1.3-傅里叶变换的定义与计算(new)

合集下载

傅里叶变换三部曲(二)·傅里叶变换的定义

傅里叶变换三部曲(二)·傅里叶变换的定义

傅⾥叶变换三部曲(⼆)·傅⾥叶变换的定义Part1:傅⾥叶级数的复数形式设f(x)是周期为l的周期函数,若f(x)∼a02+∞∑n=1(a n cosnπxl+bn sinnπxl),an=1l∫l−lf(x)cosnπxl d x,(n=0,1,2,…)bn=1l∫l−lf(x)sinnπxl d x.(n=1,2,…)记ω=πl,引进复数形式:cos nωx=e i nωx+e−i nωx2,sin nωx=e i nωx−e−i nωx2i级数化为f(x)∼a02+∞∑n=1(a ne i nωx+e−i nωx2+bne i nωx−e−i nωx2i)=a02+∞∑n=1(a n−ib n2e i nωx+a n+ib n2e−i nωx)令c0=a02,cn=a n−ib n2,dn=a n+ib n2,则c0=12l∫l−lf(x)d x,c n=12l∫l−lf(x)(cos nωx−isin nωx)d x=12l∫l−lf(x)e−i nωx d x,d n=12l∫l−lf(x)(cos nωx+isin nωx)d x=12l∫l−lf(x)e i nωx d x≜c−n=¯c n,(n=1,2,…)合并为c n=12l=∫l−lf(x)e−i nωx d x,(n∈Z)级数化为+∞∑n=−∞c n e−i nωx=12l+∞∑n=−∞∫l−l f(x)e−i nωx d x e i nωx我们称c n为f(x)的离散频谱(discrete spectrum),|c n|为f(x)的离散振幅频谱(discrete amplitude spectrum),arg c n为f(x)的离散相位频谱(discrete phase spectrum).对任何⼀个⾮周期函数f(t)都可以看成是由某个由某个周期为l的函数f(x)当l→∞时得来的.Part2:傅⾥叶积分和傅⾥叶变换傅⾥叶积分公式设f T(t)是周期为T的周期函数,在[−T2,T2]上满⾜狄利克雷条件,则f T(t)=1T∞∑n=−∞∫T2−T2f T(t)e−j nωt d t e j nωt,ω=2πT(上式中j是虚数单位,在傅⾥叶分析中我们不⽤i⽽通常记作j)由limT→∞f T(t)=f(t)知,f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt记Δω=2πT,则Δω→0⇔T→∞,则f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt=limΔω→012π+∞∑n=−∞∫T2T2f T(t)e−j nωt d t e j nωtΔω[][][]令F T(nω)=∫T2−T2f T(t)e−j nωt d t,则f(t)=limΔω→012π+∞∑n=−∞F T(nω)e j nωtΔω,F T(t)→∫+∞−∞f(t)e−jωt d t≜F(ω)(T→∞),由定积分定义f(t)=12π∫+∞−∞F(ω)e jωt dω,即f(t)=12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω上述公式称为傅⾥叶积分公式.傅⾥叶积分存在定理若f(t)在任何有限区间上满⾜狄利克雷条件,且在R上绝对可积,则12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω=f(t),t为连续点,f(t−)+f(t+)2,t为间断点.傅⾥叶变换设f(t)满⾜傅⾥叶积分存在定理,定义F(ω)=∫+∞−∞f(t)e−jωt d t 为f(t)的傅⾥叶变换(Fourier Transform)(实际上是⼀个实⾃变量的复值函数),记作F(ω)=F[f(t)]类似地,定义f(t)=12π∫+∞−∞F(ω)e−jωt dω为F(ω)的傅⾥叶逆变换(Inverse Fourier Transform),记作f(t)=F−1[F(ω)]在⼀定条件下,有F[f(t)]=F(ω)⇒F−1[F(ω)]=f(t);F−1[F(ω)]=f(t)⇒F[f(t)]=F(ω). f(t)与F(ω)在傅⽒变换意义下是⼀个⼀⼀对应,称f(t)与F(ω)构成⼀个傅⽒变换对,记作f(t)F↔F(ω)在不引起混淆的情况下,简记为f(t)↔F(ω).f(t)称为原象函数(original image function),F(ω)称为象函数(image function).在频谱分析中,F(ω)⼜称为f(t)的频谱(密度)函数(spectrum function),|F(ω)|称为f(t)的振幅频谱(amplitude spectrum),arg F(ω)称为f(t)的相位频谱(phase spectrum).下⾯我们来求⼏个常见信号函数的傅⽒变换.例1 求矩形脉冲函数(rectangular pulse function)R(t)=1,|t|≤1, 0,|t|>1的傅⽒变换及其频谱积分表达式.解:F(ω)=F[R(t)]=∫+∞−∞R(t)e−jωt d t=∫1−1R(t)e−jωt t=e−jωt−jω1−1=−e−jω−e jωjω=2sinωω;R(t)=12π∫∞−∞F(ω)e jωt dω=1π∫+∞F(ω)cosωt dω=1π∫+∞2sinωωcosωt dω=2π∫+∞sinωcosωtωdω=1,|t|<1, 12,|t|=1, 0,|t|>1因此可知,当t=0时,有[] []{{ []{∫+∞0sin t xd t =π2例2 求指数衰减函数(exponential decay function)E (t )=0,t <0,e −βt ,t ≥0的傅⽒变换及其频谱积分表达式,其中β>0为常数.解:F (ω)=F [E (t )]=∫+∞−∞E (t )e −j ωt d t=∫+∞0e −βt e −j ωtd t =∫+∞0e (β+j ω)t d t =1β+j ωβ−j ωβ2+ω2E (t )=12π∫+∞−∞F (ω)e j ωt ω=12π∫+∞−∞β−j ωβ2+ω2e j ωtω=1π∫+∞βcos ωt +ωsin ωtβ2+ω2d ω=0,t <0,12,t =0,e −βt ,t >0Part3:单位脉冲函数我们记电流脉冲函数q (t )=0,t ≠0,1,t =0,严格地,由于q (t )在t =0出不连续,所以q (t )在t =0点是不可导的.但是,如果我们形式地计算这个导数,有q ′(0)=limΔt →0q (0+Δt )−q (0)Δt=limΔt →0−1Δt=∞我们引进这样⼀个函数,称为单位脉冲函数(unit pulse function)或狄拉克(Dirac)函数,简记为δ−函数,即δ(t )=0,t ≠0,∞,t =0,⼀般地,给定⼀个函数序列δε(t )=0,t <0,1ε,0≤t ≤ε,0,t >ε则有δ(t )=lim ε→0δε(t )=0,t ≠0,∞,t =0于是∫+∞−∞δ(t )d t =limε→0∫+∞−∞δεd t =limε→0∫ε01εd t =1若设f (t )为连续函数,则δ−函数有以下性质:∫+∞−∞δ(t )f (t )d t =f (0);∫+∞−∞δ(t −t 0)f (t )d t =f (t 0)于是我们可得:F [δ(t )]=∫+∞−∞δ(t )e −j ωt t =e −j ωt t =0=1于是δ(t )与常数1构成了⼀对傅⾥叶变换对.例3: 证明:e j ω0t ↔2πδ(ω−ω0)其中ω0是常数.证:{{{{{{|f(t)=F−1[F(ω)]=12π∫+∞−∞2πδ(ω−ω0)e jωt dω=e jωtω=ω=e jω0t在物理学和⼯程技术中,有许多重要函数不满⾜傅⽒积分定理中的绝对可积条件,即不满⾜条件∫+∞−∞|f(t)|d t<∞例如常数,符号函数,单位阶跃函数以及正,余弦函数等, 然⽽它们的⼴义傅⽒变换也是存在的,利⽤单位脉冲函数及其傅⽒变换就可以求出它们的傅⽒变换.所谓⼴义是相对于古典意义⽽⾔的,在⼴义意义下,同样可以说,原象函数f(t)和象函数F(ω)构成⼀个傅⽒变换对.例求正弦函数f(t)=sinω0t的傅⽒变换.解:F(ω)=F[f(t)]=∫+∞−∞f(t)e−jωt d t=∫+∞−∞e jω0t−e−jω0t2je−jωt d t=12j∫+∞−∞e−j(ω−ω0)t−e−j(ω+ω0)t d t=jπδ(ω+ω0)−δ(ω−ω0)同样我们易得F(cosω0t)=πδ(ω+ω0)+δ(ω−ω0)例证明:单位阶跃函数(unit step function)u(t)=0,t<0, 1,t>0的傅⽒变换为F[u(t)]=1jω+πδ(ω)证:F−11jω+πδ(ω)=12π∫+∞−∞1jω+πδ(ω)e jωt dω=12π∫+∞−∞[πδ(ω)]e jωt dω+12π∫+∞−∞1jωe jωt dω=12+12π∫+∞−∞cosωt+jsinωtjωdω=12+12π∫+∞−∞sinωtωdω=12+1π∫+∞sinωtωdω∫+∞0sinωtωdω=π2,t>0,−π2,t<0⇒F−11jω+πδ(ω)=12+1π−π2=0,t<012,t=0,12+1ππ2=1,t>0=u(t).本⽂完|()[][]{[][][][][][] { []{()()。

傅里叶变换(1)

傅里叶变换(1)
ℱ 1 F1() F2 () f1(t) f2(t)
1.4.2 对称性质
若 F() =ℱ f (t) 则以 t 为自变量的函数 F(t)
的象函数为 2 f
即 ℱF(t) 2 f
1.4.3 相似性质

1
f
1
2
F (t )
若F() =ℱ f (t) a 0 则

f (at)
t c
解 F () f (t)e jtdt
c e jt dt 2 c e jtdt
c
0
2sin c
0
2c
0
例4 求函数
0 f (t) e t
和傅氏积分表达式.
t 0 ( 0) 的傅氏变换
t0
解 F () f (t)e jt dt ete jtdt
0
e( j)t dt 1 e( jt)
ℱ [ t]=1, ℱ -1[1]= . t
t 1
t t0 与 e jt0 也构成了一个傅氏变换对,即 t t0 e jt0
1.4 傅立叶变换的性质
1.4.1 线性性质
设 F1() =ℱ f1(t) F2 () =ℱ f2(t) , 为常数则
ℱ f1(t) f2 (t) F1() F2 ()
1.4.6 积分性质
若 F () =ℱ f (t)

ℱ [ t f ( )d ] 1 F ()

j
在这里 t
f ( )d
必须满足傅氏积分存在定理的条件,
若不满足,则这个广义积分应改为

[
t
f ( )d ]
1 F () F(0) () j
1.4.7 傅氏变换的卷积与卷积定理

信息光学中的傅里叶变换

信息光学中的傅里叶变换

为了克服这些局限性,未来的研究将更加注重发展新型的 光学器件和技术,如光子晶体、超表面和量子光学等。这 些新技术有望为傅里叶光学的发展带来新的突破和机遇, 推动光学领域的技术进步和应用拓展。同时,随着人工智 能和机器学习等领域的快速发展,将人工智能算法与傅里 叶光学相结合,有望实现更高效、智能的光波信号处理和 分析。
信息光学中的傅里叶变换
目录
• 傅里叶变换基础 • 信息光学基础 • 信息光学中的傅里叶变换 • 傅里叶变换在信息光学中的应用
实例 • 傅里叶变换的数学工具和软件包
01
傅里叶变换基础
傅里叶变换的定义
傅里叶变换是一种数学工具,用于将 一个信号或函数从时间域或空间域转 换到频率域。在信息光学中,傅里叶 变换被广泛应用于图像处理和通信系 统的 编程语言,具有广泛的应 用领域。
R语言是一种统计计算语 言,广泛应用于数据分析 和可视化。
ABCD
C的开源科学计算软件包 如FFTW等可用于计算傅 里叶变换,并支持并行计 算以提高效率。
R语言的科学计算库如 fftw等可用于计算傅里叶 变换,并支持多种数据类 型和可视化方式。
光的波动理论
光的波动理论认为光是一种波动现象,具有波长、频率、相 位等特征,能够发生干涉、衍射等现象。
光的波动理论在光学领域中具有基础性地位,是研究光的行 为和性质的重要工具。
光的量子理论
光的量子理论认为光是由粒子组成的,这些粒子被称为光子。该理论解释了光的 能量、动量和角动量等物理量的本质。
光的量子理论在量子力学和量子光学等领域中具有重要应用,为现代光学技术的 发展提供了理论基础。
04
傅里叶变换在信息光学中的 应用实例
图像处理中的傅里叶变换
图像去噪

傅里叶变换数学推导

傅里叶变换数学推导

傅里叶变换数学推导傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像处理、通信等领域。

它可以将一个函数表示成频域上的复指数函数的线性组合,从而方便进行频域分析。

本文将从数学推导的角度,介绍傅里叶变换的基本概念和推导过程。

傅里叶变换基本概念傅里叶变换的基本概念是将一个信号函数表示成频域上的复指数函数的线性组合。

假设一个连续函数f(t)的时域表示为:f(t) = A*cos(ωt + φ)其中,A表示信号的幅度,ω表示信号的角频率,φ表示信号的相位。

根据欧拉公式,可以将cos函数表示为复指数函数的形式:f(t) = Re{A*e^(j(ωt + φ))}其中,e^(jx)表示复指数函数cos(x) + jsin(x)。

通过将函数f(t)表示成复指数函数的线性组合,可以方便地进行频域分析。

傅里叶变换的定义对于一个连续函数f(t),其傅里叶变换F(ω)定义为:F(ω) = ∫[f(t)*e^(-jωt)] dt其中,∫表示积分运算,e^(-jωt)表示复指数函数。

傅里叶变换F(ω)表示了函数f(t)对于不同频率的分量的贡献。

傅里叶变换的逆变换傅里叶变换的逆变换表示了频域上的复指数函数的线性组合如何反变换到时域上的函数。

对于一个频域上的复指数函数F(ω),其逆变换f(t)定义为:f(t) = (1/2π) * ∫[F(ω)*e^(jωt)] dω其中,(1/2π)是归一化系数,确保了逆变换的结果在时域上的幅度与原始函数一致。

傅里叶变换的性质傅里叶变换具有多种重要的性质,包括线性性、位移性、尺度性、卷积性等。

这些性质使得傅里叶变换成为分析和处理信号的有力工具。

线性性是指傅里叶变换对线性运算的保持。

例如,对两个函数的线性组合进行傅里叶变换,等于对每个函数分别进行傅里叶变换,并且将结果线性组合。

位移性是指傅里叶变换对信号的时移不变性。

即,对于一个函数f(t)进行傅里叶变换后得到F(ω),若将函数f(t)进行时间位移,即变为f(t - θ),则其傅里叶变换结果为e^(-jωθ)*F(ω)。

傅里叶变换常用公式大全

傅里叶变换常用公式大全

傅里叶变换常用公式大全傅里叶变换是一种重要的数学工具,用于将信号从时域转换到频域。

在信号处理、图像处理和通信领域广泛应用。

本文将介绍一些傅里叶变换中常用的公式,以帮助读者更好地理解和应用傅里叶变换。

1. 傅里叶变换的定义公式傅里叶变换的定义公式如下:F(ω) = ∫[f(t) * e^(-jωt)]dt其中F(ω)表示信号f(t)在频率ω处的傅里叶变换。

2. 傅里叶变换的逆变换公式傅里叶变换的逆变换公式如下:f(t) = ∫[F(ω) * e^(jωt)]dω其中f(t)表示频域信号F(ω)的逆变换。

3. 傅里叶级数展开公式傅里叶级数展开公式将一个周期信号表示为一系列正弦和余弦函数的和。

公式如下:f(t) = a₀ + Σ[aₙ * cos(nω₀t) + bₙ * sin(nω₀t)]其中a₀, aₙ, bₙ为系数,n为正整数,ω₀为基本角频率。

4. 傅里叶级数系数计算公式傅里叶级数系数的计算公式如下:a₀ = 1/T₀ * ∫[f(t)]dtaₙ = 2/T₀ * ∫[f(t) * cos(nω₀t)]dtbₙ = 2/T₀ * ∫[f(t) * sin(nω₀t)]dt其中T₀为周期。

5. 傅里叶变换的线性性质公式傅里叶变换具有线性性质,公式如下:F(a * f(t) + b * g(t)) = a * F(f(t)) + b * F(g(t))其中a和b为常数。

6. 傅里叶变换的频移性质公式傅里叶变换具有频移性质,公式如下:F(f(t - t₀)) = e^(-jωt₀) * F(f(t))其中t₀为时间偏移量。

7. 傅里叶变换的频率缩放公式傅里叶变换具有频率缩放性质,公式如下:F(f(a * t)) = (1/|a|) * F(f(t/a))其中a为常数。

8. 傅里叶变换的频域微分公式傅里叶变换的频域微分公式如下:F(d/dt[f(t)]) = jωF(f(t))其中d/dt表示对时间t的导数。

信号处理中傅里叶变换简介

信号处理中傅里叶变换简介

傅里叶变换一、傅里叶变换的表述在数学上,对任意函数f(x),可按某一点进行展开,常见的有泰勒展开和傅里叶展开.泰勒展开为各阶次幂函数的线性组合形式,本质上自变量未改变,仍为x,而傅里叶展开则为三角函数的线性组合形式,同时将自变量由x变成ω,且由于三角函数处理比较简单,具有良好的性质,故被广泛地应用在信号分析与处理中,可将时域分析变换到频域进行分析。

信号分析与处理中常见的有CFS(连续时间傅里叶级数)、CFT (连续时间傅里叶变换)、DTFT(离散时间傅里叶变换)、DFS(离散傅里叶级数)、DFT(离散傅里叶变换)。

通过对连续非周期信号x c(t)在时域和频域进行各种处理变换,可推导出以上几种变换,同时可得出这些变换之间的关系。

以下将对上述变换进行简述,同时分析它们之间的关系。

1、CFS(连续时间傅里叶级数)在数学中,周期函数f(x)可展开为由此类比,已知连续周期信号x(t),周期为T0,则其傅里叶级数为其中,为了简写,有其中,为了与复数形式联系,先由欧拉公式e j z=cos z+jsin z得故有令则对于D n,有n≤0时同理.故CFS图示如下:Figure 错误!未定义书签。

理论上,CFS对于周期性信号x(t)在任意处展开都可以做到无误差,只要保证n从-∞取到+∞就可以。

在实践中,只要n取值范围足够大,就可以保证在某一点附近对x(t)展开都有很高的精度。

2、CFT(连续时间傅里叶变换)连续非周期信号x(t),可以将其看成一连续周期信号的周期T0→∞。

当然,从时域上也可以反过来看成x(t)的周期延拓。

将x(t)进行CFS展开,有若令则有T0→∞使得Ω0→0,则由此,定义傅里叶变换与其逆变换如下CFT:CFT-1:x(t)是信号的时域表现形式,X(jΩ)是信号的频域表现形式,二者本质上是统一的,相互间可以转换。

CFT即将x(t)分解,并按频率顺序展开,使其成为频率的函数。

上式中,时域自变量t的单位为秒(s),频域自变量Ω的单位为弧度/秒(rad/s).CFS中的D n与CFT中的X(jΩ)之间有如下关系即从频域上分析,D n是对X(jΩ)的采样(可将Figure 1与Figure 2进行对比).CFT图示如下:Figure 错误!未定义书签。

傅里叶变换简表

傅里叶变换简表

傅里叶变换简表1. 引言傅里叶变换是一种将时域信号转换为频域信号的数学工具。

它由法国数学家约瑟夫·傅里叶在19世纪提出,并广泛应用于信号处理、图像处理、通信等领域。

傅里叶变换简表是一个方便查阅的工具,用于快速理解和计算傅里叶变换。

本文将详细介绍傅里叶变换的定义、性质和常见的傅里叶变换对应关系,并给出一个完整的傅里叶变换简表。

2. 傅里叶变换定义傅里叶变换将一个连续时间函数或离散时间序列转换为连续频率函数或离散频率序列。

对于连续时间函数f(t),其傅里叶变换F(ω)定义如下:∞(t)e−jωt dtF(ω)=∫f−∞其中,e−jωt是旋转因子,ω是角频率。

对于离散时间序列x[n],其傅里叶变换X[k]定义如下:N−1[n]e−j2πN knX[k]=∑xn=0其中,N是序列的长度。

3. 傅里叶变换性质傅里叶变换具有许多重要的性质,这些性质使得傅里叶变换成为信号处理中不可或缺的工具。

3.1 线性性质傅里叶变换是线性的,即对于任意常数a和b,以及函数f(t)和g(t),有以下关系:ℱ(af(t)+bg(t))=aℱ(f(t))+bℱ(g(t))3.2 积分定理如果一个函数在时域上积分之后再进行傅里叶变换,等于该函数频域上的傅里叶变换乘以2π。

数学表达式如下:ℱ(∫f∞−∞(t)dt)=F(0)3.3 卷积定理卷积定理是傅里叶变换中的重要定理之一。

它表示两个函数在时域上进行卷积,等于它们在频域上的傅里叶变换相乘。

数学表达式如下:ℱ(f∗g)=F(ω)G(ω)3.4 频移性质频移性质表示时域上的函数在频域上进行平移,即将函数的频谱中心从原点移到指定位置。

数学表达式如下:ℱ(f(t−t0))=e−jωt0F(ω)其中,t0是平移量。

4. 傅里叶变换简表根据傅里叶变换的定义和性质,我们可以得到一个完整的傅里叶变换简表。

下面是一些常见函数及其傅里叶变换对应关系的简表:函数傅里叶变换常数函数f(t)=A F(ω)=2πAδ(ω)单位冲激函数δ(t)F(ω)=1正弦函数f(t)=sin(2πf0t)F(ω)=j2[δ(ω−f0)−δ(ω+f0)]余弦函数f(t)=cos(2πf0t)F(ω)=12[δ(ω−f0)+δ(ω+f0)]矩形脉冲信号rect(t)F(ω)=2πsinc(ω2)高斯函数f(t)=e−αt2F(ω)=√παe−ω24α指数函数f(t)=e jω0t F(ω)=2πδ(ω−ω0)这只是傅里叶变换简表的一小部分,实际上还有更多常见函数及其傅里叶变换的对应关系。

傅里叶变换概念

傅里叶变换概念

傅里叶变换概念傅里叶变换(Fourier Transform)是一种数学技术,用于将一个函数从时域(时间域)表示转换为频域表示。

傅里叶变换广泛应用于信号处理、图像处理、通信系统等领域,具有重要的理论和实际意义。

傅里叶变换的概念可以通过将一个信号分解成多个正弦波和余弦波的叠加来解释。

任何复杂的周期信号都可以被视为多个不同频率的正弦波的叠加。

傅里叶变换就是将这个信号从时域分解成它不同频率的正弦波和余弦波分量的过程。

傅里叶变换的数学表示如下:F(ω)= ∫ f(t) * e^(-jωt) dt其中,F(ω)表示频域函数,f(t)表示时域函数,e^(-jωt)是欧拉公式中的复指数函数,ω是变量频率。

根据傅里叶变换的定义,我们可以将一个复杂的时域信号分解成多个频率分量,并且这些分量对应于频域函数F(ω)的不同频率部分。

傅里叶变换提供了一种量化信号在频域上的能力,揭示了信号的频谱特征,可以从中提取出信号中的频率、幅度、相位等信息。

傅里叶变换的应用非常广泛。

在信号处理领域,傅里叶变换常用于滤波、降噪、频谱分析等任务。

例如,在音频处理中,可以使用傅里叶变换将声音信号从时域转换到频域,通过分析频谱可以得知声音中包含的不同音调的频率和强度。

在图像处理领域,傅里叶变换可以提供图像的频域信息,用于图像增强、去噪、压缩等任务。

通过傅里叶变换,我们可以将一个图像分解成不同空间频率上的分量,从而更好地理解图像的特征和结构。

在通信系统中,傅里叶变换常用于信号调制、解调、信道估计等任务,以提高通信信号的传输质量和效率。

此外,傅里叶变换还有着重要的数学和物理意义。

傅里叶变换将一个函数从时域转换到频域,可视化了函数在不同频率上的分布情况。

通过傅里叶变换,我们可以将一个函数中的周期性模式展示出来,并且可以通过重建时域函数来还原原始信号。

为了实现傅里叶变换,通常使用快速傅里叶变换(FFT)算法。

FFT算法通过利用对称性质和迭代计算来大大加快傅里叶变换的计算速度,使得实时处理和大规模数据分析成为可能。

傅里叶变换的基本概念及基本定理

傅里叶变换的基本概念及基本定理

1、三角傅里叶级数展开 、
满足狄氏条件的函数 g(x) 具有有限周期τ,可以在(-∞,+ ∞)展 为三角傅里叶级数:
a0 ∞ g ( x) = + ∑ (an cos 2πnf 0 x + bn sin 2πnf 0 x), 2 n =1
(n = 0, 1, 2... ), f0 =
1
τ
展开系数
a0 =
f(x,y): 原函数, F(fx,fy): 像函数或频谱函数 积分变换:
F ( x) = ∫ f (α ) K (α , x)dα
−∞
+∞
傅里叶变换的核:
exp(-j2πfx)
变换核
二维傅里叶变换 2-D Fourier Transform 一、定义(续)
由频谱函数求原函数的过程称为傅里叶逆变换:
这就是傅里叶变换和傅里叶逆变换dxfxdffx二维傅里叶变换2dfouriertransform一定义及存在条件函数fxy在整个xy平面上绝对可积且满足狄氏条件有有限个间断点和极值点没有无穷大间断点定义函数为函数fxy的傅里叶变换记作
sinc(x)δ (x-1) = 0 sinc(x)*δ (x-1) = sinc(x-1) tri(x)δ (x + 0.5) = 0.5 δ (x + 0.5) tri(x) * δ (x + 0.5) = tri(x + 0.5)
τ ∫τ

2
τ
2 2
g(x) cos(2πnx)dx =2∫
bn =
τ ∫τ

2
τ
2 2
g ( x) sin( 2πnf 0 x)dx = 0
采用指数傅里叶级数展开,可以使展开系数的表达式统一而简洁。 采用指数傅里叶级数展开,可以使展开系数的表达式统一而简洁。

数学物理方法5傅里叶变换

数学物理方法5傅里叶变换
图像压缩。
图像增强
通过改变图像的频率成分,傅里叶 变换可以帮助增强图像的某些特征, 如边缘和纹理。
图像去噪
傅里叶变换可以帮助识别和去除图 像中的噪声,从而提高图像的质量。
量子力学
波函数分析
在量子力学中,波函数是一个描述粒子状态的函数。傅里叶变换 可以用来分析波函数的性质和行为。
量子纠缠
傅里叶变换在量子纠缠的研究中也有应用,可以帮助我们更好地理 解这种神秘的现象。
时间-频率分析
傅里叶变换将时间域的信号转换 为频率域的信号,通过分析信号 在不同频率下的强度和相位,可 以揭示信号的频率结构和变化规
律。
周期信号分析
对于周期信号,傅里叶变换可以 将其表示为一系列正弦波和余弦 波的叠加,从而方便地分析其频
率成分和振幅。
非周期信号分析
对于非周期信号,傅里叶变换将 其表示为无穷多个不同频率的正 弦波和余弦波的叠加,可以揭示
振动系统分析
在振动系统的分析中,傅里叶变换可以用于将时间域的振动信号转换为角频率域的信号, 从而方便地计算系统的固有频率、阻尼比等参数。
热传导分析
在热传导现象的分析中,傅里叶变换可以用于将时间域的温度分布转换为角频率域的温度 分布,从而方便地分析热传导的频率特性和变化规律。
05结果 具有共轭对称性,即F(-ω)=F*(ω)。
傅里叶变换的应用
01
02
03
信号处理
傅里叶变换在信号处理中 应用广泛,如频谱分析、 滤波、调制解调等。
图像处理
傅里叶变换在图像处理中 用于图像的频域分析,如 图像增强、去噪、特征提 取等。
数值分析
傅里叶变换在数值分析中 用于求解偏微分方程、积 分方程等数学问题。

傅里叶变换课件

傅里叶变换课件

快速傅里叶变换的算法原理
快速傅里叶变换(FFT)是一种高效的计算DFT的算法,其基本思想是将DFT运算分解为一系列简单 的复数乘法和加法运算。
FFT算法可以分为基于分治策略的递归算法和基于蝶形运算的迭代算法。其中,递归算法将DFT运算 分解为两个子序列的DFT运算,迭代算法则通过一系列蝶形运算逐步逼近DFT的结果。
,实现图像的压缩。
解压缩
通过插值或重构算法,可以恢复 压缩后的图像,使其具有原始的
质量和细节。
压缩与解压缩算法
常见的压缩与解压缩算法包括 JPEG、PNG等。这些算法在压 缩和解压缩过程中都利用了傅里
叶变换。
06
傅里叶变换在通信系统中的应用
调制与解调技术
调制技术
利用傅里叶变换对信号进行调制,将 低频信号转换为高频信号,以便在信 道中传输。
在频域中,可以使用各种滤波器 对图像进行滤波操作,以减少噪 声、平滑图像或突出特定频率的
细节。
边缘增强
通过在频域中增强高频成分,可以 突出图像的边缘信息,使图像更加 清晰。
对比度增强
通过调整频域中的频率系数,可以 改变图像的对比度,使图像更加鲜 明。
图像的压缩与解压缩
压缩
通过减少图像的频域表示中的频 率系数,可以减少图像的数据量
快速傅里叶变换的应用
• FFT在信号处理、图像处理、语音处理等领域有着广泛的应用。例如,在信号处理中,可以通过FFT将时域信号转换为频域 信号,从而对信号进行频谱分析、滤波等操作。在图像处理中,可以通过FFT将图像从空间域转换到频域,从而对图像进行 去噪、压缩等操作。在语音处理中,可以通过FFT对语音信号进行频谱分析,从而提取语音特征、进行语音合成等操作。
分析、系统优化等。

第三章傅里叶变换

第三章傅里叶变换


f1 (t )
f
2
(t
)
F
1
2
F1() F2 ()
可见:频域中卷积信号的傅里叶变换等于信号傅里叶变 换的卷积并乘以 1/2π 。
对于一个线性非时变系统,若知系统的单位冲激响应为 h(t)
时,系统对于任何输入x(t) 的响应 y(t) 可以用卷积求出,即
y(t) x(t) h(t)
运用傅里叶变换的时域卷积定理,有
第三章 傅里叶变换
傅里叶生平
• 1768年生于法国
• 1807年提出“任何周 期信号都可用正弦函 数级数表示”
• 拉格朗日反对发表
• 1822年首次发表“热 的分析理论”
• 1829年狄里赫利第一 个给出收敛条件
傅里叶的两个最主要的贡献——
“周期信号都可以表示为成谐波关 系的正弦信号的加权和”——傅里 叶的第一个主要论点
假定线性时不变系统单位冲激响应为h(t),系统频率响应为H(),即有
F [h(t)] H()
当输入为 x(t) e jk0t 时,系统输出的傅里叶变换为
Y () X ()H ()
输入信号 x(t) e jk0t 可以看成 e jk0t 与一个直流信号的乘积,根据傅里
叶变换的频移特性,有
1F 2 ()
2
Ω为模拟角频率,它与实际频率的关系:Ω=2πf
F(Ω )通常为复函数,可以写成:
F () F () e j ()
F(Ω)︱是F(Ω)的幅度函数,表示信号中各频率下谱密度的相对大小;
是F(Ω()的) 相位函数,表示信号中各频率成分的相位关系。在工程技
术中︱F(Ω)︱通常也称为幅度频谱, 为相(位)频谱,它们都是频率 Ω的连续函数。

第二节 傅里叶变换的定义及性质

第二节 傅里叶变换的定义及性质
其中a, b为常数, 并且 a 0. 事实上, F [ f ( t t0 )] f ( t t0 )e i t dt .
b F [ f (x at tb )]t , F代入上式得 f a t 令 0 a
它是偶函数. 由Fourier变换的 (2) 对称性质 , 设 F ( ) F [
sin t F [ f ( t )] F t 1 2 p2 ( ) 2
.
F (F )[ F ( t )] 2
证明 由Fourier逆变换有 f ( t
, 0,
1 F [ f (at )] F (其中 a 0 为常数). a a
证明 由Fourier变换的定义,
F [ f (at )]


f (at )e i t dt .
1 令 x at , 则 dt dx . 于是当a>0时, a
1 F [ f (at )] f ( x )e a

i

a
x
1 dx F ; a a
14
当a<0时,
i x 1 F [ f (at )] f ( x )e a dx a
i x 1 1 a f ( x )e dx F . a a a
1 综上所证, 即得 F [ f (at )] F . a a
(1) 线性性质 设a, 是常数,F1 ( ) F [ f1 ( t )],
F2 ( ) F [ f 2 ( t )], 则 F [a f1 ( t ) f 2 ( t )] a F1 ( ) F2 ( )

傅里叶小波变换

傅里叶小波变换

小波变换的应用
信号处理
小波变换广泛应用于信号处理领域,如语音、图像、雷达 、地震等信号的分析和处理。
故障诊断
在机械、电力、航空航天等领域,小波变换被用于监测设 备的运行状态,通过分析设备的振动、声音等信号,实现 故障的早期发现和诊断。
图像压缩
小波变换可以用于图像压缩,通过对图像进行多尺度分解 ,提取关键信息并进行压缩,从而实现高效的图像存储和 传输。
傅里叶小波变换具有良好的局部化特性,能够更好地捕捉信号的突变和奇 异性。
傅里叶小波变换的应用
傅里叶小波变换在信号处 理、图像处理、语音识别 等领域有着广泛的应用。
在图像处理中,傅里叶小 波变换可以用于图像的压 缩、去噪、增强和特征提 取等任务。
ABCD
在信号处理中,傅里叶小 波变换可以用于信号的滤 波、去噪、压缩和特征提 取等任务。
金融分析
在金融领域,小波变换被用于分析股票、期货等金融市场 的数据,提取市场趋势和波动特征,为投资者提供决策支 持。
03
傅里叶小波变换
傅里叶小波变换的定义
傅里叶小波变换是一种信号处理方法, 通过将信号分解成不同频率和时间的小 波分量,以便更好地分析信号的时频特 性。
小波变换的基本思想是将信号分解成一系列 的小波函数,这些小波函数具有不同的尺度 (或频率)和位移(或时间),以便更好地 适应信号的时频特性。
编码效率
傅里叶小波变换在压缩编码过程中能够保留信号的重要特征,同时实现较高的压 缩比和较小的失真,具有较高的编码效率和较好的重建效果。
05
傅里叶小波变换与图像处 理
图像的分解与重构
图像的分解
傅里叶小波变换可以将图像分解成不 同频率和方向的小波分量,从而提取 出图像在不同频率和方向上的特征。

傅里叶变换详细解释

傅里叶变换详细解释

傅里叶变换详细解释傅里叶变换是一种数学工具,可以将一个函数分解成一系列正弦和余弦函数的和。

它在信号处理、图像处理、通信和物理学等领域中广泛应用。

傅里叶变换的详细解释包括其定义、数学表达式、性质和应用等方面。

首先,傅里叶变换可以将一个连续函数f(t) 分解成一系列正弦和余弦函数的和。

这些正弦和余弦函数的频率是连续的,可以覆盖整个频谱。

傅里叶变换的定义如下:F(ω) = ∫f(t) e^(-jωt) dt其中,F(ω) 是傅里叶变换后的函数,f(t) 是原始函数,ω 是频率,e 是自然常数。

傅里叶变换的数学表达式可以用复数的形式来表示。

当函数 f(t) 是实函数时,傅里叶变换F(ω) 是一个复函数,具有实部和虚部。

实部表示函数在频域中的振幅,虚部表示函数在频域中的相位。

傅里叶变换有一些重要的性质。

首先,傅里叶变换具有线性性质,即对于常数a 和 b,有 F(a*f(t) + b*g(t)) = a*F(f(t)) + b*F(g(t))。

这使得傅里叶变换在信号处理中非常有用,可以将多个信号叠加在一起进行分析。

其次,傅里叶变换具有平移性质。

如果将函数 f(t) 在时间域上平移 t0,那么它的傅里叶变换F(ω) 在频域上也会相应地平移 e^(-jωt0)。

这个性质使得我们可以通过平移信号来改变其频谱。

另外,傅里叶变换还具有对称性质。

当函数 f(t) 是实函数时,其傅里叶变换F(ω) 的实部是偶函数,虚部是奇函数。

这个对称性质使得我们可以通过傅里叶变换将实函数分解成实部和虚部的和。

傅里叶变换在许多领域中有广泛的应用。

在信号处理中,傅里叶变换可以将时域上的信号转换成频域上的信号,从而可以分析信号的频谱特性。

例如,通过傅里叶变换,我们可以将音频信号转换成频谱图,可以分析音频信号中不同频率的成分。

在图像处理中,傅里叶变换可以将图像转换成频域上的图像,从而可以对图像进行频域滤波和增强处理。

例如,通过傅里叶变换,我们可以将模糊的图像恢复成清晰的图像,或者将图像中的噪声去除。

傅里叶变换 - 维基百科,自由的百科全书

傅里叶变换 - 维基百科,自由的百科全书

代表狄拉克δ函数分布.这 个变换展示了狄拉克δ函数的重 要性:该函数是常函数的傅立叶 变换
变换23的频域对应
由变换3和24得到.
由变换1和25得到,应用了欧拉 公式:
由变换1和25得到
这里, 是一个自然数. 是狄拉克δ函数分布的
阶微分。这个变换是根据变换7 和24得到的。将此变换与1结合 使用,我们可以变换所有多项 式。
7/8
三元函数
时域信号
角频率表示 的
傅里叶变换
参见
正交变换 傅里叶级数 连续傅里叶变换 离散时间傅里叶变换 离散傅里叶变换 傅里叶分析 拉普拉斯变换 小波变换
参考资料
弧频率表示的 傅里叶变换
注释
此球有单位半径;fr是频率矢量的量值 {fx,fy,fz}.
1. ^ 林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974
时频分析变换
小波变换,chirplet转换和分数傅里叶变换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确 定性原理的限制。
傅里叶变换家族
下表列出了傅里叶变换家族的成员。容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连 续则意味着在对应域的信号的非周期性.
来自“/w/index.php?title=傅里叶变换&oldid=24462958”
其中an和bn是实频率分量的振幅。
傅里叶分析最初是研究周期性现象,即傅里叶级数的,后来通过傅里叶变换将其推广到了非周期性现象。理解这种推广 过程的一种方式是将非周期性现象视为周期性现象的一个特例,即其周期为无限长。

数学物理方法傅里叶变换法

数学物理方法傅里叶变换法

数学物理方法傅里叶变换法傅里叶变换法是一种将一个函数表示为一系列正弦和余弦函数的叠加的方法。

这种方法在数学和物理学中广泛应用,在信号处理、图像处理、调制和解调等领域具有重要意义。

本文将详细介绍傅里叶变换法及其在数学和物理学中的应用。

傅里叶变换法的基本原理是基于傅里叶级数展开的思想。

傅里叶级数展开是将一个周期函数表示为一系列正弦和余弦函数的线性组合。

这种展开的思想被扩展到了非周期函数,即傅里叶变换。

傅里叶变换可以将一个函数表示为连续的正弦和余弦函数的积分形式。

傅里叶变换的定义公式如下:\[F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt\]傅里叶变换的逆变换公式如下:\[f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega\]傅里叶变换法在数学中有广泛的应用。

它可以用于求解偏微分方程和积分方程等问题。

傅里叶变换法可以将微分方程转化为代数方程,简化求解过程。

例如,在热传导方程中,傅里叶变换法可以将其转化为常微分方程来求解。

在物理学中,傅里叶变换法用于分析和解释各种物理现象。

例如,在波动现象中,傅里叶变换法可以将一个周期信号分解为不同频率的正弦和余弦函数,从而可以分析波的频谱特性。

在光学中,傅里叶变换法可以用于分析光的传播和衍射现象。

在量子力学中,傅里叶变换法被广泛用于求解薛定谔方程。

傅里叶变换还具有信号处理和图像处理方面的重要应用。

在信号处理中,傅里叶变换可以将一个信号从时域转换到频域,从而可以方便地进行滤波、降噪等处理。

在图像处理中,傅里叶变换可以将一个图像从空域转换到频域,并可以进行图像增强、去噪等操作。

此外,傅里叶变换还有一些与之相关的变换方法,如离散傅里叶变换(DFT)和快速傅里叶变换(FFT)。

离散傅里叶变换是一种将离散信号转换到频域的方法,而快速傅里叶变换是一种计算傅里叶变换的高效算法。

信息光学中的傅里叶变换

信息光学中的傅里叶变换
包括线性性、时移性、频移性、共轭 对称性等,这些性质在信号处理和图 像处理等领域有广泛应用。
傅里叶变换的物理意义
频域分析
通过傅里叶变换可以将信号从时域转换到频域,从而可以分析信号的频率成分 和频率变化。
时频分析
傅里叶变换可以用于时频分析,即同时分析信号的时域特性和频域特性,对于 非平稳信号的处理尤为重要。
信息光学中的傅里叶变换
目 录
• 傅里叶变换基础 • 信息光学基础 • 傅里叶变换在信息光学中的应用 • 傅里叶变换的实验实现 • 傅里叶变换的未来发展与展望
01 傅里叶变换基础
定义与性质
傅里叶变换的定义
将一个时域信号转换为频域信号的过 程,通过使用傅里叶级数或傅里叶积 分进行转换。
傅里叶变换的性质
THANKS FOR WATCHING
感谢您的观看
核磁共振成像等,能够提供更准确的图像分析和诊断。
通信技术
02
傅里叶变换在通信技术领域中用于信号调制、解调以及频谱分
析等方面,有助于提高通信系统的性能和稳定性。
地球物理学
03
傅里叶变换在地球物理学领域中用于地震信号处理和分析,有
助于揭示地球内部结构和地质构造。
傅里叶变换面临的挑战与机遇
数据安全与隐私保护
傅里叶变换的应用领域
01
02
03
信号处理
傅里叶变换在信号处理领 域应用广泛,如滤波、频 谱分析、调制解调等。
图像处理
傅里叶变换在图像处理中 用于图像压缩、图像增强、 图像去噪等。
通信系统
在通信系统中,傅里叶变 换用于信号的调制和解调, 以及频谱分析和频分复用 等。
02 信息光学基础
信息光学的定义与特点

知识1 傅里叶变换

知识1 傅里叶变换

傅里叶变换空间域运算本身在信号处理方面有许多不足之处,如无法显而易见地表示出信号的能量分布状况,而频域为我们提供了不同的视角,使得信号可以通过某些变换(傅里叶变换、离散余弦变换、沃尔什-哈达码变换以及小波变换等)进行分析和处理。

三角级数由三角函数组成函数项级数,即所谓的三角级数,着重研究如何把函数展开成三角函数。

1.三角级数 三角函数系的正交性周期函数反映了客观世界中周期性运动,正弦函数反映了客观世界中周期运动,简谐振动的函数:y = Asin(ωt+ϕ) 就是以ωπ2为周期的正弦函数,其中y 表示动点的位置,t 表示时间,A 表示振幅,ω表示角频率,ϕ为初相。

实际问题中,除了正弦波外,还会遇到非正弦函数的周期函数,反映了较复杂的周期运动,如周期为T 的矩形波,就是一个非正弦函数的例子,所以,可以将周期函数展开成由 简单的周期函数例如三角函数组成的级数,具体就是说,将周期为T = ωπ2的函数用一系列以T 为周期的正弦函成的级数来表示,即为:()()∑∞=++=10sin n n n t n A A t f ϕω(1)其中,A0、A1和n ϕ(n = 0,1,2...)都是常数。

周期函数按上述方式展开,它的物理意义是很明确的,就是把一个比较复杂的周期运动看成由许多不同频率的简谐震动的叠加。

在电工上,这种展开称为谐波分析。

其中A0称为f(t)的直流分量;)sin(11ϕω+t A 称为一次谐波;)2sin(21ϕω+t A 称为二次谐波,等等。

当然,也可以将正弦函数)sin(n n t n A ϕω+按三角公式变形,得:t n A t n A t n A n n n n n n ωϕωϕϕωsin cos cos sin )sin(+=+并且令002A a =,n n n A a ϕsin =,n n n A b ϕcos =,lπω=(T=2l ),则(1)式的右端可以改写成:∑∞=⎪⎭⎫ ⎝⎛++10sin cos 2n n n l t n b l t n a a ππ(2) 形同(2)式的级数称为三角级数,其中0a 、n a 、n b (n = 0,1,2...)都是常数。

《傅里叶变换详解》课件

《傅里叶变换详解》课件
单击添加标题
原理:利用信号的稀疏性,通过测量矩阵将高维信号投影到低维空间,再 利用优化算法重构出原始信号。
单击添加标题
应用:在图像处理、通信、雷达、医学成像等领域有广泛应用,能够实现 高分辨率和高帧率成像,降低数据采集成本和存储空间。
单击添加标题
展望:随着压缩感知技术的不断发展,未来有望在人工智能、物联网、无 人驾驶等领域发挥重要作用,为信号处理领域带来更多创新和突破。
应用:傅里叶逆变换在信号处理、图像处理等领域有着广泛的应用
逆变换的应用场景
信号处理:用于信号的滤波、去噪、压缩等 图像处理:用于图像的增强、去噪、边缘检测等 音频处理:用于音频的滤波、去噪、压缩等 通信系统:用于信号的调制、解调、编码、解码等
06
傅里叶变换的计算机实现
离散傅里叶变换(DFT)
傅里叶变换的分类
连续傅里叶变换:适用于连续信号,将信号分解为不同频率的正弦波
离散傅里叶变换:适用于离散信号,将信号分解为不同频率的正弦波
快速傅里叶变换:适用于快速计算傅里叶变换,通过FFT算法实现 短时傅里叶变换:适用于分析非平稳信号,将信号分解为不同频率的正弦 波,同时考虑时间因素
03
傅里叶变换的性质
04
傅里叶变换的应用
在信号处理中的应用
滤波器设计:设计滤波器以 消除或增强特定频率的信号
信号分解:将信号分解为不 同频率的谐波
信号压缩:通过傅里叶变换 进行信号压缩,减少数据量
信号分析:分析信号的频率 成分,了解信号的特性和变
化规律
在图像处理中的应用
傅里叶变换可以用于图像的平滑处理,去除噪声 傅里叶变换可以用于图像的锐化处理,增强图像的细节 傅里叶变换可以用于图像的频域滤波,去除图像中的特定频率成分 傅里叶变换可以用于图像的压缩和编码,减少图像的数据量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

40
例题: fxrex ct,求它的傅立叶变换 F f .
解: F f FT rect x
1
2 1
exp
j 2 fx dx
2
1
e jf e jf
j2f
sin f sin c f
f
f x
Ff
112来自22021/3/10
41
六、广义傅立叶变换
不能用傅立叶变换的定义去确定其傅立叶频谱。 为了解决类似的问题,引入广义傅立叶变换。
复数: uvj
其复共轭是: u* v j
uvj
预备知识2、什么是厄米?
u* vj
一个复函数,若其实部为偶函数,虚部为奇函数, 此函数称为厄米的。
若其实部为奇函数,虚部为偶函数,此函数称为反 厄米的。
2021/3/10
46
五.一些常用函数的傅立叶变换式
1函数
2梳状函数
3矩形函数 4高 斯 函 数
2021/3/10
g
x
A,
2021/3/10
0,
x
4
x
4
2
x
6
展开成三角傅立叶级数形式
gxA 22 A co2fs0x1 3co2s3f0x1 5co2s5f0x7 1co2s7f0x
基波
f 0 称为基频
谐波
2021/3/10
请看教材P26 图1-15
7
例:周期锯齿波是奇函数
f(t) A/2
0 T1/2
33
2021/3/10
34
2021/3/10
35
2021/3/10
36
2021/3/10
37
2021/3/10
38
2021/3/10
39
欧拉公式:
e e j2n0u x j2n0u x
co2sn0u x
2
e e j2n0 ux j2n0 ux
si2 nn0ux
2j
2021/3/10
第一章 傅立叶分析
1.3 傅里叶变换的定义与计算
2021/3/10
1
第一章 傅立叶分析
1.3 傅里叶变换的定义与计算
2021/3/10
2
2021/3/10
3
2021/3/10
4
2021/3/10
5
举例:教材第25页
例题1
周期为 1 的矩形波函数: f0
gx A
3 2
2 3
在一个周期内,函数的解析式为
2021/3/10
9
2021/3/10
10
2021/3/10
11
2021/3/10
12
2021/3/10
13
2021/3/10
14
2021/3/10
15
2021/3/10
16
教材33页 1.7.5
2021/3/10
17
2021/3/10
18
2021/3/10
19
2021/3/10
一些理想化的函数(cos,step、常数C等), 它们可以用广义傅立叶变换来讨论。
2021/3/10
42
例子:
函 g x 数 1 ,求 G f.
设 gxl imrectx
因为 FT recxtsicnf
所以 G f l im sc in f f
gx
1
2
2
G f 1
1和x互为傅立叶变换。
2021/3/10
Rf
jI f
44
(1) gx是实函 , 则数 Gf是厄米型函数。 G fG f
(2) gx是实值G 偶 f也 函 是 数 实 , 值偶 (3) gx是实值G 奇 f也 函 是 数 实 , 值奇
结论:傅立叶变换具有对称性,即变换前后奇偶性不改变。
2021/3/10
45
预备知识1、什么是复共轭?
43
七.傅立叶变换的性质
如果复函数 g x g rx jig x
其傅立叶变换
G f g x ej2fxdx
gxcos2fxdx j gxsin2fxdx
gr
xcos2f
xdx
gi
xsin2f
xdx
j
gi
xcos2f
xdx
gr
xsin2fxdx
2021/3/10
1
3
4 fa
4 fa
FT•
F f
1 2
fa
fa
2021/3/10
x
FT1• f
49
常用的傅立叶变换对1
2021/3/10
50
常用的傅立叶变换对2
2021/3/10
51
常用的傅立叶变换对3
2021/3/10
52
-T1/2
t
-A/2
f(t) E (s i1 t n1 2si2 n 1 t1 3si3 n 1 t ....)
2021/3/10
8
例:周期三角函数是偶函数
f(t) A
-T1/2
T1/2
t
f(t)A 2 4 A 2(c 1 to 9 1 s c3 o 1 ts 2 1c55 o 1 ts ....
见教材P36
47
5余 弦 函 数
FT cos 2 f a x cos 2 f a xe j 2fx dx
1
e e j 2f a x
j2fa x
e j 2fx dx
2
1 2
e
j2
f
fa
x dx
e
j
2
f
fa
x
dx
1 f
2
fa f
f a
2021/3/10
48
cos2fax
20
2021/3/10
21
2021/3/10
22
2021/3/10
23
2021/3/10
24
2021/3/10
25
2021/3/10
26
2021/3/10
27
2021/3/10
28
2021/3/10
29
2021/3/10
30
2021/3/10
31
2021/3/10
32
2021/3/10
相关文档
最新文档