是()A.1 B. 2 C.3 D. 42.下列各式中正确的是()A.B.C.D.3.一个立方体的体积是9,则它的棱长是()A.3 B.3C.D.4.的立方根是()A.8 B.±2 C.4 D.25.如果是数a的立方根,﹣是b的一个平方根,则a10×(﹣b)9等于()A.2 B.﹣2 C.1 D. 16.若一个数的平方根是±8,则这个数的立方根是()A.±2 B.±4 C.2 D. 47.下列说法中正确的是()A.的平方根是±6 B.的平方根是±2 C.|﹣8|的立方根是﹣2 D.的算术平方根是48.下列各式中错误的是()A. B.C.D.9.的立方根()A.﹣9 B. 9,﹣9 C. 9 D.10.下列表达式不正确的是()A.B. C.D.11.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A. x2=±20 B.x20=2 C.x±20=20 D.x3=±2012.下列说法:(1)1的平方根是1;(2)﹣1的平方根是﹣1;(3)0的平方根是0;(4)1是1的平方根;(5)只有正数才有立方根.其中正确的有()A.1个B.2个C.3个D. 4个13.下列说法正确的是()A.的平方根是±3 B.1的立方根是±1 C.=±1 D.>0 14.下列计算中,正确的有()①=±2;②=2;③±=±25;④=±5.A.0个B.1个C.2个D. 3个15.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零16.下列判断错误的是()A.B. C.的算术平方根是4 D.17.下列说法不正确的是()A.27的立方根是±3 B.的立方根是C.﹣2的立方是﹣8 D.﹣8的立方根是﹣218.下列结论中不正确的是()A.平方为9的数是+3或﹣3 B.立方为27的数是3或﹣3C.绝对值为3的数是3或﹣3 D.倒数等于原数的数是1或﹣119.下列说法中,正确的是()A.6是36的算术平方根B.﹣9的平方根是﹣3C.的算术平方根是5 D.9的立方根是320.下列各式中,运算正确的是()A.B.C.D.21.的立方根是()A.﹣4 B. ±4 C. ±2 D.﹣222.﹣的平方根是()A. ±4 B. 2 C. ±2 D.不存在23.在实数中,算术平方根与立方根相同的数是()A. 0 B. 0,1 C. 1 D. ±124.下列各式中,正确的是()A.=±4 B.=﹣3 C.±=4 D.=﹣4 25.一个数的算术平方根与这个数的立方根的和为0,则这个数是()A.﹣1 B.±1 C.0 D.不存在26.下列各式计算正确的是()A.=±2 B.=±2 C.=﹣1 D.±=3 27.在下列式子中,正确的是()A.B.C.D.=±2 28.下列命题中正确的是()①0.027的立方根是0.3;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1. A.①③B.②④C.①④D.③④29.求下列各式中的x值:(1)2x2=8 (2)(x﹣1)3=8.30.(1)﹣+;(2)﹣+.立方根参考答案与试题解析1.在下述的四个说法中:(1)﹣27的立方根是3;(2)49的算术平方根为±7;(3)的立方根为;(4)的平方根为.正确的说法的个数是()A.1B.2C.3D.4解:∵﹣27的立方根是﹣3,∴(1)错误;∵49的算术平方根为+7,∴(2)错误;∵的立方根为,∴(3)正确;∵的平方根为±,∴(4)错误;∴正确的说法的个数是1个,故选A.2.下列各式中正确的是()A.B.C.D.解:A、=|﹣7|=7,故本选项错误;B、=4,故本选项错误;C、(﹣)2=3,故本选项错误;D、=﹣3,故本选项正确;故选D.3.一个立方体的体积是9,则它的棱长是()A.3B.3C.D.解:设立方体的棱长为a,则a3=9,∴a=.故选D.4.的立方根是()A.8B.±2 C.4D.2解:∵=8而8的立方根等于2,∴的立方根是2.故选D.5.如果是数a的立方根,﹣是b的一个平方根,则a10×(﹣b)9等于()A.2B.﹣2 C.1D.1解:由题意得,a=﹣2,b=所以a10×(﹣b)9=(﹣2)10×(﹣)9=﹣2 故选B.6.若一个数的平方根是±8,则这个数的立方根是()A.±2 B.±4 C.2D.4解:∵一个数的平方根是±8,∴这个数为(±8)2=64,故64的立方根是4.故选D.7.下列说法中正确的是()A.的平方根是±6 B.的平方根是±2C.|﹣8|的立方根是﹣2 D.的算术平方根是4解:A、=6,6的平方根是±,故选项错误;B、的平方根是±2,故选项正确;C、|﹣8|=8,8的立方根﹣2,故选项错误;D、=4,4的算术平方根是2,故选项错误.故选B.8.下列各式中错误的是()A.B.C.D.解:A、,故说法正确;B、原式=﹣,故说法错误;C、,故说法正确;D、,故说法正确.故选B.9.的立方根()A.﹣9 B.9,﹣9 C.9D.解:∵=9,∴的立方根是.故选D.10.下列表达式不正确的是()A.B.C.D.解:A、=a,故本选项错误;B、=﹣a,故本选项错误;C、=|a|,故本选项正确;D、=a,故本选项错误.选C.11.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A. x2=±20 B. x20=2 C. x±20=20 D. x3=±20解:根据题意,可知x20=2,能得出.故选B.12.下列说法:(1)1的平方根是1;(2)﹣1的平方根是﹣1;(3)0的平方根是0;(4)1是1的平方根;(5)只有正数才有立方根.其中正确的有()A.1个B.2个C.3个D.4个解:(1)1的平方根是±1,故说法错误;(2)﹣1的平方根是﹣1,负数没有平方根,故说法错误;(3)0的平方根是0,故说法正确;(4)1是1的平方根,故说法正确;(5)只有正数才有立方根,不对,负数也有立方根,故说法错误.故选B.13.下列说法正确的是()A.的平方根是±3 B.1的立方根是±1 C.=±1 D.>0 解:A、=9,9的平方根是±3,故选项正确;B、1的立方根是它本身1,故选项错误;C、=1,故选项错误;D、当x=0时,=0,故选项错误.故选A.14.下列计算中,正确的有()①=±2;②=2;③±=±25;④=±5.A.0个B.1个C.2个D.3个解:①结果应为2,故说法错误;②结果应为﹣2,故说法错误;③±=±25,故说法正确;④结果应为5,故说法错误.故选B.15.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零解:A、一个数的立方根是这个数的本身的数有:1、0、﹣1,故选项A错误.B、0的立方根是0,u选项B错误.C、∵负数有一个负的立方根,故选项C错误.D、∵正数有一个正的立方根,负数有一个负的立方根,0的立方根是.故选项D正确.16.下列判断错误的是()A.B.C.的算术平方根是4 D.解:A、,故选项正确;B、,故选项正确;C、=4的算术平方根是2,故选项错误;D、,故选项正确.故选C.17.下列说法不正确的是()A.27的立方根是±3 B.的立方根是C.﹣2的立方是﹣8 D.﹣8的立方根是﹣2解:A、27的立方根是3,故选项错误;B、的立方根是,故选项正确;C、﹣2的立方是﹣8,故选项正确;D、﹣8的立方根是﹣2,故选项正确故选A.18.下列结论中不正确的是()故选B.A.平方为9的数是+3或﹣3 B.立方为27的数是3或﹣3C.绝对值为3的数是3或﹣3 D.倒数等于原数的数是1或﹣1 解:A、平方为9的数是+3或﹣3,故选项正确;B、立方为27的数是3,故选项错误;C、绝对值为3的数是3或﹣3,故选项正确;D、倒数等于原数的数是1或﹣1,故选项正确.19.下列说法中,正确的是()A.6是36的算术平方根B.﹣9的平方根是﹣3C.的算术平方根是5 D.9的立方根是3解:A、6是36的算术平方根正确,故本选项正确;B、﹣9没有平方根,故本选项错误;C、∵=5,∴的算术平方根是,故本选项错误;D、9的立方根是,故本选项错误.20.下列各式中,运算正确的是()A.B.C.D.解:A选项错误,应该为;B选项正确;C选项错误,根号下下的结果为25,故开平方后的结果为5,不是﹣5;D选项错误,由于>1,故应为.故答案选B.21.的立方根是()A.﹣4 B.±4 C.±2 D.﹣2解:∵=﹣8∴﹣8的立方根是﹣2,∴的立方根是﹣2.故选D.22.﹣的平方根是()A. ±4 B. 2 C. ±2 D.不存在解:∵(﹣4)3=﹣64∴﹣=4又∵(±2)2=4∴4的平方根为±2.故选C.23.在实数中,算术平方根与立方根相同的数是()A. 0 B. 0,1 C. 1 D. ±1解:∵=0,=1,=0,=1,=﹣1,﹣1没有平方根∴算术平方根与立方根相同的数是0,1.故选B.24.下列各式中,正确的是()A.=±4 B.=﹣3 C.±=4 D.=﹣4 解:A、=4,故本选项错误;B、=﹣3,故本选项正确;C、±=±4,故本选项错误;D、=4,故本选项错误;故选B.25.一个数的算术平方根与这个数的立方根的和为0,则这个数是()A.﹣1 B. ±1 C. 0 D.不存在解:根据算术平方根非负数,立方根不改变这个数的正负性,相加等于0,则这个数是0.故选C.26.下列各式计算正确的是()A.=±2 B.=±2 C.=﹣1 D.±=3 解;A、=2,故选项A错误;B、=2,故选项B错误;C、∵(﹣1)3=﹣1,∴﹣1的立方根是﹣1,故选项正确;D、±=±3,故选项D错误.故选C.27.在下列式子中,正确的是()A.B.C.D.=±2 解:A、,故选项A正确;B、没有意义,故选项B错误;C、,故选项C错误;D、=2,故选项D错误.故选A.28.下列命题中正确的是()①0.027的立方根是0.3;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A.①③B.②④C.①④D.③④解:∵①0.027的立方根是0.3,故说法正确;②当a<0时,是负数,故说法错误;③如果a是b的立方根,那么ab≥0(a、b同号),故说法正确;④一个数的平方根与其立方根相同,则这个数是0,故说法错误.所以①③正确.故选A.二.解答题(共2小题)29.求下列各式中的x值:(1)2x2=8 (2)(x﹣1)3=8.解:(1)∵x2=4,∴x=±2;(2)∵(x﹣1)3=8,∴x﹣1=2,∴x=3.30.(1)﹣+;(2)﹣+.(1)解:原式=0.5﹣2+2,=0.5;(2)解:原式=0.5﹣+,=﹣.。
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(5)
章节测试题1.【答题】若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10【答案】D【分析】先根据平方根、立方根的定义分别求出a,b的值,然后即可求a+b的值.【解答】解:∵a2=(-5)2,b3=(-5)3,∴a=±5,b=-5,∴a+b=0或-10选D.2.【答题】下列计算正确的是()A. =0.5B. =C. =1D. -=-【答案】C【分析】直接利用立方根的定义分析得出答案【解答】解: A. ≠0.5,故A错误;B. =,故B错误;C. =1,正确;D.-=,故D错误.选C.3.【答题】下列结论正确的是( )A. 64的立方根是±4B. -没有立方根C. 立方根等于本身的数是0D. =-【答案】D【分析】直接利用立方根的定义分析得出答案【解答】解: A.64的立方根是4,故A错误;B.-的立方根是,故B错误;C.立方根等于本身的数是0和±1,故C错误;D. =-=-6,正确.选D.4.【答题】等于( )A. 2B. 2C. -D. -2【答案】D【分析】直接利用立方根的定义分析得出答案【解答】解:=-2选D.5.【答题】计算的正确结果是( )A. 7B. -7C. ±7D. 无意义【答案】B【分析】直接利用立方根的定义分析得出答案【解答】解:选B.6.【答题】下列说法正确的是( )A. 一个数的立方根有两个,它们互为相反数B. 一个数的立方根比这个数平方根小C. 如果一个数有立方根,那么它一定有平方根D. 与互为相反数【答案】D【分析】利用立方根的定义判断即可得到结果.【解答】解:A、一个数的立方根只有一个,故错误;B、0的平方根和立方根均为0,故错误;C、负数具有立方根,却不具有平方根,故错误;D、由于-a与a互为相反数,故a的立方根与-a的立方根互为相反数,故正确. 选D.7.【答题】的平方根是______,的平方根是______,-343的立方根是______,的平方根是______.【答案】±3, ±2,-7,±4;【分析】根据平方根以及立方根的定义即可求解.【解答】解:=9,9的平方根是±3;=4,4的平方根是±2;-343的立方根是-7;,16的平方根是±4故答案为:±3,±2,-7, ±48.【答题】已知(x-1)3=8,则x的值是______.【答案】3【分析】根据立方根的定义可以计算出结果.【解答】由题意知(x-1)是8的立方根,所以x-1=2,即x=39.【答题】=______..【答案】5【分析】根据立方根的定义即可求解.【解答】因为53=125,所以=5,故答案为5.10.【答题】若一个数的平方根是,则这个数的立方根是______.【答案】4【分析】首先利用平方根的定义求出这个数,然后根据立方根的定义即可求解.【解答】∵一个数的平方根是,∴这个数是64,∴这个数的立方根是4,即.11.【答题】若和都是5的立方根,则b-a=______.【答案】-5【分析】由于若和都是5的立方根,由此可以得到关于a、b的方程组,解之即可求出结果.【解答】∵和都是5的立方根,∴2b+1=3,a-1=5,∴b=1,a=6,∴b-a=1-6=-5.12.【答题】-8的立方根是______,的算术平方根是______.【答案】-2,3【分析】根据算术平方根以及立方根的定义即可求解.【解答】因为(-2)3=-8,所以-8的立方根是-2;因为=9,=3,所以的算术平方根是3,故答案为(1)-2,(2)313.【答题】当x<7时,=______.【答案】x-7【分析】根据立方根的意义,一个正数的立方根是正数,一个负数的立方根为负,0的立方根为0【解答】由题意可知当x<7时,=x-7故答案为:x-714.【答题】若,则x=______;,则x=______,若,则x=______.【答案】5,6,-4【分析】根据立方根的意义求解.【解答】根据立方根的意义,由53=125,可知x=5;由,则x=6;由若,求得x=-4.故答案为:5;6;-4.15.【答题】立方根是-8的数是______,的立方根是______.【答案】-512,2【分析】根据平方根以及立方根的定义即可求解.【解答】根据立方根的意义,由(-8)3=-512,所以立方根是-8的数是-512;根据算术平方根的意义可知=8,然后由23=8,可知8的立方根为2,即求得的立方根为2.故答案为:-512;2.方法总结:此题主要考查了求一个数的立方根,根据立方根的意义,一个数的立方等于a,那么这个数就是a的立方根,关键是判断a是谁的立方.16.【答题】9的平方根是______;的立方根是______.【答案】3,-3;-2【分析】根据平方根以及立方根的定义即可求解.【解答】因为3的平方是9,-3的平方是9,所以9的平方根是,因为-2的立方是-8,所以-8的立方根是-2,故答案为: ,-2.17.【答题】已知,则a和b的关系是______.【答案】互为相反数【分析】已知等式利用立方根定义化简,得出a与b关系即可.【解答】因为,所以与互为相反数,则a与b互为相反数,故答案为互为相反数.18.【答题】的算术平方根是______,-8的立方根是______.【答案】2,-2【分析】根据算术平方根以及立方根的定义即可求解.【解答】=4,4算术平方根是2;-8的立方根是-2.故答案为2,-219.【答题】如果一个数的平方根等于这个数的立方根,那么这个数是______.【答案】0【分析】根据平方根与立方根的定义求解.【解答】根据平方根与立方根的定义,可知0的平方根等于0的立方根.故答案为:0方法总结:本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:,也考查了平方根.20.【答题】若=-7,则a=______.【答案】-343【分析】根据立方根的定义直接计算.【解答】解:∵,∴a=-343故答案为:-343。
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(17)
章节测试题1.【答题】下列说法中,不正确的是().A. 3是的算术平方根B. ±3是平方根C. -3是的算术平方根D. -3是的立方根【答案】C【分析】根据算术平方根、平方根、立方根的定义判断即可.【解答】A、3是(-3)2的算术平方根,正确;B、±3是(-3)2的平方根,正确;C、(-3)2的算术平方根是3,故本选项错误;D、3是(-3)3的立方根,正确.选C.2.【答题】下列计算正确的是()A. B.C. D.【答案】C【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、,选项错误;B、,选项错误;,选项正确;D、,选项错误;选C.3.【答题】下列各式中,正确的是()A. B. =4 C. D.【答案】C【分析】本题考查了平方根和立方根.【解答】A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=-3,所以C选项正确;D、原式=|-4|=4,所以D选项错误.选C.4.【答题】8的平方根和立方根分别是()A. 8和4B. 和2C. 和8D. 和2【答案】D【分析】根据平方根和立方根定义求出即可.【解答】解:8的平方根和立方根分别是±和2.5.【答题】65.下列说法正确是A. -2没有立方根B. 8的立方根是±2C. -27的立方根是-3D. 立方根等于本身的数只有0和1 【答案】C【分析】本题考查了立方根.【解答】G根据立方根的性质,易得C.6.【答题】下列语句正确的是()A. 的平方根是±2B. 36的平方根是6C. 的立方根是D. 的立方根是2【答案】D【分析】本题考查了平方根和立方根.【解答】选项A,的平方根是±;选项B,36的平方根是±6;选项C,的立方根是;选项D,的立方根是2,选D.7.【答题】下列说法中,正确的是()A. B. 64的立方根是±4C. 6平方根是D. 0.01的算术平方根是0.1【分析】本题考查了平方根和立方根.【解答】A.=3,故错误;B. 64的立方根是4,故错误;C. 6的平方根是±,故错误;D. 0.01的算术平方根是0.1,正确;选D.8.【答题】下列说法中正确的有()①都是8的立方根;②=±4;③的平方根是;④⑤是81的算术平方根A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了平方根和立方根.【解答】①、2是8的立方根,则错误;②、=4,则错误;③、正确;④、正确;⑤、9是81的算术平方根.9.【答题】下列说法不正确的是()A. 的平方根是B. -9是81的一个平方根C. 0.2的算术平方根是0.04D. -27的立方根是-3【分析】本题考查了平方根和立方根.【解答】A. 的平方根是,正确;B. -9是81的一个平方根,正确;C. 0.2的是0.04算术平方根,错误;D. -27的立方根是-3,正确选C.10.【答题】-27的立方根与的平方根之和是()A. 0B. 6C. 0或-6D. -12或6【答案】C【分析】本题考查了平方根和立方根.【解答】-27的立方根是-3,的平方根是±3,所以-27的立方根与的平方根之和是-3+3=0或-3-3=-6.选:C.11.【答题】下列计算正确的是A.B.C.D.【答案】D【分析】本题考查了平方根和立方根.【解答】A、,故该项错误;B、,故该项错误;C、,故该项错误;D、,故该项正确.选D.12.【答题】下列说法正确的是()A. 3是9的立方根B. 3是(-3)2的算术平方根C. (-2)2的平方根是2D. 8的平方根是±4【答案】B【分析】根据算术平方根,平方根,立方根的概念,逐一判断.【解答】A.∵33=27,∴3是27的立方根,本选项错误;B. (-3)2=9,3是9的算术平方根,本选项正确;C. (-2)2=4,4的平方根为±2,本选项错误;D. 8的平方根是,本选项错误.13.【答题】下列各式正确的是().A. B.C. D.【答案】A【分析】本题考查了平方根和立方根.【解答】∵,则B错;,则C;,则D错,选A.14.【答题】-8的立方根与4的平方根的和是()A. 0B. 0或4C. 4D. 0或-4 【答案】D【分析】本题考查了平方根和立方根.【解答】∵-8的立方根为-2,4的平方根为±2,∴-8的立方根与4的平方根的和是0或-4.选D.15.【答题】下列说法错误的是()A. 1是1的算术平方根B.C. -27的立方根是-3D.【分析】本题考查了平方根和立方根.【解答】A、因为12=1,所以1是1的算术平方根,故此选项正确;B、=7,故此选项正确;C、(-3)3=-27,所以-27的立方根是-3,故此选项正确;D、=12,故此选项错误.选D.16.【答题】下列计算正确的是().A. B.C. D.【答案】D【分析】本题考查了平方根和立方根.【解答】项.错误;项.,错误;项.错误;.选.17.【答题】下列各式计算正确的是()A. =-9B. =±5C. =-1D. (-)2=-2【答案】C【分析】本题考查了平方根和立方根.【解答】A.=9,故该选项错误;B. =5,故该选项错误;C. =-1,正确;D. (-)2=2,故该选项错误.选C.18.【答题】64的立方根是()A. ±4B. 4C. -4D. 16【答案】B【分析】本题考查了立方根.【解答】∵43=64∴64的立方根是4.选B.19.【答题】使用某种电子计算器求+的近似值,其按键顺序正确的是()A. 8+2ndF6=B. 8+2ndF6=C. 8+6=D. 8+6=【答案】A【分析】本题考查了平方根和立方根.【解答】根据无理数运算中计算器的使用法则可知,是先按,再按8,是先按2ndf键,再按,再按6.故本题正确答案为A.20.【答题】若x2=25,则x=______;若,则x=______;若,则x=______;若x3=-216,则x=______;若=3,则x=______;若,则x=______.【答案】±5,18,,-6,27,-27【分析】本题考查了平方根和立方根.【解答】分别利用立方根和算术平方根的定义求解即可.解:∵x2=25,∴x=±5;∵,∴x=42+2=18;∵,∴x=()2=;∵x3=-216,∴x=-6;∵,∴x=33=27;∵,∴x=(-3)3=-27.故答案为:±5,18,,-6,27,-27.。
人教版七年级数学下册第六章第二节立方根习题(含答案) (61)
人教版七年级数学下册第六章第二节立方根复习试题(含答案)(1)计算:2(2)-(2)解方程:4(x ﹣1)2=16(3)解方程组257320x y x y -=⎧⎨-=⎩【答案】(1);(2)x 1=3,x 2 =-1;(3)55x y =⎧⎨=⎩【解析】【分析】(1)直接利用平方、绝对值以及二次根式的性质和立方根运算法则分别化简得出答案;(2)开方可得2(x-1)=4,2(x-1)=-4,求出两个方程的解即可;(3)利用加减消元法解方程即可,【详解】(1)()22-+;(2)解:开方得:2(x-1)=±4,即2(x-1)=4,2(x-1)=-4,解得:x 1=3,x 2=-1;(2)257320x y x y -=⎧⎨-=⎩①②, ②-①×3得:x=5,把x=5代入①得:10-y=5,解得:y=5,方程组的解为:55 xy=⎧⎨=⎩.【点睛】此题主要考查了实数的运算,用平方根的性质解方程,解二元一次方程组,(1)正确化简各数是解题关键,(2)正确利用平方根解方程,(3)正确利用加减消元法是解题的关键.62.利用平方根及立方根的定义解决下列问题:(13次根号)(2)求满足322500x+=的x的值.【答案】答案见解析.【解析】【分析】(1)根据算术平方根,立方根的定义求解即可(2)根据立方根的定义求解.【详解】解:原式330.6 2.40.75 3.154=-+=+=;(2)322500x+=32250x=-3125x=-x5=-【点睛】此题重点考察学生对平方根和立方根的理解,掌握平方根,立方根的定义是解题的关键.63212⎛⎫ ⎪⎝⎭.【答案】-1【解析】【分析】根据算术平方根、立方根、平方和实数的加减混合运算解答即可. 【详解】解:原式=54+(-2)-14=-1【点睛】本题考查算术平方根、立方根、平方的性质,解题关键是熟练掌握这些性质, 64.(1)9(x-3)2=64.(2)(2x-1)3=-8.【答案】(1)x=173,或x=13;(2)x=-12.【解析】【分析】(1)利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可. 【详解】(1)(x-3)2=649,则x-3=±83,即x=173或x=13;(2)(2x-1)3=-8,2x-1=-2,∴x=-1 2 .【点睛】本题考查了利用平方根定义以及立方根定义解方程,熟练掌握相关定义是解题的关键.65.求下列x的值(1)(x﹣2)2=9;(2)(x+1)3﹣198=1.【答案】(1)x1=5,x2=﹣1;(2)x=12.【解析】【分析】(1)如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.(2)如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.【详解】(1)∵(x﹣2)2=9,∴x﹣2=±3,∴x1=5,x2=﹣1;(2)∵(x+1)3﹣198=1,∴(x+1)3=278,∴x+1=32,∴x=12.【点睛】本题主要考查了平方根与立方根的概念,解题时注意:一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数.66=,求x2的平方根.【答案】2±.【解析】【分析】根据题意得2x-1+x+7=0,解得x的值,即可得出答案.【详解】解:由题意得,2x-1+x+7=0,解得x=-2,所以2=±.故答案为2±.【点睛】本题考查立方根,掌握立方根、平方根的概念是解题的关键.67.有两个正方体容器,一个的容积是8cm3,另一个容器的一个面的面积为9cm2,则这两个容器的棱长分别是多少?【答案】这两个容器的棱长分别是2cm和3cm.【解析】【分析】根据已知得出算式,再根据立方根和平方根的定义求出即可.【详解】=2(cm);(cm).所以这两个容器的棱长分别是2cm和3cm.故答案为这两个容器的棱长分别是2cm和3cm.【点睛】本题考查立方根和平方根的定义的应用,解题的关键是能根据题意得出算式.68.求下列各式中的x:(1)(2x-1)3=-1331;(2)(2x+10)3=-27.【答案】(1) x=-5;(2)13x=-.2【解析】【分析】(1)根据题意求出-1331的立方根,即有= -11,然后解一元一次方程即可;(2)根据题意求出-27的立方根,即有= -3,然后解一元一次方程即可.【详解】解:(1)x-=,21所以2x-1 = -11,所以x=-5;(2)x+,210所以2x+10=-3,所以13x=-.2故答案为:(1) x=-5;(2)13x=-.2【点睛】本题考查立方根,熟练掌握立方根定义是解题的关键.69.求下列各数的立方根.(1)(-2)9;(2)-26;(3)-343;(4)0.064.【答案】(1) 8-;(2)-4;(3)-7;(4) 0.4.【解析】【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【详解】解:(1)(-2)9=-512,因为(-8)3=-512,所以9-的立方根是-88-;(2)(2)-26=-64,因为(-4)3=-64,所以-26的立方根是-4.=-;4(3)因为-73=-343,所以-343的立方根是-7.=-;7(4)因为0.43=0.064,所以0.064的立方根是0.4..0.4故答案为:(1) -8;(2)-4;(3)-7;(4) 0.4.【点睛】本题考查求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.三、填空题70.一个容积是125dm3的正方体棱长是_____dm.【答案】5【解析】【分析】如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.据此解答即可.【详解】设棱长为a,则a3=125,∴a=5,故答案为5.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.。
(完整版)立方根习题精选及答案(二)
立方根习题精选(二)1.-35是的立方根。
2.当x3.立方根等于本身的数有。
4.若m是a的立方根,则-m是的立方根。
56.若x3=a,则下列说法正确的是()7.-7的立方根用符号表示应为()ABCD.84a=-成立,那么a的取值范围是()A.a≤4B.-a≤4C.a≥4D.任意实数9.下列四种说法中,正确的是()①1的立方根是1;②127的立方根是±13;③-81无立方根;④互为相反数的两个数的立方根互为相反数。
A.①②B .①③C .①④D .②④10.a <0,那么a 的立方根是()AB .CD11.下列各数有立方根的有()①27,②5,③0,④12,⑤-16,⑥-10-6 A .3个B .4个C .5个D .6个12.求下列各数的立方根:(1)21027; (2)-0.008(3)(-4)314)x 3<的立方根是。
15。
16.下列式子中不正确的是()A 235=B 6=±C0.4=D1 5 =17A.正数B.负数C.非正数D.非负数184=的值是()A.-3B.3C.10D.-1019.当a<0得()A.-1B.1C.0D.±120.求下列各式的值:(1(2(3)21.若x 是64。
22.求下列各式中x 的值。
(1)(x-3)3-64=0(2325x 116=-23x y的值。
(一)新型题24是一个整数,那么最大的负整数a 是多少?252a 1=-,求a 的值.(二)课本习题变式题26.(课本P103第4题变式题)一个正方体,它的体积是棱长为3cm 的正方体体积的8倍,求这个正方体的表面积.(三)易错题27.(2)当x(四)难题巧解题28.若a 、b 互为相反数,c 、d 1的值.(五)一题多变题29的平方根是。
的平方根是±3,则a =。
的立方根是2,则a =。
[数学在学校、家庭、社会生活中的应用]30.要用体积是125cm 3的木块做成八个一样的小正方体,那么这八个小正方体的棱长是多少?[数学在生产、经济、科技中的应用]31.要用铁皮焊制正方体水箱,使其容积为1.728m3,问至少需要多大面积的铁皮?[自主探究]32.(1)观察下表,你能得到什么规律?≈(2) 2.22[潜能开发]33.请分别计算下列各式的值:,.从中你能发现什么规律?能用数学符号表示出来吗??[信息处理]34.在一次设计比赛中,两位参赛者每人得到1m3的可塑性原料,甲把它塑造成一个正方体,乙把它塑造成一个球体(损耗不计).比赛规定作品高度不超过1.1m,请你利用所学知识,分析说明哪一个人的作品符合要求?[开放实践]35.如果A a+3b的算术平方根,B=2a-1-a2的立方根,并且a、b满足关系式a-2b+3=2,求A+B的立方根.[中考链接]36.(2004·山东济宁()A.2B.-2D37.(2004·福州)如果x 3=8,那么x =。
人教版数学七年级下册 第六章 实数 算术平方根、平方根、立方根的难点突破 专题练习题 含答案
第六章实数算术平方根、平方根、立方根的难点突破一、求算术平方根、平方根、立方根1. 一个自然数的算术平方根是a,则与这个自然数相邻的下一个自然数的算术平方根是2. 一个非负数的两个平方根分别是2a-1和a-5,则这个非负数是多少?3. 若x2=4,y2=9,且x>y,求x-y的平方根4. 已知x-2的平方根是±1,2x+y+17的立方根是3,求x2+y2的平方根和立方根.5. 已知M=m-1m+6是m+6的算术平方根,N=2m-3n+3n+6是n+6的立方根,试求M-N的值.二、算术平方根的非负性6. 若x -3有意义,则x 的取值范围是___________ __.7. 已知y =x -8+8-x +5,求x +y 的值8. 若y =x -12+12-x -6,求xy 的值.9. 已知实数x ,y ,z 满足|4x -4y +1|+132y +z +(z -12)2=0,求(y +z)·x 2的值.三、利用算术平方根、立方根解决实际问题10. 如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__________.11. 一种集装箱是正方体,它的体积是343 m3,则这种正方体集装箱的棱长是____________.12. 国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间.某地新建了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用于国际比赛吗?并说明理由.13. 在做浮力实验时,小华用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,溢出水的体积为40 cm3;小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.6 cm.请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器计算,结果精确到0.01 cm)14. 全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长,每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35 cm,问冰川约是在多少年前消失的?15. 将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.四、探究算术平方根、平方根、立方根的变化规律16. 观察分析下列数据:0,-3,6,-3,12,-15,18,…,根据以上数据排列的规律,第n个数据应是_______________________.(n为正整数) 17. 观察下列各式,并用所得出的规律解决问题:(1)2=1.414,200=14.14,20 000=141.4,…0.03=0.173 2,3=1.732,300=17.32,…由此可见,被开方数的小数点每向右移动_______位,其算术平方根的小数点向_______ __移动______ __位;(2)已知5=2.236,50=7.071,则0.5=_____________,500=___________; (3)31=1,31 000=10,31 000 000=100,…小数点变化的规律是:(4)已知310=2.154,3100=4.642,则310 000=__________,-30.1=______________.18. 先观察,再解决问题 3227=2327; 33326=33326; 34463=43463;…(1)请再写出一个类似的式子;(2)请用含n 的式子表示上述规律.19. 不用计算器,探究解决下列问题:(1)已知x 3=10 648,则x 的个位数字一定是____;∵8 000=203<10 648<303=27 000,∴x 的十位数字一定是____,∴x =________;(2)已知x 3=59 319,则x 的个位数字一定是____;∵27 000=303<59 319<403=64 000,∴x的十位数字一定是____,∴x=_________;(3)已知x3=148 877,则x的个位数字一定是____;∵125 000=503<148 877<603=216 000,∴x的十位数字一定是____,∴x=______;(4)按照以上思考方法,直接写出x的值.①若x2=857 375,则x=______;②若x3=373 248,则x=______.答案:一、1. a2+12. 解:根据题意,有(2a-1)+(a-5)=0,解得a=2.∴这个非负数为(2a-1)2=(2×2-1)2=9.3. 解:∵x2=4,y2=9,∴x=±2,y=±3.∵x>y,∴x=±2,y=-3.当x=2,y=-3时,x-y的平方根是±5;当x=-2,y=-3时,x-y的平方根是±1.4. 解:∵x-2的平方根是±1,∴x-2=1,则x=3.∵2x+y+17的立方根是3,∴2x+y+17=27.把x=3代入2x+y+17=27中,得y=4.∴x2+y2=32+42=25,∴x2+y2的平方根是±5,立方根是3 25.5. 解:由题意可知m-1=2,2m-3n+3=3,解得m=3,n=2.∴M=9=3,N=38=2,∴M-N=3-2=1.二、6. x≥37. 由题意可得x -8≥0,且8-x ≥0,∴x =8.当x =8时,y =5,∴x +y =13.8. 由题意可得x -12≥0,且12-x ≥0,∴x =12.当x =12时,y =-6,∴xy =12×(-6)=-3.9. 解:根据题意可得4x -4y +1=0,2y +z =0,z -12=0, ∴x =-12,y =-14,z =12,∴(y +z)·x 2=116. 三、 10. 611. 7m12. 解:这个足球场能用于国际比赛,理由:设足球场的宽为x m ,则长为1.5x m ,由题意得1.5x 2=7 560,∴x 2=5 040.∵x >0,∴x = 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71,∴70<x <71,∴105<1.5x <106.5,符合要求,∴这个足球场能用于国际比赛.13. 解:设铁块的棱长为a cm ,根据题意,得a 3=40,解得a≈3.42.设烧杯内部的底面半径为r cm ,根据题意,得πr 2×0.6=40,解得r≈4.61(舍去负值),则烧杯内部的底面半径约是4.61 cm ,铁块的棱长约是3.42 cm.14. 解:(1)当t =16时,d =7×t -12=7×2=14(cm ),则冰川消失16年后苔藓的直径为14 cm .(2)当d =35时,t -12=5,即t -12=25,解得t =37,则冰川约是在37年前消失的.15. 解:设每个小立方体铝块的棱长为x cm,则8x3=0.216.∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2),即每个小立方体铝块的表面积为0.54 m2.16. (-1)n+13(n-1)17. (1) 两右一(2) 0.7071 22.36(3) 被开方数的小数点向右(左)移动三位,其立方根的小数点向右(左)移动一位.(4) 21.54 -0.464218. (1) 解:355124=535124.(2) 解:3n+nn3-1=n3nn3-1(n≠1,且n为正整数).19. (1) 2 2 22(2) 9 3 39(3) 3 5 53(4) ① 95② 72。
七年数学下册“立方根习题6.2 ”答案详解
复习巩固1. 判断下列说法是否正确:(1) 2是8的立方根;23=8; 83= 233=2;(2)±4是64的立方根;43=64,(-4)3=-64; 643= 433=4; −643= (−4)33=−4;(3)−13是−127的立方根; −13 3=−127; −1273= −13 33=−13; (4) (-4)3的立方根是-4.−4 33=-4.2、下列各式是否有意义?为什么?(1)− 33; (2) −33; (3) (−3)33; (4)11033. 解:以上各式都有意义,因为正数和负数都有立方根.3. 求下列各式的值:(1) − 0.0273; (2) −8273; (3) 1−37643; (4) 78−13. 解:(1) − 0.0273=− 0.333=−0.3;(2) −8273=− 23 33=−23; (3) 1−37643= 27643= 34 33=34;(4) 78−13= −183=− 12 33=−12. 4. 用计算器计算下列各式的值(精确到0.001):(1) 8683; (2) 3 (3)− 8253; (4) ± 2 4023. 解:(1) 8683≈9.539;(2) 0.426 2543≈0.753;(3)− 8253=− 0.323≈−0.684; (4) ± 2 4023≈±13.392.综合运用5. 求下列各式中的x 的值:(1)x 3=0.008;(2)x 3-3=38; (3) (x-1)3=64. 解:(1)x= 0.0083= 0.233=0.2;(2)x 3=278;x= 2783= 32 33=32; (3)x-1= 643= 433=4;x=5.6. 一个正方体的体积扩大为原来的8倍,它的棱长变为原来的多少倍?扩大为原来的27倍呢?n 倍呢?解:设原体积为V ,棱长为a则有V=a 3, a= V 3体积扩大为原来的8倍,27倍,n 倍后分别为:8V,27V,nV棱长分别扩大为:8V 3=2 V 3=2a ;27V 3=3 V 3=3a ;nV 3= n 3· V 3= n 3a ;∴棱长分别扩大为原来的2倍,3倍, n 3倍.7. 要生产一种容积为50L 的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少分米(用计算器计算,结果保留小数点后一位)? 解:设半径为r dm ,则直径为2r dm. 高为4r dm ,依题意, πr 2·4r=50.r 3=252π≈3.981 r ≈ 3.9813≈1.62r=3.2∴这种容器的底面直径应取3.2dm.8. 比较下列各组数的大小:(1) 93与2.5; (2) 33与32. 解:(1)2.53=15.625;∵9<15.625,∴ 93<2.5;(2) 32 3=278=338;∵3<338,∴ 33<32. (1)2.53= 523=1258=1558;∵9<1558,∴ 93<2.5 拓广探索9. (1)求 233, (−2)33, (−3)33, 433, 033的值. 对于任意数a , a 33等于多少?(2) 求( 83)3,( −83)3,( 273)3,( −273)3,( 03)3的值. 对于任意数a ,( a 3)3等于多少?解:(1) 33, (−2)33=−2, (−3)33=-3, 33=4, 33=0.a 33=a.(2)( 83)3=8,( −83)3=-8,( 273)3=27,( 03)3=0.( a 3)3=a.10. 任意找一个数,比如1 234,利用计算器对它开立方,再对得到的立方根开方……如此进行下去,你有什么发现?解:①对于1,0,-1,每次开立方的结果均为它们本身;②小于-1的数不断开立方的结果逐渐增大,并趋近于-1;③大于-1的负数不断开立方的结果逐渐减小,并趋近于-1;④小于1的正数不断开立方的结果逐渐增大,并趋近于1;⑤大于1的数不断开立方的结果逐渐减小,并趋近于1.。
七年级数学下册综合算式专项练习题立方根的计算
七年级数学下册综合算式专项练习题立方根的计算七年级数学下册综合算式专项练习题——立方根的计算立方根是数学中一个重要的概念,我们经常会遇到需要计算立方根的情况。
在这里,我们将通过一些综合算式的专项练习题来了解并掌握立方根的计算方法。
一、简单立方根计算首先,我们先来看一些简单的立方根计算题。
这些题目旨在帮助我们熟悉立方根的计算方式。
1. 计算以下数的立方根:a) 8b) 27c) 64解答:a) 8的立方根为2,因为2 × 2 × 2 = 8。
b) 27的立方根为3,因为3 × 3 × 3 = 27。
c) 64的立方根为4,因为4 × 4 × 4 = 64。
通过以上计算,我们可以得出结论:一个数的立方根是指能够将这个数分解成相同的因数相乘的表示。
二、混合立方根计算接下来,我们来看一些混合立方根计算题,这些题目将考验我们对立方根的理解和计算能力。
2. 计算以下算式的结果,并分别化简为最简根式:a) ∛8 + ∛27b) ∛64 - ∛27c) 2∛27 + 3∛8解答:a) ∛8 + ∛27 = 2 + 3 = 5b) ∛64 - ∛27 = 4 - 3 = 1c) 2∛27 + 3∛8 = 2 × 3 + 3 × 2 = 12以上计算过程中,我们使用了立方根的基本性质,即可以将一个算式中的立方根进行分解并进行计算。
三、复杂立方根计算接下来,我们来继续挑战一些更加复杂的立方根计算题目,以此提升我们的立方根计算能力。
3. 计算以下算式的结果,并化简为最简根式:a) ∛(2 × 4 × 16)b) ∛(27 ÷ 3)c) ∛(125 × 16) - ∛(64 × 5)解答:a) ∛(2 × 4 × 16) = ∛(128) = 4b) ∛(27 ÷ 3) = ∛(9) = 3c) ∛(125 × 16) - ∛(64 × 5) = 5 - 4 = 1以上计算题目中,我们需要先计算括号内的数值,然后再进行立方根的计算。
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(29)
章节测试题1.【答题】的平方根是______.【答案】【分析】本题考查了平方根.【解答】=3,本题实际上就是求3的平方根.2.【答题】计算:.【答案】2【分析】如果一个数x的平方等于a,那么x是a的平方根,其中正的平方根叫做算术平方根.由此即可求解.【解答】故答案为:3.【答题】的平方根是______.【答案】±3【分析】根据平方根的定义解答即可.【解答】∵(±3)2=9,∴9的平方根是±3.故答案为:±3.4.【答题】______.【答案】4【分析】本题考查了算术平方根.【解答】∵42=16,∴16的算术平方根是4,即=4.故答案为:4.5.【答题】7的平方根是______.【答案】【分析】本题考查了平方根.【解答】∵,∴7的平方根是,故答案为:.6.【答题】化简:=______.【答案】3【分析】本题考查了平方根.【解答】=|-3|=-(-3)=3.故答案是:3.7.【题文】已知-(b-2)=0,求b a的值.【答案】【分析】由平方根的性质,把原式变形为,根据几个非负数的和为零,那么这几个非负数都等于零,列方程求a,b的值.【解答】由,得,根据非负数的性质得1+a=0,2-b=0,解得a=-1,b=2,所以b a=2-1=8.【题文】已知一个正数的两个平方根分别为2a+5和3a-15.(1)求这个正数;(2)请估算30a的算术平方根在哪两个连续整数之间.【答案】(1)81(2)7和8之间【分析】本题考查了平方根与算术平方根.【解答】(1)由题意得2a+5+3a-15=0,解得a=2.故所求的正数是(2a+5)2=(2×2+5)2=81.(2)∵a=2,∴30a=60.∵49<60<64,∴,即.9.【题文】已知的算术平方根是3,的平方根是,是的整数部分,求的平方根.【答案】【分析】先根据算术平方根及平方根的定义得出关于的方程组,求出的值,再估算出的取值范围求出c的值,代入所求代数式进行计算即可.【解答】∵2a−1的算术平方根是3,3a+b−1的平方根是±4,∴解得∵9<13<16,∴,∴的整数部分是3,即c=3,∴原式.6的平方根是.10.【题文】若2a-5和a+8是一个正数的平方根,那么这个正数是多少?.【答案】这个正数为441或49【分析】直接利用平方根的定义分析得出答案.【解答】由题可知:①当2a-5=a+8时,解得:a=13,那么a+8=21,∴正数为441;②当2a-5+a+8=0时,解得:a=-1,那么a+8=7,∴正数为49.∴这个正数为441或49.11.【题文】若正数m的平方根是5a+1和a-19,求m的值及m的平方根.【答案】m=256,m的平方根是±16.【分析】根据数m的平方根是5a+1和a-19,可知5a+1和a-19互为相反数,据此即可列方程求得a的值,然后根据平方根的定义求得m的值.【解答】由题可得(5a+1)+(a-19)=0,解得a=3,则m=(5a+1)2=162=256,所以m的平方根是±16.12.【题文】求下列各式中的值:(1);(2)【答案】(1);(2)【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】(1)方程整理得:x2=4,开方得:x=±2;(2)方程整理得:(x-3)3=,开立方得:x-3=,解得:x=.13.【题文】(1)计算|-5|+-32+.(2)求的值:【答案】(1)-1(2)±2【分析】(1)理解绝对值,算术平方根,乘方,立方根的意义;(2)把常数项移到方程的右边,用平方根的意义求解.【解答】解:(1)原式=5+4-9-1=-1;(2)4x2=16,所以x²=4,所以x=±2.14.【题文】已知,的平分根是,是的整数部分,求:(1)求的值;(2)的平方根.【答案】(1)a=5,b=2,c=7(2)【分析】(1)先根据算术平方根及平方根的定义得出关于a、b的方程,求出a、b的值,再估算出的取值范围求出c的值即可;(2)把(1)中的a、b、c的值代入进行计算即可得.【解答】(1)∵,的平分根是,∴2a-1=32,3a+b-1=(±4)2,∴a=5,b=2,∵7<<8,是的整数部分,∴c=7;(2)∵a=5,b=2,c=7,∴a+2b+c=16,16的平方根是±4,即的平方根是±4.15.【题文】先阅读下列材料,再回答相应的问题若与同时成立,则x的值应是多少?有下面的解题过程:由于与都是算术平方根,故两者的被开方数与均为非负数.而与互为相反数,两个非负数互为相反数,只有一种情形,那便是,所以.问题:已知,求的值.【答案】【分析】根据阅读的解题过程,可类比求解即可求出x、y的值,代入求解即可.【解答】由于与都是算术平方根,故两者的被开方数与均为非负数.而与互为相反数,两个非负数互为相反数,只有一种情形,那便是,,所以,y=2,代入即可得==.16.【题文】若正数M的两个平方根是和,试求和M的值.【答案】a=2,M=9【分析】根据平方根的意义,一个正数有两个平方根,它们互为相反数,可列方程求解.【解答】因为正数M的两个平方根是和所以3a-3+2a-7=0解得a=2所以M=(3a-3)2=32=9.17.【题文】求的值,.【答案】x=0或x=-4【分析】根据平方根的意义,先两边同除以4,再直接开平方即可.【解答】(x+2)2=4x+2=±2解得x=0或x=4.18.【题文】(1)已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根;(2)若2a-4与3a+1是同一个正数的平方根,求a的值.【答案】(1)±3;(2)a=1【分析】(1)利用平方根及算术平方根的定义列出方程组,求出方程组的解得到a与b 的值,确定出的值,即可确定出平方根.(2)与是同一个正数的平方根,即可求出的值.【解答】(1)由题意得2a−1=9,3a+b−1=16,解得:a=5,b=2,则a+2b=9,则9的平方根为3或−3;(2)∵与是同一个正数的平方根,19.【题文】求x的值:4(x+1)2=64【答案】x=3或x=-5.【分析】直接开方法即可求出的值.【解答】或或20.【题文】计算下列各题:(1)(2)【答案】(1)-12;(2)-8【分析】(1)注意运算的顺序,先算乘除,后算加减;(2)注意-32与(-3)2的区别,-32=-9,(-3)2=9;负数得绝对值等于它的相反数,即;表示16的算术平方根,即.【解答】(1)原式=-10-2=-12(2)原式=-9+5-4=-8。
立方根练习题及答案
立方根练习题及答案### 立方根练习题及答案#### 一、选择题1. 立方根的定义是:如果一个数的三次方等于另一个数,那么这个数就是另一个数的______。
A. 平方根B. 立方根C. 四次方根D. 五次方根答案:B2. 计算下列哪个数的立方根是整数。
A. 8B. 27C. 64D. 125答案:B3. 立方根的符号规律是:正数的立方根是______,负数的立方根是______。
A. 正数,正数B. 正数,负数C. 负数,负数D. 负数,正数答案:B#### 二、填空题4. 计算\( \sqrt[3]{64} \)的值是______。
答案:45. 如果\( a \)是\( b \)的立方根,那么\( a^3 \)等于______。
答案:b6. 立方根\( \sqrt[3]{-1} \)的值是______。
答案:-1#### 三、计算题7. 计算下列各数的立方根:- \( \sqrt[3]{-8} \)- \( \sqrt[3]{0} \)- \( \sqrt[3]{1} \)答案:- \( \sqrt[3]{-8} = -2 \)- \( \sqrt[3]{0} = 0 \)- \( \sqrt[3]{1} = 1 \)8. 某数的立方根是2,求这个数。
答案:8#### 四、应用题9. 一个正方体的体积是27立方米,求它的棱长。
答案:棱长为3米,因为\( 3^3 = 27 \)。
10. 一个立方体的体积是64立方厘米,求它的底面积。
答案:底面积为4平方厘米,因为\( 4^3 = 64 \),底面积\( a^2 \),其中\( a = 4 \)。
#### 五、综合题11. 一个数的立方根等于它的平方根,求这个数。
答案:这个数是1或者0,因为\( 1^3 = 1 \)且\( 1^2 = 1 \),\( 0^3 = 0 \)且\( 0^2 = 0 \)。
12. 一个立方体的体积是125立方厘米,如果将其切割成两个相同的小立方体,每个小立方体的体积是多少?答案:每个小立方体的体积是\( \frac{125}{2} = 62.5 \)立方厘米。
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(21)
章节测试题1.【题文】求下列各数的立方根:(1);(2)-10-6;【答案】(1)(2)-10-2【分析】(1)直接利用立方根的定义求出即可;(2)直接利用立方根的定义求出即可.【解答】(1),∵,所以的立方根是;(2)∵,所以的立方根是.2.【题文】求下列各数的立方根:(1)-125;(2)0.027;(3)(53)2.【答案】(1)-5;(2)0.3;(3)25【分析】根据立方根的意义,如果一个数x的立方等于a,即x的三次方等于a (x3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根,也叫做三次方根.【解答】(1)∵(-5)3=-125∴-125的立方根为-5;(2)∵0.33=0.027∴0.027的立方根为0.3(3)∵(53)2=(52)3∴(53)2立方根为52=25.3.【题文】请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.【答案】(1)魔方的棱长6cm;(2)长方体纸盒的长为10cm.【分析】(1)由正方体的体积公式,再根据立方根,即可解答;(2)根据长方体的体积公式,再根据平方根,即可解答.【解答】(1)设魔方的棱长为xcm,可得:x3=216,解得:x=6,答:该魔方的棱长6cm;(2)设该长方体纸盒的长为ycm,6y2=600,y2=100,y=10,答:该长方体纸盒的长为10cm.4.【题文】如果一个正数x的两个平方根分别为a+1和a-5.(1)求a和x的值;(2)求7x+1的立方根.【答案】(1)x=9(2)【分析】(1)根据一个正数的两个平方根互为相反数,得出以为未知数的方程,求解即可求出的值,结合可求出的值;(2)先求出的值,再根据立方根的定义求解即可.【解答】(1)由题意,得解得所以因为的平方根是,所以(2)因为所以的立方根为5.【题文】已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?【答案】截得的每个小正方体的棱长是4cm.【分析】一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,设截得的每个小正方体的棱长xcm,根据已知条件可以列出方程,解方程即可求解.【解答】设截去的每个小正方体的棱长是xcm,则由题意得,解得x=4.答:截去的每个小正方体的棱长是4厘米.6.【题文】已知x-2的平方根是±2,2x+y+7的立方根是3,求的平方根.【答案】±10【分析】先运用立方根和平方根的定义求出x与y的值,再求出的平方根.【解答】∵x-2的平方根是±2,2x+y+7的立方根是3,∴x-2=4,2x+y+7=27,解得x=6,y=8,∴==100,∴的平方根是±10.7.【题文】计算:(1)(2)36(x-3)2-25=0(3)(x+5)3=-27.【答案】(1)0;(2)x1=,x2=;(3)x=-8.【分析】(1)首先化简各数,进而计算得出答案;(2)直接利用平方根的定义得出答案;(3)直接利用立方根的定义得出答案.【解答】(1)原式=2+2+=0;(2)36(x-3)2-25=0则(x-3)2=,故x-3=±,解得:x1=,x2=;(3)(x+5)3=-27x+5=-3,解得:x=-8.8.【题文】(1)求x的值:(1-x)3=-27;(2)计算:【答案】(1)x=4;(2)4【分析】(1)利用乘方概念解方程.(2)利用开平方,开立方计算.【解答】(1)(1-x)3=-27,1-x=3,x=4.(2)=2+1+1=4.9.【题文】若(2a-4)2和互为相反数,求a b的平方根与立方根.【答案】平方根是±2,立方根是2.【分析】根据几个非负数的和为零,那么这几个非负数都等于零,列方程求a,b 的值.【解答】∵(2a-4)2和互为相反数,∴(2a-4)2+=0,∴2a-4=0,b-3=0,解得a=2,b=3,所以a b=23=8,∴a b的平方根是±2,立方根是2.10.【题文】已知第一个正方体玩具的棱长是6cm,第二个正方体玩具的体积要比第一个玩具的体积大127cm,试求第二个正方体玩具的棱长.【答案】第二个正方形玩具的棱长为7cm【分析】先根据正方体的体积公式求出体积,然后得到第二个正方体的体积,然后根据立方根求解即可.【解答】第一个正方体的体积为:6×6×6=216cm3第二个正方体的体积为:216+127=343cm3第二个正方体的棱长为:=7cm.11.【题文】已知3a+b-1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.【答案】±2【分析】根据立方根与算术平方根的定义得到3a+b-1=27,2a+1=25,则可计算出a=12,b=-8,然后计算a+b后利用平方根的定义求解.【解答】根据题意得3a+b-1=27,2a+1=25,解得a=12,b=-8,所以a+b=12-8=4,而4的平方根为±=±2,所以a+b的平方根为±2.12.【题文】已知2a-1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.【答案】±4【分析】根据平方根可求出2a-1=9,根据立方根可求出3a+b+9=27,然后解方程求出a、b的值即可.【解答】解:由已知得,2a-1=9解得:a=5,又3a+b+9=27∴b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:±=±413.【题文】已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.【答案】(1)a=5,b=2,c=3.(2)3a-b+c的平方根是±4.【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【解答】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2.∵c是的整数部分,∴c=3;(2)当a=5,b=2,c=3时,3a-b+c=16,3a-b+c的平方根是±4.14.【题文】计算:(1)(2)【答案】(1)8;(2)【分析】(1)根据算术平方根和立方根的定义解答即可;(2)根据绝对值的意义和平方根的性质化简计算即可.【解答】(1)原式=10-2=8;(2)原式.15.【题文】计算:().().【答案】(1)–2;(2)【分析】此题涉及平方根、算术平方根、立方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】()原式.()原式.16.【题文】(1);(2).【答案】(1)-3;(2)3.【分析】(1)直接利用算术平方根定义分析得出答案;(2)直接利用立方根的性质化简得出答案.【解答】(1)=2+5-10=-3;(2)==3.17.【题文】已知3a-2的平方根是±5,4a-2b-8的算术平方根是4,求a+3b的立方根.【答案】3【分析】根据题意可以求得a、b的值,再求a+3b的立方根即可.【解答】∵3a-2的平方根是±5,∴3a-2=25,解得a=9.∵4a-2b-8的算术平方根是4,∴36-2b-8=16,解得b=6,∴a+3b=9+3×6=27.∴a+3b的立方根为3.18.【题文】已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.【答案】2【分析】根据平方根与算术平方根的定义得到3a-b-2=16,2a-1=9,则可计算出a=5,b=1,然后计算a+b后利用立方根的定义求解.【解答】∵2a-1的平方根是±3∴a=5∵3a-b+2的算术平方根是4,a=5∴b=1∴a+3b=8∴a+3b的立方根是219.【题文】计算:(1);(2).【答案】0.3,【分析】本题考查了立方根.【解答】(1).(2).20.【题文】若与(6-27)2互为相反数,求的立方根.【答案】【分析】本题考查了平方根和立方根.【解答】根据题意,得:a+8=0,b-27=0,解得:a=-8,b=27,所以.。
七年级下数学立方根练习题含答案
七年级下数学立方根练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列命题中,是真命题的是( )A.√9的算术平方根是3B.5是25的一个平方根C.(−4)2的平方根是−4D.64的立方根是±42. −27的立方根是( )A.3B.−3C.9D.−93. 计算√273的结果是( )A.±3√3B.3√3C.±3D. 34. 立方根等于它本身的有( )A.0,1B.−1,0,1C.0D.15. 如图是马小虎同学的答卷,他的得分应是( )A.80B.60C.40D.206. 若√x 3+√y 3=0,则x 与y 的关系是( )A.x =y =0B.x =yC.x 与y 互为相反数D.x 与y 互为倒数7. 已知√8.9663=2.078,√y 3=0.2708,则y =( )A.0.8966B.89.66C.0.008966D.0.000089668. (620−√2002)3的结果(保留三位有效数字)是( )A.1.90×108B.1.9×108C.1.91×108D.以上答案都不对9. 下列说法中,正确的是( )A.−2是−4的平方根B.1的立方根是1和−1C.−2是(−2)2的算术平方根D.2是(−2)2的算术平方根10. 下列各数互为相反数的是( )A.−2与B.−2与C.|−2|与2D.与11. −64的立方根是________.12. 用计算器计算(结果精确到0.01).(1)√4.225≈________;(2)√68923≈________.13. 用计算器计算:√13−3.142≈________(结果保留三个有效数字).14. 当k <0时,随着k 的增大,它的立方根随着________.15. 求一个正数的立方根,有些数可以直接求得,如√83=2,有些数则不能直接求得,如√93,但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得,请同学观察下表:≈6,运用你发现的规律求√216000003=________.16. 已知√20203≈12.64,√202.03≈5.867 ,√20.203≈2.723;则 √2020003≈________.17. 若√x 3=−35,则x =________;若√|x|3=6,则x =________.18.的倒数是________;=________.19. 计算√−273的结果为________.20. 若√52b+1和√a −13都是5的立方根,则a =________,b =________.21. 解方程:(3x −1)3+64=0.22. 求下列式子中x 的值.(1)12(x −2)2=825;(2)64(x +1)3+125=0.23. 已知√x −23+2=x ,且√3y −13与√1−2x 3互为相反数,求x ,y 的值.24. 用计算器求下列各式的值(精确到0.001).(1)√7653;(2)√0.4262553;(3)−√7233.25. 解方程:(1)3(x −1)3=24;(2)x x+2−1=1x−2.26. 某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?27. 计算:(2+√3)(2−√3)+(2+√3)2.28. 一个底面的长为25cm ,宽为16cm 的长方体玻璃容器中装满了水,现小明从这个长方体玻璃容器中打水,然后装进另一个正方体储水容器,当正方体容器装满水时,长方体容器的水面下降了20cm .(1)求正方体储水容器装满水时水的体积.(2)求正方体储水容器的棱长(容器的厚度忽略不计)29. 用计算器比较大小,A =√25.4,B =√38.83.30. 求出下列式子中的x :(2x −1)3+8=031. 计算:(−1)2018+|2−√5|−√83.32. 求x 的值:14x 3+3=5.33. 求式子x 3=32768中x 的值.34. 计算:(1)√32+42;(2)√81+√−273+√(−23)2;(3)|√2−√3|+2√2−√3;(4)−√(−2)2+√214+√(−1)813.35. 用计算器计算(精确到0.01)(1)3√2−2√3(2)√3×√2+√5−π2.36. 计算下列各式.(1)|√2−√3|+√83+2(√3−1).(2)若x ,y 为实数,且y =√1−4x +√4x −1+12,求x ⋅y 的算术平方根.37. (1)填表:(2)由上表发现什么规律?请用语言叙述这个规律. 37.(3)根据你发现的规律填空: ①已知√33=1.442,则√30003=________,√0.0033=________;②已知√0.0004563=0.07697,则√4563=________.38. 计算:(1)√1−925;(2)4√3−2(1−√3)+√(−2)2;(3)√83+√0+√4;(4)√2+3√2−5√2.39. 计算:√−83+√(−1)2+√25.40. 已知第一个立方体纸盒的棱长是6厘米,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127立方厘米,求第二个纸盒的棱长.参考答案与试题解析七年级下数学立方根练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】命题与定理平方根算术平方根立方根【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答3.【答案】D【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答4.【答案】B【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答5.A【考点】平方根相反数绝对值近似数和有效数字立方根【解析】此题暂无解析【解答】此题暂无解答6.【答案】C【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答8.【答案】A【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】立方根的性质【解答】此题暂无解答10.【答案】A【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−4【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答12.【答案】2.06;19.03.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答13.【答案】0.464【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答14.【答案】增大【考点】立方根的实际应用【解答】此题暂无解答15.【答案】278.5【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答16.【答案】58.67【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答17.【答案】−27,±216125【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答18.【答案】∼4,3【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答19.【答案】−3【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答20.【答案】6,1【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)(x −2)2=1625,x −2=±45,x 1=145,x 2=−65. (2)(x +1)3=−12564,x +1=−54, x =−94.【考点】立方根平方根【解析】23.【答案】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.【考点】立方根的实际应用立方根的性质【解析】此题暂无解析【解答】此题暂无解答24.【答案】解:(1)√7653≈9.1457≈9.146;(2)√0.4262553≈0.7525≈0.753;(3)−√7233≈−0.6726≈−0.673.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答25.【答案】方程整理得:(x −1)3=8,开立方得:x −1=2,解得:x =3;去分母得:x 2−2x −x 2+4=x +2,解得:x =23,经检验x =23是分式方程的解.【考点】解分式方程立方根的性质【解析】26.【答案】πr3=13.5,解得r≈1.5.解:根据球的体积公式,得43故这个球罐的半径r为1.5米.【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:原式=8+4√3.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答28.【答案】长方体中打出的水的体积为25×16×20=8000(cm3),故正方体储水容器装满水时水的体积为8000cm3.3=20,∵√8000∴正方体储水容器的棱长为20cm.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答29.【答案】3≈3.39,解:∵√25.4≈5.04,√38.8而5.04>3.39,3,∴√25.4>√38.8∴A>B.【考点】计算器—数的开方【解析】此题暂无解析【答案】解:(2x−1)3=−8 2x−1=−2x=−1 2【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答31.【答案】√5−3【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答32.【答案】∵14x3+3=5,∴14x3=2,则x3=8,∴x=2.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:x3=32768,开立方得:x=32.【考点】立方根的实际应用【解析】此题暂无解析【答案】解:(1)原式=√9+16=5.(2)原式=9−3+23=623.(3)原式=√3−√2+2√2−√3=√2.(4)原式=−2+32−1=−3+32=−32.【考点】立方根的应用实数的运算算术平方根绝对值【解析】此题暂无解析【解答】此题暂无解答35.【答案】解:(1)原式≈3×1.414−2×1.732≈0.78;(2)原式≈1.732×1.414+2.236−3.142÷2≈3.11.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:(1)|√2−√3|+√83+2(√3−1)=√3−√2+2+2√3−2=3√3−√2;(2)由题意得,1−4x≥0,4x−1≥0,解得,x=14,则y=12,故xy=18,则x⋅y的算术平方根是√24.立方根的应用实数的运算算术平方根绝对值【解析】此题暂无解析【解答】此题暂无解答37.【答案】0.01,0.1,1,10,100(2)被开方数的小数点每向右(或向左)移动3位,立方根的小数点就相应的向右(或向左)移动1位.14.42,0.1442,7.697【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:(1)原式=√1625=45.(2)原式=4√3−2+2√3+2=6√3.(3)原式=2+0+2=4.(4)原式=−√2.【考点】立方根的应用实数的运算算术平方根合并同类项【解析】此题暂无解析【解答】此题暂无解答39.【答案】解:原式=−2+1+5=4.【考点】立方根的应用算术平方根【解析】此题暂无解析【解答】此题暂无解答40.【答案】解:∵第一个立方体的体积是63=216,∴第二个立方体的体积是216+127=343,∴第二个立方体的棱长是343的立方根,即棱长为7厘米.【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答。
立方根的练习题
立方根的练习题立方根的练习题立方根是数学中一个常见的概念,它表示一个数的立方的平方根。
求立方根是一个常见的练习题,既考验了我们的计算能力,也锻炼了我们的逻辑思维。
下面我将给大家提供一些有趣的立方根练习题,希望能够激发大家对数学的兴趣。
1. 求下列数的立方根:a) 8b) 27c) 64d) 125解答:a) 2b) 3c) 4d) 5这是最简单的立方根练习题,大家可以通过手算或者使用计算器来得出答案。
这些数都是完全立方数,即它们的立方根是整数。
2. 求下列数的立方根:a) 10b) 20c) 30d) 40a) 约等于2.154b) 约等于2.714c) 约等于3.107d) 约等于3.419这些数不是完全立方数,它们的立方根不是整数。
我们可以使用近似计算的方法,比如牛顿迭代法或二分法,来求得它们的近似值。
通过这些练习,我们可以提高自己的计算能力和近似估算的技巧。
3. 求下列数的立方根:a) 0.1b) 0.01c) 0.001d) 0.0001解答:a) 约等于0.464b) 约等于0.215c) 约等于0.1d) 约等于0.031这些数是小于1的正数,它们的立方根比它们本身要小。
我们可以使用类似于上述的近似计算方法来求得它们的近似值。
4. 求下列数的立方根:a) -8c) -64d) -125解答:a) -2b) -3c) -4d) -5立方根可以是负数,负数的立方根是对应正数的相反数。
我们可以通过改变符号来求得负数的立方根。
通过这些练习题,我们可以更好地理解立方根的概念和性质。
立方根的计算是数学中的一项基本技能,它在实际生活中也有广泛的应用。
比如,在工程计算、物理学和经济学等领域,立方根的计算都是必不可少的。
除了基本的立方根计算,我们还可以进一步扩展练习题的难度。
比如,可以考虑求解立方根的方程,或者给定一个数,让学生通过近似计算来求得它的立方根。
这样的练习可以更好地培养学生的数学思维和解决问题的能力。
七年级下册数学同步练习题库:立方根(简答题:一般)
立方根(简答题:一般)1、计算:(1)(2)2、计算:(1)(π-3)0+(-)- 1(2)+3、计算(1)(2)4、解下列方程:(1)4x2﹣16=0;(2)(x﹣1)3=﹣125.5、求下列各式中的:(1)4x2=81;(2)(x+1)3-8=0.6、填表:7、已知一个正数的平方根是a+3和2a-18,求这个正数的立方根.8、如果a是100的算术平方根,b为125的立方根,求的平方根.9、已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.10、依照平方根(二次方根)和立方根(三次方根)的定义可给出四次方根、五次方根的定义:①如果x4=a(a≥0),那么x叫做a的四次方根;②如果x5=a,那么x叫做a的五次方根.请依据以上两个定义,解决下列问题:(1)求81的四次方根;(2)求-32的五次方根;(3)求下列各式中未知数x的值:①x4=16;②100000x5=243.11、求下列各式中x的值: (1) 4(x+2)2﹣5=11 (2) (x﹣2)3+27=012、已知2a﹣1的平方根是±3,3a+b﹣1的立方根是4,求a+b的平方根.13、求下列各式中x的值:(1)(x+2)2-36=0; (2)64(x+1)3=27.14、已知3x+1的算术平方根是4,x+2y的立方根是-1,(1)求x、y的值; (2)求2x-5y的平方根.15、求下列各式中x的值:(1)(2)16、已知2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.17、求下列各等式中x的值.(1)=9;(2)=" -" 9.18、求下列各式中的x的值:19、求x值:(1)5(x﹣1)2=125 (2)2x3=54.20、解下列方程:(1)(2x﹣1)2 =16 (2)(x﹣1)3+27=0;21、解方程(1)(x+1)2﹣1=24 (2)125x3+343=022、解下列方程(1)3(2)3(2x+1)3+24=023、(1)计算:;(2)已知:,求.24、求下列各式中的(1); (2) (2x+10)=-27.25、已知3a+b﹣1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.26、求下列各式中x的值:(1);(2)27、我们知道时,也成立,若将看成的立方根,看成的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求的值.28、解方程(1);(2)29、解下列方程.(1)(2)30、(1)已知是有理数且满足:是-27的立方根,,求的值;(2)已知,求的值.31、已知2a一1的平方根是±5,3a+b﹣1的立方根是4,求a+2b+10的平方根.32、解下列方程.(1)(2)33、解方程(1) (x+5)2=16,求x; (2)34、计算和解方程(1)(2)(3);(4)(5). (6)(2x-3)2=3635、已知一个正方体的体积是1000Cm³,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488Cm³,问截得的每个小正方体的棱长是多少?36、计算:(1)(2)37、计算:38、下面是某位同学进行实数运算的全过程,其中错误有几处?请在题中圈出来,并直接写出正确答案. 计算:.39、计算:.40、计算:41、计算(1);(2)42、计算:43、计算:(1);(2)44、计算:.45、计算:﹣(π﹣1)0﹣()﹣1.46、一个正数的两个平方根分别是2a-5与1-a,b-7的立方根是-2.求(1)a,b的值;(2)a+b的算数平方根.47、(1);(2)(3);(4)48、(1)计算:(2) 解方程:49、求下列各式中的x的值:(1)(2x-1)2= 25 (2)3(x-4)3= -37550、计算:(1)(2)51、计算:(1)(2).52、己知2a-1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.53、解方程:(1)3(x﹣2)2=27(2)2(x﹣1)3+16=0.54、已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.55、计算:(1)计算:;(2)求式中x的值:;56、已知某数的平方根是和,的立方根是,求的平方根.57、求下列各式中的x的值.(1)(3x+2)2=16;(2)58、计算:.59、已知:,,求代数式的值.60、(1)、计算:(2)、解方程:61、求下列各式中x的值.(1)=﹣8;(2)﹣9=0.62、求下列各式中的实数x(1)(x+1) 2-9=0;(2)(x+10)=-27;63、解方程(1)8 x3+125=0 (2)64(x+1)2-25=064、求下列各式中的x(1)4x2-16=0(2)27(x-3)3=-6465、求下列方程中x的值(1)9x2﹣16=0(2)(﹣2+x)3=﹣216.66、已知2a﹣1的算术平方根是5,a+b﹣2的平方根是±3,c+1的立方根是2,求a+b+c的值.67、已知2a﹣1的平方根是±3,3a+b﹣1的立方根是2,求2a﹣b的平方根.68、求式子中x的值:(1)25(x+2)2﹣36=0;(2)(2x+1)3+1=0.69、求下列x的值.(1)2x3=﹣16 (2)(x﹣1)2=4.70、(1)制作一个表面积为12平方分米的正方体纸盒,棱长应为多少分米?(2)如果2a-1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.参考答案1、(1);(2)02、(1)-1(2)3、(1)-5(2)4、(1)x=±2;(2)x=﹣4.5、(1)x=±;(2) x=1.6、填表见解析7、48、±.9、2.10、(1)±3.(2)-2.(3)①;②.11、(1)x="0,x=-4" ;(2)x=-1.12、±13、(1)x=4或x=-8 ;(2)x=-.14、(1)x=5,y=-3;(2)±5.15、(1),;(2).16、(1)x=6,y=8;(2)±10.17、(1)4或—2 ;(2)—218、(1);(2)-2.19、(1)x1=6,x2=﹣4,(2)x=3.20、(1)x=2.5,x=" -1.5" ;(2)x= -221、(1)=4,=-6, (2) x=22、(1);(2)23、(1);(2)或24、(1)±;(2)x=﹣.25、±226、(1)x=±4;(2)x=-327、(1)举例见解析;(2)-1.28、(1)x=3;(2) x=+129、(1) x=4或x=−4(2) x=−2.30、(1)(2)031、±(或 ±)32、(1) x=4或x=−4(2) x=−2.33、x=−1534、(1)-;(2);(3);(4);(5)x="1" ;(6)x=或x=35、截得的每个小正方体的棱长是4cm.36、(1)0(2)37、138、4处,错误位置见解析,正确答案是39、540、241、(1)0;(2)+2-π42、243、(1)8;(2)144、245、3.46、(1)a=4,b=-1;(2)47、(1)-2;(2);(3);(4)48、(1)-1 (2)x=449、(1)x ₁="3,x" ₂=-2;(2)x=-150、(1)(2)951、(1)8;(2)52、a+b的平方根为53、(1)x=5或﹣1.(2)x=﹣1.54、255、(1)-1+(2)x=±56、±2.57、(1)x=或x=﹣2;(2)x=58、59、1360、(1)、1;(2)、x=-61、(1)﹣1;(2).62、(1)、x=2或-4;(2)、x=-1363、(1)x=-(2)64、(1) ±2 (2)65、(1)x=±(2)x=﹣466、1867、±468、x=﹣或x=﹣;x=﹣1.69、70、(1)、分米,(2)、±3.【解析】1、试题分析:分别进行开平方、开立方的运算,然后合并即可得出答案.试题解析:(1)原式=﹣1﹣﹣=﹣1﹣=﹣.(2)原式=2﹣2﹣+=0.2、原式=1-2=-1.原式 .3、(1)==(2)===4、试题分析:(1)根据平方根的定义计算即可;(2)根据立方根的定义计算即可.试题解析:(1)4x2=16,x2=4,x=±2;(2)x﹣1=﹣5,x=﹣4.5、试题分析:(1)先变形为x2=,然后根据平方根的定义求的平方根即可;(2)先变形得到(x-1)3=8,然后根据立方根的定义求解.试题解析:(1)∵x²=,∴x=±;(2)(x−1) ³=8,∴x−1=2,∴x=3.6、试题分析:(1)根据相反数的性质,相反数等于它本身的数只能是0;(2)根据绝对值的性质解答.非负数的绝对值是它本身;(3)根据倒数的定义可知,±1的倒数等于它本身;(4)根据平方的性质解答;(5)根据立方的性质解答;(6)-1没有平方根,1的平方根是±1,0的平方根是0;(7)由于一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,算术平方根等于它本身的数是只能是0和1,由此即可求解;(8)直接利用立方根的性质得出符合题的答案;(9)根据负整数的定义可知;(10)根据绝对值的性质解答,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.试题解析:填表如下7、分析:根据平方根的和为零,可得一元一次方程,根据解方程,可得a的值,根据平方运算,可得这个数,根据开立方运算,可得答案.本题解析:由题意得:a+3+2a-18=0,∴a=5.∴这个正数的一个平方根是:a+3=8,∴原数=64,∵,∴这个数的立方根是4.点睛:本题主要考查实数的平方根和实数的立方根,根据平方根的性质解出的值,则可确定这个正数的值,再求出其立方根即可.8、试题分析:先根据算术平方根、立方根的定义求得a、b的值,再代入所求代数式即可计算.解:∵a是100的算术平方根,b为125的立方根,∴a=10,b=5,∴a2+4b+1=121,∴=11,∴的平方根=±.【点评】此题主要考查了算术平方根的定义、立方根的定义.解题时注意对的平方根的理解.要双重开平方.9、试题分析:根据算术平方根及立方根的定义,求出M、N的值,代入可得出M﹣N的平方根.解:因为M=是m+3的算术平方根,N=是n﹣2的立方根,所以可得:m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M﹣N=3﹣1=2.考点:立方根;算术平方根.10、(1)∵(±3)4=81,∴81的四次方根是±3.(2)∵(-2)5=-32,∴-32的五次方根是-2.(3)①;②原式变形为x5=0.00243,∴.11、【分析】(1)变形为(x+2)2=4,再根据平方根的定义得到x-2=±2然后解两个一次方程即可;(2)变形为(x﹣2)3=-27,根据立方根的定义得到x-2=-3,然后解一次方程即可.【详解】(1) 4(x+2)2﹣5=11,4(x+2)2="11" +5,4(x+2)2=16,(x+2)2=4,x+2=±2,x=0或x=-4;(2) (x﹣2)3+27=0,(x﹣2)3=-27,x﹣2=-3,x=-1.【点睛】本题考查了利用平方根定义、立方根解方程,解题的关键是熟练应用这两个定义进行解答.12、试题分析:根据平方根可求出2a-1=9,根据立方根可求出3a+b-1=64,然后解方程求出a、b的值即可. 试题解析:解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的立方根是4,∴3a+b﹣1=64,∴b=50,∴a+b=55,∴a+b的平方根是.点睛:此题主要考查了立方根和平方根的意义的应用,关键是根据平方根,求出2a-1=9,根据立方根求出3a+b-1=64,转化为解方程得问题解决.13、试题分析:(1)先移项,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.试题解析:(1)(x+2)2-36=0,(x+2)2=36,x+2=±6,x=4或x=-8;(2)64(x+1)3=27,(x+1)3=,x+1=,x=-.14、试题分析:(1)先根据算术平方根的意义可得出3x+1=16,解得x=5,再根据立方根的意义可得x+2y=-1,把代入可求出y=-3,(2)把x=5, y=-3,代入2x-5y计算求值,再根据平方根的意义求平方根.试题解析:(1)因为3x+1的算术平方根是4,所以3x+1=16,解得x=5,又因为x+2y的立方根是-1,所以x+2y=-1,即5+2y=-1,解得y=-3,所以x=5, y=-3.(2)因为x=5, y=-3,所以2x-5y=2×5-5×(-3)=25,因为5的平方是25, -5的平方是25,所以25的平方根是5和-5,15、试题分析:(1)先将常数项移动到等号的右边,然后根据平方根的意义进行解答,(2)先将等式两边同时除以8,然后再根据立方根的意义开立方运算,最后解方程求出x的值.试题解析:(1),,因为4的平方是16, -4的平方是16,所以或.(2),,所以,,解得,.点睛:本题主要考查开平方和开立方求值问题,学生要熟练掌握平方根和立方根的概念,能够熟练的进行开方运算.16、试题分析:(1)根据立方根和平方根的定义列方程求解;(2)先求x2+y2,再求它的平方根,注意正数的平方根有两个,且互为相反数.试题解析:(1)根据题意得,解得即x=6,y=8.(2)由(1)得x=6,y=8,所以x2+y2=62+82=100,则x2+y2的平方根是±10.17、试题分析:(1)根据平方根的定义先求出x-1,再求出x.(2)先整理成x3=a的形式,再直接开立方解方程即可.试题解析:(1)∵(x-1)2=9∴x-1=±3,∴x=4或x=-2.(2)(x-1)3=-27∴x-1=-3∴x=-2.18、试题分析:(1)先算算术平方根,再系数化为1,再根据平方根即可解答;(2)先系数化为1,再根据立方根即可解答.试题解析:(1)4(2x-1)2=,4(2x-1)2=9,(2x-1)2=,2x-1=±,解得x1=-,x2=;(2)8(x3+1)=-56,x3+1=-7,x3=-8,x=-2.19、试题分析:(1)方程两边同时除以5后,利用平方根的定义解方程即可;(2)方程两边同时除以2后,利用立方根的定义解方程即可.试题解析:(1)(x﹣1)2=25x﹣1=±5x-1=5或x-1=-5∴x1=6,x2=﹣4(2)x3=27x=320、试题分析:(1)直接开平方即可得解;(2)先移项,再开立方即可得解.试题解析:(1)(2x﹣1)2 =16,2x-1=±4,∴2x=5,2x=-3,x=2.5,x=" -1.5" ;(2)(x﹣1)3+27=0;(x﹣1)3=-27,x-1=-3,x=-2.21、分析:(1)化成(x+1)²=25的形式,推出x+1=±5,求出即可;(2)推出,两边开立方求出即可.本题解析:(1)(x+1)2﹣1=24,(x+1)²=25,x+1=±5,=4,=-6.(2) 125+343=0,125="-343" , =, x=,故方程的解为:x=。
七年级下册数学同步练习题库:立方根(填空题:容易)
立方根(填空题:容易)1、25的算术平方根是;的平方根是;-27的立方根是.2、立方根和算术平方根都等于它本身的数是___________.3、-27 的立方根为________,的平方根为________,的倒数为________.4、﹣125的立方根是____,的平方根是________,如果=3,那么a=______,的绝对值是________,的小数部分是_______5、的立方根是____,的平方根是_______,-是_______的平方根;6、_______.7、化简:_______,=________ =________8、的立方根是__________.9、计算:=________.10、的立方根是________,的平方根是____________.11、﹣64的立方根是.12、27的立方根为.13、4的算术平方根是,9的平方根是,-27的立方根是.14、8的立方根是.15、﹣3的相反数是;的立方根是.16、计算: = .17、把7的平方根和立方根按从小到大的顺序排列为___________.18、8的立方根为_______.19、平方根是其本身的数是,立方根是其本身的数是,平方是其本身的数是.20、实数-27的立方根是21、4的算术平方根是________,5的平方根是_____,﹣27的立方根是_______.22、4的算术平方根是;9平方根是;64的立方根是.23、立方根等于本身的数是______:24、计算:= .25、25的平方根是;64的立方根是.26、(2013•宁波)实数﹣8的立方根是.27、—8的立方根是.28、(2015秋•永嘉县校级期中)计算:= .29、64的立方根是________,的平方根是________.30、-8的立方根是:_______________.31、 16的平方根是,x3=﹣1,则x= .32、64的立方根为.33、9的平方根是;的立方根是-2.34、平方得16的有理数是_________,_________的立方等于-8.35、平方得16的数为,的立方等于-8.36、的算术平方根是__,的立方根是___,绝对值是______.37、计算:= .38、-的绝对值等于 .39、27的立方根是.40、已知x的平方根是±8,则x的立方根是.41、(4分)实数8的立方根是.42、(3分)﹣8的立方根是.43、计算:.44、计算:= .45、计算:=_________.46、计算:.47、的立方根是.48、若一个数的立方根就是它本身,则这个数是__________ .49、27的立方根是.50、= .51、8的立方根是.52、= ;= ;= .53、计算: = .54、-64的立方根是.55、计算:=.56、计算:的结果是 .57、 0.01的平方根是_____,-27的立方根是______,的相反数是_ _.58、的立方根是59、﹣125的立方根是 __.60、16的平方根为________ ;(-4)3的立方根是____________.61、的立方根是62、16的平方根是;的算术平方根是;的立方根是;63、的立方根是___________.64、9的平方根是,-1的立方根是.65、的立方根是_______66、81的平方根为;-8的立方根为______;的算术平方根是.67、实数-8的立方根是68、计算:= ,= ,= ,= .69、一个数的平方根与这个数的立方根相等,那么这个数是﹒70、=_________,的平方根是_________,1﹣的相反数为_________.参考答案1、5;;-3.2、0或13、 -3;. .4、 -5 ±3 9 ﹣2 -15、 56、7、 2, 5,8、29、310、 ±211、﹣412、313、2,±3,-314、2.15、3,.16、2.17、﹣<<.18、2.19、0;0,±1;0,1.20、-3.21、2,,-3.22、2;±3;423、±1,0.24、﹣225、±5;4.26、﹣227、-228、﹣229、4;30、-2.31、±4;-132、433、3;-8.34、 -235、±4,-236、 937、2.38、439、3.40、4.41、2.42、﹣2.43、0.44、345、-2.46、447、.48、0、1、-1.49、350、351、2.52、3,,,53、-254、-4.55、256、-257、±0.1;-3;-1.58、59、-560、±4、-4.61、-2.62、;4;-2.63、264、±3,-1.65、2.66、;-2;67、-2.68、1,,9,-2.69、0.70、4, 2,﹣1.【解析】1、试题分析:根据算术平方根的定义可得25的算术平方根是5;:根据平方根的定义可得的算术平方根是;根据立方根的定义可得-27的立方根是-3.考点:算术平方根的定义;平方根的定义;立方根的定义.2、设这个数为x,根据题意可知,,解得x=1或0,故填:0或1.3、根据立方根、平方根的定义和倒数乘积等于1即可解题.解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(2)∵,∴的平方根为±2;(3)∵,∴的倒数为.4、﹣125的立方根是: ;的平方根是: ;如果=3,那么a=9;的绝对值是:-()= ﹣2;的小数部分是: -1故答案是:(1). -5 (2). ±3 (3). 9 (4). ﹣2 (5). -15、的立方根是 ;的平方根是 ;-是的平方根.故答案是:、、5.6、 .7、==2,=5,=.故答案是:2,5,.8、∵ ,∴的立方根是 ;故答案是:2。
七年级数学下册平方根立方根练习题
新起点学苑2015七年级数学下平方根立方根练习题一一、填空题 1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________. 3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是______.一个正数的两个平方根的商是_______. 5.若一个实数的算术平方根等于它的立方根,则这个数是_________; 6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义; 10.若一个正数的平方根是12-a 和2+-a,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则 ;12.21++a 的最小值是________,此时a 的取值是________. 13.12+x 的算术平方根是2,则x =________. 二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9±15.2)3(-的值是( ).A .3-B .3C .9-D .9 16.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、5 17.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(- C .2)1(- D .11.118.计算3825-的结果是( ).A.3B.7C.-3D.-719.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a20.如果53-x 有意义,则x 可以取的最小整数为( ). A .0 B .1 C .2 D .321.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )A 、32210+B 、3425+C 、32210+或3425+D 、无法确定 三、解方程 22.0252=-x 23. 8)12(3-=-x 24.4(x+1)2=8四、计算25. 26.494 27.新起点学苑2015七年级数学下平方根立方根练习题二一、选择题1、化简(-3)2的结果是()A.3B.-3C.±3 D.92.已知正方形的边长为a,面积为S,则()A.S=a= C.a=.a S=±3、算术平方根等于它本身的数()A、不存在;B、只有1个;C、有2个;D、有无数多个;4、下列说法正确的是()A.a的平方根是±a; B.a的算术平方根是a;C.a的算术立方根3a; D.-a的立方根是-3a.5、满足-2<x<3的整数x共有()A.4个;B.3个;C.2个;D.1个.6、如果a、b两数在数轴上的位置如图所示,则()2ba+的算术平方根是();A、a+b;B、a-b;C、b-a;D、-a-b;7、如果-()21x-有平方根,则x的值是()A、x≥1;B、x≤1;C、x=1;D、x≥0;8a是正数,如果a的值扩大100)A、扩大100倍;B、缩小100倍;C、扩大10倍;D、缩小10倍;9、2008)A.43;B、44;C、45;D、46;10.如果一个自然数的算术平方根是n,则下一个自然数的算术平方根是()A、n+1;B、2n+1;CD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2
立方根
基础题
知识点 1 立方根
1.(酒泉中考)64的立方根是(A )
A .4
B .±4
C .8
D .±8
2.(百色中考)化简:
3
8=(C )
A .±2
B .-2
C .2
D .2 2
3.若一个数的立方根是-
3,则该数为(B )
A .-33
B .-27
C .±
3
3 D .±27
4.(包头一模)
3
-8等于(D )
A .2
B .2 3
C .-
1
2D .-2
5.下列结论正确的是
(D )
A .64的立方根是± 4
B .-1
8没有立方根
C
.立方根等于本身的数是0
D .
3
-216=-
3
216
6.(滑县期中)下列计算正确的是
(C )
A .
3
0.012 5=0.5
B .3
-2764
=
34
C
.3338=11
2
D
.-3
-8125=-2
5
7.下列说法正确的是
(D )
A .如果一个数的立方根是这个数本身,那么这个数一定是0
B .一个数的立方根不是正数就是负数
C .负数没有立方根
D .一个不为零的数的立方根和这个数同号,
0的立方根是0
8.-64的立方根是-4,-13是-1
27的立方根.
9.若
3
a =-7,则a =-343.
10.(松江区月考)-338的立方根是-3
2.
11.求下列各数的立方根:
(1)0.216;
解:∵0.63
=0.216,
∴0.216的立方根是0.6,即3
0.216=0.6.
(2)0;
解:∵03
=0,∴0的立方根是0,即3
0=0.
(3)-210
27
;
解:∵-21027=-6427,且(-43)3=-64
27,
∴-21027的立方根是-43,即3-21027=-4
3.
(4)-5.
解:-5的立方根是3-5.
12.求下列各式的值:
(1)
3
0.001 (2)
3
-343125;解:0.1.
解:-7
5.
(3)-
3
1-1927
.
解:-2
3
.
知识点 2 用计算器求立方根13.用计算器计算
3
28.36的值约为(B )
A .3.049
B .3.050
C .3.051
D .3.052
14.一个正方体的水晶砖,体积为
100 cm 3
,它的棱长大约在
(A )
A .4~5 cm 之间
B .5~6 cm 之间
C .6~7 cm 之间
D .7~8 cm 之间
15.计算:3
25≈2.92(精确到百分位).
中档题
16.(潍坊中考)
3(-1)2
的立方根是(C )
A .-1
B .0
C .1
D .±1
17.下列说法正确的是
(D )
A .一个数的立方根有两个,它们互为相反数
B .一个数的立方根比这个数平方根小
C
.如果一个数有立方根,那么它一定有平方根D .
3
a 与
3
-a 互为相反数
18.(毕节中考)3
8的算术平方根是(C)
A.2 B.±2
C. 2 D.± 2
19.(东平县期中)若a2=(-5)2,b3=(-5)3,则a+b的值为(D)
A.0 B.±10
C.0或10 D.0或-10
20.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的(B) A.2倍B.3倍
C.4倍D.5倍
21.若x-1是125的立方根,则x-7的立方根是- 1.
22.(1)填表:
a 0.000 001 0.001 1 1 000 1 000 000
3
a
0.01 0.1 1 10 100
(2)由上表你发现了什么规律?请用语言叙述这个规律:被开方数扩大1_000倍,则立方根扩大10倍;
(3)根据你发现的规律填空:
①已知3
3=1.442,则
3
3 000=14.42,
3
0.003=0.144_2;
②已知3
0.000 456=0.076 97,则
3
456=7.697.
23.求下列各式的值:
(1)3
-1 000;
解:-10.
(2)-3
-64;
解:-4.
(3)-3
729+
3
512;
解:-1.
(4)3
0.027-
3
1-
124
125
+
3
-0.001.
解:0.
24.比较下列各数的大小:
(1)3
9与3; (2)-
3
42与-3.4.
解:3
9> 3. 解:-
3
42<-3.4.
25.求下列各式中的x:(1)8x3+125=0;
解:8x3=-125,
x 3
=-125
8
,
x =-52.
(2)(x +3)3
+27=0.
解:(x +3)3
=-27,x +3=-3,x =-6. 26.将一个体积为
0.216 m 3
的大立方体铝块改铸成
8个一样大的小立方体铝块,求每个小立方体铝块的表面积.
解:设每个小立方体铝块的棱长为
x m ,则
8x 3
=0.216.
∴x 3=0.027.∴x =0.3. ∴6×0.32
=0.54(m 2
),即每个小立方体铝块的表面积为
0.54 m 2
.
27.(巩留县校级月考)某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r
为多少米(球的体积V =43
πr 3
,π取3.14,结果精确到
0.1米)?
解:根据球的体积公式,得43
πr 3
=13.5.解得r ≈1.5. 故这个球罐的半径r 约为1.5米.
综合题
28.请先观察下列等式:
3
22
7=2327,3
3326=33326
,3
44
63=43
4
63
,…
(1)请再举两个类似的例子;
(2)经过观察,写出满足上述各式规则的一般公式.
解:(1)
3
55
124=53
5
124,366
215=63
6
215
. (2)
3n +n n 3-1=n 3n
n 3
-1
(n ≠1,且n 为整数).。