07-第七章序列相关性
序列相关性
5.滞后效应 在经济中,因变量受到自身或另一解释变量的前几期值影响的现象称为 滞后效应。在一个消费支出对收入的时间序列回归中,人们常常发现当前时 期的消费支出除了依赖于其他变量外,还依赖于前期的消有效 因为,在有效性证明中利用了 E(NN’)=2I 即同方差性和互相独立性条件。而且,在大样本情况下,参数估计量 虽然具有一致性,但仍然不具有渐近有效性。 2、变量的显著性检验失去意义 在变量的显著性检验中,统计量是建立在参数方差正确估计基础之 上的,这只有当随机误差项具有同方差性和互相独立性时才能成立。如果存 在序列相关,估计的参数方差 S ˆ ,出现偏误(偏大或偏小) ,t 检验就失去
~ e ~ e t t 1 t
,
~ e ~ ~ e t 1 t 1 2 et 2 t
3
, 。 。 。
醉客天涯之计量经济学
如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。 回归检验法的优点是: (1)能够确定序列相关的形式 (2)适用于任何类型序列相关性问题的检验。 3、杜宾-瓦森(Durbin-Watson)检验法(最常用) (1)方法使用条件: ①解释变量 X 非随机; ②随机误差项 i 为一阶自回归形式: i=i-1+i ③回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式: Yi=0+1X1i+kXki+Yi-1+i ④回归含有截距项 ⑤误差项被假定为正态分布 (2)D.W.统计量: 杜宾和瓦森针对原假设:H0: =0, 即不存在一阶自回归,构如下造统计量:
D.W .
~ (e
t 2
n
t
~ )2 e t 1
2 t
《序列相关性》课件
序列相关性的类型
01
02
03
正相关
当一个观测值增加时,另 一个观测值也增加,反之 亦然。
负相关
当一个观测值增加时,另 一个观测值减少,反之亦 然。
无相关性
两个观测值之间不存在明 显的依赖关系。
序列相关性产生的原因
01
02
03
04
季节性影响
某些时间序列数据会受到季节 性因素的影响,导致观测值之
间存在周期性依赖关系。
偏相关系数检验
总结词
偏相关系数检验是一种用于检验时间序列数据之间是否存在长期均衡关系的统计方法。
详细描述
偏相关系数检验基于时间序列数据的偏相关图,通过计算偏相关系数,判断时间序列数 据之间是否存在长期均衡关系。如果存在长期均衡关系,则说明时间序列数据之间存在
某种稳定的关联性,可能存在协整关系。
04 序列相关性对模型的影响
个体差异性和时间趋势性。
02 03
序列相关性分析
面板数据的序列相关性分析是对不同个体或区域上的时间序列数据进行 相关性检验和建模的过程,主要考察不同个体或区域在同一时间点上的 数据是否具有相关性。
总结
面板数据的序列相关性分析是研究面板数据的重要手段,有助于揭示不 同个体或区域在同一时间点上的数据关联和动态变化。
经济因素
经济活动中的各种因素可能导 ຫໍສະໝຸດ 时间序列数据之间存在相关性。
政策因素
政策变动或干预可能对时间序 列数据产生影响,导致观测值
之间存在相关性。
其他因素
如气候变化、人口增长等也可 能对时间序列数据产生影响, 导致观测值之间存在相关性。
02 序列相关性在统计学中的 应用
线性回归模型中的序列相关性
序列相关性
如果(1) ρ >0,即随机项存在自相关; 且
xt x s / ∑ xt2 >0,即 X 存在序列正相关,则有 (2) ∑
t ≺s
var( β 1 ) >
~
∑x
σ2
2 t
ˆ = var( β 1 )
(2.5.4)
在实际经济问题中的自相关,大多是 正自相关,且一般经济变量X的时间序列 也大多为正自相关,因此(2.5.4)在多 数经济问题中成立。 这说明,当随机项存在自相关时,参 数的OLS估计量的方差较无自相关时大。
(2)设定偏误:模型中未含应包括的变量 设定偏误:
例如:
如果对牛肉需求的正确模型应为: 如果对牛肉需求的正确模型应为:
Yt=β0+β1X1t+β2X2t+β3X3t+µt
其中:Y=牛肉需求量,X1=牛肉价格, X2=消费者收入,X3=猪肉价格
但如果模型设定为: 但如果模型设定为:
Yt= β0+β1X1t+β2X2t+vt 则该式中,vt= β3X3t+µt, 于是在猪肉价格影响牛肉消费量的情况下,这种 这种 模型设定的偏误往往导致随机项中有一个重要的系 统性影响因素,使其呈序列相关性。 统性影响因素,使其呈序列相关性。
~
E(β1 ) = E(∑kt Yt ) = E(β1 + ∑kt µt ) = β1
~
但,可以证明
n −1 ∑ xt xt +1 2 2 2 σ 2σ ~ ρ t =1n + +ρ var(β1 ) = 2 2 ∑ xt ∑ xt ∑ xt2 t =1
∑x x
t =1 t n t =1
(1)序列相关性检验 序列相关性检验 (2)自相关性检验 自相关性检验 (3)多重共线性检验 多重共线性检验 (4)随机解释变量检验 随机解释变量检验
序列相关性
(四)拉格朗日乘数检验(Lagrange Multiplier)
• LM检验是由布劳殊(Breusch)与戈弗雷(Godfrey) 于1978年提出的,也被称为GB检验。 • 拉格朗日乘数检验克服了DW检验的缺陷,适合于高阶序 列相关以及模型中存在滞后被解释变量的情形。
对于模型
Yt 0 1 X1t 2 X 2t k X kt t
§4.2
序列相关性
一、序列相关性的概念
二、实际经济问题中的序列相关性
三、序列相关性的后果
四、序列相关性的检验
五、序列相关性的补救
四、序列相关性的检验
基本思路 :
首先, 采用 OLS 法估计模型, 以得随机误差项的
~ e i 表示: “近似估计量” ,用
~ Y (Y ˆ) e i i i 0 ls
t 2 n t
n
t 1
其中:ρ为一阶自相关系数
) 2(1 )
et 2 ~
t 1
一阶自回归模型:i=i-1+i 的参数估计。
由于自相关系数的值介于-1和+1之间,因此:
0≤DW≈2(1-ρ)≤4 如果存在完全一阶正相关,即=1,则 D.W. 0 完全一阶负相关,即= -1, 则 D.W. 4 完全不相关,即=0,则 D.W.2
检验时需要事先确定准备检验的阶数P,实际检验中,可从1阶、2
阶、…逐次向更高阶检验。
检验结果显著时,可以说明存在序列相关,但是并不一定代表序列 相关的阶数一定能够达到所检验的阶数。
◦ 低阶序列相关的存在往往会导致高阶序列相关检验的显著性 ◦ 具体阶数的判断,需要结合辅助回归中自相关系数的显著性
4-dL
# D.W.检验统计量的说明
统计学计量经济学课件4.2序列相关性
对于长期趋势的数据,如果只使 用部分样本数据进行分析,可能 会导致残差序列相关。
03
序列相关性对回归分析的 影响
估计量的偏误
偏误类型
序列相关性会导致回归系数的估计量 产生偏误,即估计的系数不再等于真 实系数。
偏误原因
解决方法
采用适当的统计方法,如广义最小二 乘法(GLS)或广义差分法(GDM) ,以消除序列相关性对估计量的影响 。
统计学计量经济学课 件4.2序列相关性
xx年xx月xx日
• 序列相关性的定义 • 序列相关性产生的原因 • 序列相关性对回归分析的影响 • 检验序列相关性的方法 • 解决序列相关性的方法
目录
01
序列相关性的定义
什么是序列相关性
序列相关性是指时间序列数据之间存在某种相关性,即一个 时间点的数值可能与下一个时间点的数值之间存在一定的依 赖关系。
用于检验时间序列数据是否存 在序列相关性,如杜宾瓦森检
验和LM检验。
02
序列相关性产生的原因
模型设定误差
模型遗漏重要变量
在计量经济学模型中,如果遗漏了重 要的解释变量,会导致残差序列相关 ,从而产生序列相关性。
错误地设定滞后变量
在模型中错误地引入滞后变量,会导 致模型残差出现序列相关性。
数据生成过程
在回归分析中,应充分考虑序列相关性对 检验和推断的影响,采用适当的统计方法 和模型进行修正,以提高推断的准确性。
04
检验序列相关性的方法
图检验法
散点图
通过绘制时间序列数据的散点图,观察数据点是否呈现出某种趋势或模式,从而 判断是否存在序列相关性。
自相关图
利用自相关系数或偏自相关系数来绘制自相关图,通过观察自相关系数或偏自相 关系数的变化趋势,判断是否存在序列相关性。
4.2序列相关性
又如:模型本应为:
Yt = 0 +1 Xt +2 Xt2 + t
但建模时设立模型如下:
Yt = 0 +1 Xt + vt
由于vt = 2 Xt2 +t ,解释变量的平方对随机误 差项产生系统性影响,从而使随机误差项呈现出 序列相关性。
三、序列相关性的后果
计量经济学模型一旦出现序列相关性,如果仍 采用OLS估计模型参数,会产生下列不良后果:
§4.2
序列相关性
一、序列相关性的概念 二、序列相关性的产生原因 三、序列相关性的后果 四、序列相关性的检验 五、序列相关性的克服办法 六、实例
一、序列相关性的概念
0 1 X1i 2 X 2i k X k i i 基本假设要求随机误差项之间互不相关:
对于模型 Yi
-4 -4 -2 0 2
U (-1) 4
正自相关的序列图和散点图
4 X
6 X 4
2
2
0
0 -2
-2
-4
-4 10 20 30 40 50 60 70 80 90 100
-6 -6 -4 -2 0 2
X(-1) 4 6
负自相关的序列图和散点图
6 X 4 2 0 -2 -4 -6 10 20 30 40 50 60 70 80 90 100
n
~ et 2
t 1
n
如果存在完全正自相关,则
n
~ ~ ~~ et2 et21 2 et et 1
t 2 t 2 t 2
n
n
1,D.W . 0
如果存在完全负自相关,则
~ et2
t 1
序列相关性
2
4-dU
4-dL
# D.W.检验统计量的说明
DW检验表明:当D.W.值在2左右时,模型不存在一阶自相关
证明:展开D.W.统计量:
D.W .
~ e
t 2
n
2
t
~ e
t 2 n
n
2 t 1
~~ 2 et et 1
t 2
n
(*)
~ et 2
t 1
D.W . 2(1
(三)杜宾-瓦森检验法(DW检验)
D-W检验是杜宾(J.Durbin)和瓦森(G.S. Watson)于 1951年提出的一种检验序列自相关的方法
该方法只适用于检验一阶自相关
(1)解释变量X非随机;
假 定 条 件
(2)随机误差项t为一阶自回归形式: t = t-1 + t
(3)回归模型中不应含有滞后因变量作为解释变量,即不应
因此:vt=3X3t + t,
如果X3确实影响Y,则出现序列相关。
这是横截面数据也可能存在序列相关性的重要原因
4、数据的处理
在实际经济问题中,有些数据是通过已知数据生成的。因 此,新 生成的数据与原数据间就有了内在的联系,表现出序列相关性。 例如:
季度数据来自月度数据的简单平均,这种平均的计算减弱了每月
检验时需要事先确定准备检验的阶数P,实际检验中,可从1阶、2
阶、…逐次向更高阶检验。
检验结果显著时,可以说明存在序列相关,但是并不一定代表序列 相关的阶数一定能够达到所检验的阶数。
◦ 低阶序列相关的存在往往会导致高阶序列相关检验的显著性 ◦ 具体阶数的判断,需要结合辅助回归中自相关系数的显著性
七计量经济学-序列相关性
2、解析法
(1)回归检查法
以 e~i 为被解释变量,以各种可能的相关量, 诸如以 e~i1 、 e~i2 、 e~i2 等为解释变量,建立各
种方程:
e~i e~i 1 i
i=2,…,n
e~i 1e~i1 2 e~i2 i
i=3,…,n
…
对各方程预计并进行明显性检查,如果存 在某一种函数形式,使得方程明显成立,则 阐明原模型存在序列有关性。
2、序列有关产生的因素
(1)惯性
大多数经济时间数据都有一种明显的特点, 就是它的惯性。
GDP、价格指数、生产、就业与失业等时 间序列都呈周期性,如周期中的复苏阶段,大 多数经济序列均呈上升势,序列在每一时刻的 值都高于前一时刻的值,似乎有一种内在的动 力驱使这一势头继续下去,直至某些状况(如 利率或课税的升高)出现才把它拖慢下来。
(3)经验表明,如果不存在一阶自有关, 普通也不存在高阶序列有关。
因此在实际应用中,对于序列有关问题普 通只进行D.W.检查。
四、含有序列有关性模型的预计
• 如果模型被检查证明存在序列有关性, 则需要发展新的办法预计模型。
• 最惯用的办法是广义最小二乘法(GLS: Generalized least squares)、一阶差分 法(First-Order Difference)和广义差分 法(Generalized Difference)。
一阶差分法是将原模型
Yi 0 1 X i i
变换为
i=1,2,…,n
Yi 1X i i i1
其中
i=2,…,n
Yi Yi Yi1
(2.5.10)
• 如果原模型存在完全一阶正自有关,即在
•
i= i-1+ i
计量经济学-序列相关性
PART 03
序列相关性检验方法
杜宾-瓦特森检验
检验原理
通过计算残差序列的一阶自相关系数来检验序列相关性。
检验步骤
首先估计回归模型,计算残差;然后计算残差的自相关系数;最后 根据自相关系数和样本量确定临界值,判断序列相关性。
优缺点
简单易行,但仅适用于一阶自相关的情况,对于高阶自相关检验效 果较差。
将检验结果以表格或图形形式展示出 来,包括检验统计量、P值等。若存 在序列相关性,可采用差分法、 ARIMA模型等方法进行处理,并重新 进行参数估计和检验。
根据检验结果和处理结果,对模型的 适用性和可靠性进行评估。若模型存 在严重序列相关性问题,则需要重新 考虑模型设定和估计方法。
PART 06
总结与展望
检验步骤
在原始回归模型中添加滞后项作为解释变量;然后估计辅 助回归模型,得到回归系数的估计值;最后根据回归系数 的估计值构造统计量,进行假设检验。
优缺点
可以检验任意阶数的自相关,但需要注意滞后项的选择和 模型的设定。
PART 04
序列相关性处理方法
差分法
一阶差分法
通过计算相邻两个时期的数据差值来消除序列相 关性。
运用最小二乘法(OLS)或其他估计方法,对模型参数进行估计。在 EViews中,可通过"Quick"菜单选择"Estimate Equation"选项进行参数估 计。
序列相关性检验及处理结果展示
01
序列相关性检验
02
处理结果展示
03
结果解读
采用Durbin-Wu-Hausman检验、 Breusch-Godfrey检验等方法,检验 模型是否存在序列相关性。在EViews 中,可通过"View"菜单选择 "Residual Diagnostics"选项进行检 验。
序列相关性
序列相关性
序列相关性(SequenceCorrelation)是一种重要的统计学技术,它用来衡量和分析两个或多个相关序列之间的关系,以检测和预测未来的变化。
它最早出现在电信行业,用于诊断信号传输出现的问题。
随着数字信号处理技术在各个领域的普及,序列相关性也被用于科学、工程、金融和经济等许多领域,以检测和预测未来的变化。
序列相关性通常是指两个或多个相关时间序列之间的相关性,即两个序列中时间上相邻元素之间的空间关系。
它以线性方式来衡量数据集之间的相关性,反映出其内在的结构和未来的变化趋势。
序列相关性的测量可以使用线性回归的方法,也可以使用非线性方法,例如波动率,均值行走和自相关函数。
这些方法用于通过检测输入序列中存在的规律性,预测时间序列中未来的变化。
例如,均值行走可以用于分析具有相同或类似序列趋势的时间序列,从而预测未来的变化。
序列相关性也可以用于比较数据集之间的关系,例如销售数据、价格数据和交易数据等。
这种研究可以揭示不同因素对销售情况的影响,从而帮助管理者做出有效的营销决策。
此外,序列相关性可以帮助投资者识别投资组合,以便减少投资风险和收益率波动。
它也可以用于评估金融市场中风险和投资回报的关系。
序列相关性有助于揭示数据间隐藏的关系,并预测未来的变化
趋势。
它也可以用于比较数据集之间的关系,可以帮助投资者识别投资组合,以及评估金融市场中风险和投资回报的关系。
因此,序列相关性在许多行业的应用非常普遍,帮助企业在投资和运营方面取得更好的成绩。
计量经济学导论第四版第七章
当我们把(7.1)和(7.6)结合起来时,
便发现 实际上服从一个二阶自回归模型,
或AR(2)模型。为说明这一点,我们把它
写成 ut -1 yt 1 0 1yt 2,并代入 ut ut 1 et
于是(7.6)就可以写成:
12
出现滞后因变量时的序列相关
中的t统计量忽略了 和 −1 之间可能
的相关,所以在回归元不是严格外生的
情况下它不是有效的。
27
例2检验最低工资方程中的AR(1)序列
相关
在第5章,我们考察了最低工资对波多黎
各就业率的影响 ,我们现在来检验误差
中是否包含了序列相关,所用的检验并
不假定最低工资和GNP有严格外生性。
我们假定潜在的随机过程是弱相关的,
7
效率和推断
单个假设的t统计量也不再确当。因为较
小的标准误意味着较大的t统计量,所以
当 > 时,通常t统计量常常过大。用
于检验多重假设的通常F统计量和LM统
计量也不再可靠。
8
拟合优度
有时我们有这样一种观点:时间序列回
归模型中的误差若存在序列相关,我们
通常的拟合优度指标2 和调整 2 便失效
如同检验异方差性那样,虚拟假设就是
相应的高斯-马尔科夫假定正确。在
AR(1)模型中,误差序列无关的这个虚
拟假设是:H 0 : 0 (7.12)
这里我们把定理(6.2)的渐进正态结论
直接应用于动态回归模型:
ut ut 1 et , t 2,3..., n (7.13)
15
严格外生时对AR(1)的t检验
值。
17
例1菲利普斯曲线AR(1)序列相关
计量经济学之序列相关性
H0 : 1 2 p 0
备择假设H为 1 ( H1:i i 1,2,, p) 中至少有一个不为零 若为真,则LM统计量在大样本下渐进 2 服从自由度为p的 分布:
LM nR ~
2
其中,n, (p)
2
R
2
分别是辅助回归方程(6)的样本容量和可决系 数
e e e e e e e e e e
t t t 1 t 1 t t 1 2 t 2 t 1 2 t
2 t 1
(3)
当n充分大时, et2 et21 有 et et 1 ˆ et2 所以
ˆ ˆ ˆ
(19)
三 自相关系数ρ的估计
广义差分法得以实施的关键是计算出自相关系数ρ的值,因此,必 须采用一些适当的方法对自回归系数ρ进行估计,通常适用的方法主 要有:经验法、利用 D.W.估计、科克伦-奥科特迭代法等。
下面我们着重介绍一下科克伦-奥科特迭代法: 科克伦-奥科特迭代法其实就是进行一系列的迭代,每一次迭代 都能得到比前一次更好的ρ的估计值。为了叙述方便,我们采用一元 回归模型来阐明这种方法, 多元回归模型下的迭代法与一元回归的原 理相同。 假设给定模型 Yt = β0 + β1 X t + μt 其中, μt = ρ1 μt−1 + ρ2 μt−2 + ⋯ + ρp μt−p + εt t=1+p,2+p,…,n (22) (21)
如果含有 k 个解释变量的多元回归模型(2)存在 p 阶序列相关 性,也可作类似变换,变换结果为
∗ Yt∗ = β0 1 − ρ1 − ⋯ − ρp + β1 X1t + β2 X∗ + ⋯ + βk X∗ + εt 2t kt ∗ 其中,Xit = Xit − ρ1 Xi(t−1) − ⋯ − ρp Xi(t−p)(i=1,2,…,p)。
计量经济学第七章序列相关性
广义差分方程, 失去一次观测
四、序列相关的修正
未知时
(1)用DW统计量估计
查表,N=24,一个解释变量,5%的DW临界值: dL=1.27, dU=1.45,0<d=0.911< dL ,正序列相关
例 美国零工招聘指数与失业率
序列相关修正,估计 d 0 . 911 ˆ 1 1 0 . 5445 用DW统计量估计 2 2 ˆ 0.546 一般对大样本来说, 科克伦-奥克特两步法 用哪种方法区别不大。 德宾两步法 ˆ 0.795 但是对小样本则不同。
OLS估计原模型并得到残差et 做et对模型中全部回归元和附加回归元et-1, et-2,…, et-p的回归,得到r2。 如果样本是大样本,则:(n-p) · r2 ~2p
四、序列相关的修正
自相关结构已知时的修正——广义差分法 以双变量回归模型和 AR (1 )为例。
Y t 1 2 Xt u t ut ut1 t Y t 1 2 Xt u t
n
t 1
t 1 n
ˆ t 2
t t 1 2 t
n
)
t 1
ˆ t 2
ˆ 定义
ˆ ˆ
t2
ˆ
t 1
n
为 样 本 的 一 阶 自 相 关 系 数 , 作 为 的 估 计 量 。
ˆ 则 又 , d 2 ( 1 )
1 1 , 所 以 , 0 d 4
计量经济学重点内容
第一章导论计量经济学定义:计量经济学(Econometrics)是一门应用数学、统计学和经济理论来分析、估计和检验经济现象与理论的科学。
通过使用统计数据和经济模型,计量经济学试图量化经济关系,以更好地理解经济变量之间的相互作用。
研究的问题(相关关系):计量经济学的目的是研究经济变量之间的关系,例如:1. 消费与收入的关系。
2. 教育与工资的关系。
3. 利率与投资的关系。
第二章 OLS (普通最小二乘法):OLS 是一种用于估计线性回归模型中未知参数的方法。
它通过最小化误差平方和来找到回归线。
在一元线性回归中,我们通常使用普通最小二乘法(OLS)来估计模型参数。
对于模型 Y = α + βX + ε,我们可以使用以下公式来计算α和β:β= Σ( (X - mean(X)) (Y - mean(Y)) ) / Σ( (X - mean(X))^2 ) α̂ = mean(Y) - β̂ * mean(X)这里,mea n(X) 是 X 变量的平均值(即ΣX/n),mean(Y) 是 Y 变量的平均值(即ΣY/n)。
在这些公式中,mean 表示求平均值。
Σ 表示对所有数据点求和,n 是样本大小。
这里α_hat 是截距的估计值,β_hat 是斜率的估计值。
结论及推论:1. 在高斯马尔可夫假设下,OLS 估计量是最佳线性无偏估计量(BLUE)。
2. 当误差项的方差是常数时,OLS 估计量是有效的。
3. 如果模型是正确规范的,并且误差项是独立且同分布的,那么 OLS 估计量是一致的。
4. 如果误差项与解释变量相关,或者存在遗漏变量,那么 OLS 估计量可能是有偏的。
5. OLS 提供了估计的标准误差、t 统计量和其他统计量,这些可以用于进行假设检验和构建置信区间。
第三章一元回归:(1)总函、样函:总函数和样本函数是线性回归模型的两种表现形式。
总函数(总体函数)表示整体样本的关系,一般形式为Y = β0 + β1X + ε。
序列相关性
拉格朗日乘数(Lagrange multiplier)检验
序列相关性的处理
最常用的方法是广义最小二乘法(GLS: Generalized least squares)和广义差分法 (Generalized Difference)。
处理序列相关性的实例
经济理论指出,商品进口主要由进口国的 经济发展水平,以及商品进口价格指数与 国内价格指数对比因素决定的。 由于无法取得中国商品进口价格指数, 我们主要研究中国商品进口与国内生产总 值的关系。(下表)。
五、科克伦-奥科特(CochraneOrcutt)法估计模型
1、在Eviews主画面顶部按钮中点击 quick/estimate equation,在弹出Equation Specification的窗口中键入M C GDP AR(1), 然后点击OK,得到模型的估计结果输出
五、科克伦-奥科特(CochraneOrcutt)法估计模型
若 0<D.W.<dL 存在正自相关 dL<D.W.<dU 不能确定 dU <D.W.<4-dU 无自相关 4-dU <D.W.<4- dL 不能确定 4-dL <D.W.<4 存在负自相关
完全一阶正相关, 即=1, 则 D.W. 0 完全一阶负相关, 即= -1, 则 D.W. 4 完全不相关, 即=0, 则 D.W.2
三、在Eviews输出窗口中阅读 Durbing-Watson统计量
双击窗口中eq01,打开模型估计结果。在 输出结果左下角(阴影部分)显示有统计 量值。根据模型中解释变量个数及样本容 量查临界值表,从而可以判断模型中的随 机误差项是否存在自相关性。本例中解释 变量个数为2(包括常数项),样本容量为 24,查表得dl= ,du= ,而DW dl , 故:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—理论·方法·EViews应用
山东工商学院统计学院 袁靖 博士 2019.08.10
第七章 序列相关性
◆ 学习目的
通过本章的学习,你可以知道什么是序列相关性,序列 相关性产生的原因是什么,序列相关性导致什么样的后果, 怎样检验和处理具有序列相关性的模型。
◆ 基本要求
1)掌握序列相关性的概念、序列相关性的后果和检验方法; 2)了解广义最小二乘法和广义差分法原理; 3)能运用广义差分法和广义最小二乘法估计线性回归模型。
E()2I
(7-11)
即同方差和相互独立性条件。而且在大样本情况下,参数估计量虽然 具有一致性,但仍然不具有渐近有效性。
为了具体说明这一点,我们回到简单的一元回归模型
Yi 01Xii
(7-12)
为方便我们不妨假定干扰项为(7-4)所示的一阶序列相关:
t t1t
(7-13)
对于干扰项为一阶序列相关的一元回归模型采用OLS估计,如以前
7-6)
2.模型设定的偏误
定义:
指所设定的模型“不正确”,主要表现在模型中丢掉了重要的解释
变量或模型函数形式有偏误。
例2:(模型函数形式有偏误)
在成本—产出研究中,如果真实的边际成本的模型为:
Y t= β0+ β 1X 7)
其中Y代表边际成本,X代表产出。
但是如果建模时设立了如下回归模型:
由于心理上、技术上以及制度上的原因,消费者不会轻易改变其消费 习惯,如果我们忽视(7-9)式中的滞后消费对当前消费的影响,那所带来 的误差项就会体现出一种系统性的模式。
4.蛛网现象
例如:
假定某农产品的供给模型为:
St 01P t-1t
(7-10)
假设t时期的价格Pt低于t-1时期的价格Pt-1,农民就很可能决定在时 期t+1生产比t时期更少的东西。显然在这种情形中,农民由于在年 度t的过量生产很可能在年度t+1消减他们的产量。诸如此类的现象, 就不能期望干扰μt是随机,从而出现蛛网式的序列相关。
一样,β1的OLS估计量为:
ˆ1
xt yt xt2
(7-14)
但给定干扰项为一阶序列相关时, 1 的方差估计量现在为:
V ar(ˆ1)A R 1
2 xt22x2 t2
n1
xtxt1
n2
xtxt2
n1xtxn
3.拟合优度检验R2统计量和方程显著性检验F统计量无效
4.变量的显著性检验t检验统计量和相应的参数置信区间估计失去意义
5.模型的预测失效
1.参数估计量非有效
根据OLS估计中关于参数估计量的无偏性和有效性的证明过程 可以看出,当计量经济学模型出现序列相关性时,其OLS参数估计 量仍然具有线性无偏性,但不具有有效性。因为在有效性证明中我 们利用了
第七章 序列相关性
◆序列相关性及其产生原因 ◆ 序列相关性的影响 ◆序列相关性的检验 ◆序列相关的补救
第一节 序列相关性及其产生原因
—、序列相关性的含义
对于多元线性回归模型
Y i 0 1 X 1 i 2 X 2 i L k X k i i i 1 , 2 , L , n(7-1)
在其他假设仍然成立的条件下,随机干扰项序列相关意味着
1.经济数据序列惯性
比如:
GDP、价格指数、消费等时间序列数据通常表现为周期循环。当经 济衰退的谷底开始复苏时,大多数经济序列开始上升,在上升期间,序 列在每一时刻的值都高于前一时刻的值。看来有一种内在的动力驱使这 一势头继续下去,直至某些情况出现(如利率或税收提高)才把它拖慢 下来。 因此,在涉及时间序列的回归中,相继的观测值很可能是相互依赖的。
5.数据的编造 新生成的数据与原数据间就有了内在的联系,表现出序列相关性。
例如:
季度数据来自月度数据的简单平均,这种平均的计算减 弱了每月数据的波动而引进了数据中的匀滑性,这种匀滑性 本身就能使随机干扰项中出现系统性的因素,从而出现序列 相关性。
利用数据的内插或外推技术构造的数据也会呈现某种系统性的模式。 一般经验表明,对于采用时间序列数据做样本的计量经济学模型, 由于在不同样本点上解释变量意外的其他因素在时间上的连续性, 带来了他们对被解释变量的影响的连续性,所以往往存在序列相关性。
E ( i ) 0 ,V a r ( i ) 2 ,C o v ( i ,i s ) 0 ( s 0 )
由于序列相关性经常出现在以时间序列数据为样本的模型中,因此, 本节下面将代表不同样本点的下表I 用t 表示。
二、序列相关的原因
1.经济数据序列惯性 2.模型设定的偏误 3.滞后效应 4.蛛网现象 5.数据的编造
2.模型设定的偏误
定义:
指所设定的模型“不正确”,主要表现在模型中丢掉了重要的解释
变量或模型函数形式有偏误。
例1:(丢掉了重要的解释变量)
本来应该估计的模型为
Y t0 1 X 1 t1 X 2 t3 X 3 tt
(7-5)
但在进行回归时,却把模型设定为如下形式:
Y t= β 0+ β 1X 1 t+ β 2X 2 t+ νt
如果仅存在
Cov(i,j)E(ij)0
E (i i 1)0 ,i 1 ,2 ,...,n
(7-2) (7-3)
则称为一阶序列相关或自相关(简写为AR(1)),这是常见的一种序列相关问题。
自相关往往可以写成如下形式:
ii 1 i, 1 1
其中 称为自协方差系数或一阶自回归系数,
(7-4)
i 是满足以下标准OLS假定的随机干扰项:
Yt 01Xtvt
(7-8)
3.滞后效应
考虑一个消费支出对收入进行回归的时间序列模型,人们常常发 现当期的消费支出除了依赖其他当期收入外,还依赖前期的消费支出, 即回归模型为:
C t01 Y t3 C t 1t
(7-9)
其中,C是消费,Y是收入。
类似(7-9)式的回归模型被称为自回归模型
注意:
第二节 序列相关性的影响
如 果 我 们 在 干 扰 中 通 过 假 定 C ov(t,tj)E(ttj)0
引 进 自 相 关 , 但 保 留 经 典 模 型 的 全 部 其 他 假 定 , 对 O L S 估 计 量 及 其 方 差 来 说 会 出 现 什 么 情 况 呢 ?
1.参数估计量非有效 2.随机误差项方差估计量是有偏的